
Organizing Code in JS
SWE 432, Fall 2019

Web Application Development

LaToza GMU SWE 432 Fall 2019

Today
• Some basics on how and why to organize code

(SWE!)
• Closures
• Classes
• Modules

!3

For further reading:
http://stackoverflow.com/questions/111102/how-do-

javascript-closures-work

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work
http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

LaToza GMU SWE 432 Fall 2019

Logistics
• HW1 released today

• Basics of JavaScript, including classes (covered
today)

• Due on Monday, Sept 16

!4

LaToza GMU SWE 432 Fall 2019

Running JavaScript
• More on this next time

• Some options for now

• a pastebin (e.g., JSFiddle)

• an IDE (e.g, VSCode, Webstorm)

• Webstorm is free for students:

• https://www.jetbrains.com/student/

!5

https://www.jetbrains.com/student/

History + Motivation
“Wow back in my day before ES6 we didn’t have your fancy

modules”

Spaghetti Code

Brian Foote and Joe Yoder

window.onload = function () {
 eqCtl = document.getElementById('eq');
 currNumberCtl = document.getElementById('currNumber');
};

var eqCtl,
 currNumberCtl,
 operator,
 operatorSet = false,
 equalsPressed = false,
 lastNumber = null;

function add(x,y) {
 return x + y;
}

function subtract(x, y) {
 return x - y;
}

function multiply(x, y) {
 return x * y;
}

function divide(x, y) {
 if (y == 0) {
 alert("Can't divide by 0");
 return 0;
 }
 return x / y;
}

function setVal(val) {
 currNumberCtl.innerHTML = val;
}

function setEquation(val) {
 eqCtl.innerHTML = val;
}

function clearNumbers() {
 lastNumber = null;
 equalsPressed = operatorSet = false;
 setVal('0');
 setEquation('');
}

function setOperator(newOperator) {
 if (newOperator == '=') {
 equalsPressed = true;
 calculate();
 setEquation('');
 return;
 }

 if (!equalsPressed) calculate();
 equalsPressed = false;
 operator = newOperator;
 operatorSet = true;
 lastNumber = parseFloat(currNumberCtl.innerHTML);
 var eqText = (eqCtl.innerHTML == '') ?
 lastNumber + ' ' + operator + ' ' :
 eqCtl.innerHTML + ' ' + operator + ' ';
 setEquation(eqText);
}

function numberClick(e) {
 var button = (e.target) ? e.target : e.srcElement;
 if (operatorSet == true || currNumberCtl.innerHTML == '0') {
 setVal('');
 operatorSet = false;
 }
 setVal(currNumberCtl.innerHTML + button.innerHTML);
 setEquation(eqCtl.innerHTML + button.innerHTML);
}

function calculate() {
 if (!operator || lastNumber == null) return;
 var currNumber = parseFloat(currNumberCtl.innerHTML),
 newVal = 0;
 switch (operator) {
 case '+':
 newVal = add(lastNumber, currNumber);
 break;
 case '-':
 newVal = subtract(lastNumber, currNumber);
 break;
 case '*':
 newVal = multiply(lastNumber, currNumber);
 break;
 case '/':
 newVal = divide(lastNumber, currNumber);
 break;
 }
 setVal(newVal);
 lastNumber = newVal;
}

function setOperator(newOperator) {
 if (newOperator == '=') {
 equalsPressed = true;
 calculate();
 setEquation('');
 return;
 }

 if (!equalsPressed) calculate();
 equalsPressed = false;
 operator = newOperator;
 operatorSet = true;
 lastNumber = parseFloat(currNumberCtl.innerHTML);
 var eqText = (eqCtl.innerHTML == '') ?
 lastNumber + ' ' + operator + ' ' :
 eqCtl.innerHTML + ' ' + operator + ' ';
 setEquation(eqText);
}

function numberClick(e) {
 var button = (e.target) ? e.target : e.srcElement;
 if (operatorSet == true || currNumberCtl.innerHTML == '0') {
 setVal('');
 operatorSet = false;
 }
 setVal(currNumberCtl.innerHTML + button.innerHTML);
 setEquation(eqCtl.innerHTML + button.innerHTML);
}

function calculate() {
 if (!operator || lastNumber == null) return;
 var currNumber = parseFloat(currNumberCtl.innerHTML),
 newVal = 0;
 switch (operator) {
 case '+':
 newVal = add(lastNumber, currNumber);
 break;
 case '-':
 newVal = subtract(lastNumber, currNumber);
 break;
 case '*':
 newVal = multiply(lastNumber, currNumber);
 break;
 case '/':
 newVal = divide(lastNumber, currNumber);
 break;
 }
 setVal(newVal);
 lastNumber = newVal;

…aka big ball of mud aka
shanty town code

Brian Foote and Joe Yoder

LaToza GMU SWE 432 Fall 2019

Bad Code “Smells”
• Tons of not-very related functions in the same file

• No/bad comments

• Hard to understand

• Lots of nested functions

!10

 fs.readdir(source, function (err, files) {
 if (err) {
 console.log('Error finding files: ' + err)
 } else {
 files.forEach(function (filename, fileIndex) {
 console.log(filename)
 gm(source + filename).size(function (err, values) {
 if (err) {
 console.log('Error identifying file size: ' + err)
 } else {
 console.log(filename + ' : ' + values)
 aspect = (values.width / values.height)
 widths.forEach(function (width, widthIndex) {
 height = Math.round(width / aspect)
 console.log('resizing ' + filename + 'to ' + height + 'x' + height)
 this.resize(width, height).write(dest + 'w' + width + '_' + filename, function(err) {
 if (err) console.log('Error writing file: ' + err)
 })
 }.bind(this))
 }
 })
 })
 }
 });

LaToza GMU SWE 432 Fall 2019

Design Goals
• Within a component

• Cohesive

• Complete

• Convenient

• Clear

• Consistent

• Between components

• Low coupling

!11

LaToza GMU SWE 432 Fall 2019

Cohesion and Coupling
• Cohesion is a property or characteristic of an individual unit

• Coupling is a property of a collection of units

• High cohesion GOOD, high coupling BAD

• Design for change:

• Reduce interdependency (coupling): You don't want a
change in one unit to ripple throughout your system

• Group functionality (cohesion): Easier to find things,
intuitive metaphor aids understanding

!12

LaToza GMU SWE 432 Fall 2019

Design for Reuse
• Why?

• Don’t duplicate existing functionality

• Avoid repeated effort

• How?

• Make it easy to extract a single component:

• Low coupling between components

• Have high cohesion within a component

!13

LaToza GMU SWE 432 Fall 2019

Design for Change
• Why?

• Want to be able to add new features

• Want to be able to easily maintain existing software

• Adapt to new environments

• Support new configurations

• How?

• Low coupling - prevents unintended side effects

• High cohesion - easier to find things

!14

Organizing Code
How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Classes Classes

Entire libraries Packages Modules

LaToza GMU SWE 432 Fall 2019

Classes

!16

Lecture 4, JavaScript

A small correction:

*

LaToza GMU SWE 432 Fall 2019

Classes
• ES6 introduces the class keyword

• Mainly just syntax - still not like Java Classes

!17

function Faculty(first, last, teaches, office)
{
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 this.fullName = function(){
 return this.firstName + " " + this.lastName;
 }
}
var prof = new Faculty("Thomas", "LaToza", "SWE432", "ENGR 4431");

Old

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }
}
var prof = new Faculty("Thomas", "LaToza", "SWE432", "ENGR 4431");

New

LaToza GMU SWE 432 Fall 2019

Classes - Extends
extends allows an object created by a class to be linked to
a “super” class. Can (but don’t have to) add parent
constructor.

!18

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }
}

class CoolFaculty extends Faculty {
 fullname() {
 return "The really cool " + super.fullname();
 }
}

LaToza GMU SWE 432 Fall 2019

Classes - static
static declarations in a class work like in Java

!19

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }

static formatFacultyName(f) {
 return f.firstName + " " + f.lastName;
 }
}

LaToza GMU SWE 432 Fall 2019

Modules (ES6)
• With ES6, there is finally language support for modules

• Module must be defined in its own JS file

• Modules export declarations

• Publicly exposes functions as part of module interface

• Code imports modules (and optionally only parts of
them)

• Specify module by path to the file

!20

LaToza GMU SWE 432 Fall 2019

Modules (ES6) - Export Syntax

!21

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];
var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};
export {getFaculty as aliasForFunction, someVar};

Label each declaration with
“export”

Or name all of the exports at
once

Can rename exports too

export default function getFaculty(i){...

Default export

LaToza GMU SWE 432 Fall 2019

Modules (ES6) - Import Syntax
• Import specific exports, binding them to the same name
import { getFaculty, someVar } from "myModule";
getFaculty()...

• Import specific exports, binding them to a new name
import { getFaculty as aliasForFaculty } from "myModule";
aliasForFaculty()...

• Import default export, binding to specified name
import theThing from "myModule";
theThing()... -> calls getFaculty()

• Import all exports, binding to specified name
import * as facModule from "myModule";
facModule.getFaculty()...

!22

LaToza GMU SWE 432 Fall 2019

Patterns for using/creating libraries
• Try to reuse as much as possible!

• Name your module in all lower case, with hyphens

• Include:

• README.md

• keywords, description, and license in package.json (from npm init)

• Strive for high cohesion, low coupling

• Separate models from views

• How much code to put in a single module?

• Cascades (see jQuery)

!23

LaToza GMU SWE 432 Fall 2019

Cascade Pattern
• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined
easily

• Lets us read code like a sentence

• Example (String):
 str.replace("k","R").toUpperCase().substr(0,4);

• Example (jQuery):
 $(“#wrapper")

.fadeOut()

.html(“Welcome")

.fadeIn();

!24

LaToza GMU SWE 432 Fall 2019

Bind and This

!25

var module = {
 x: 42,
 getX: function() {
 return this.x;
 }
}

var unboundGetX = module.getX;
console.log(unboundGetX());

LaToza GMU SWE 432 Fall 2019

Binding This

!26

var module = {
 x: 42,
 getX: function() {
 return this.x;
 }
}

var unboundGetX = module.getX;
console.log(unboundGetX()); // The function gets invoked at the global scope
// expected output: undefined

var boundGetX = unboundGetX.bind(module);
console.log(boundGetX());
// expected output: 42

The bind() method creates a new function that, when called, has its this keyword set
to the provided value, with a given sequence of arguments preceding any provided
when the new function is called.

LaToza GMU SWE 432 Fall 2019

Closures
• Closures are expressions that work with variables

in a specific context

• Closures contain a function, and its needed state

• Closure is that function and a stack frame that is
allocated when a function starts executing and
not freed after the function returns

!27

LaToza GMU SWE 432 Fall 2019

Closures & Stack Frames
• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

!28

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a: x: 5
z: 3

Contents of memory:

Stack frame
Function called: stack frame created

LaToza GMU SWE 432 Fall 2019

Closures & Stack Frames
• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

!29

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a:

b:

x: 5

y: 5

z: 3

Contents of memory:

Stack frame
Function called: new stack frame created

LaToza GMU SWE 432 Fall 2019

Closures & Stack Frames
• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

!30

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a: x: 5
z: 3

Contents of memory:

Stack frame
Function returned: stack frame popped

LaToza GMU SWE 432 Fall 2019

Closures
• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts
executing and not freed after the function returns

• That state just refers to that state by name (sees updates)

!31

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

It “closes up” those references

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

f()

var x

var y

function

Global

Closure

1

2

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

f()

var x

var y

function

1

3

Global

Closure

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

f()

var x

var y

function

1

4

Global

Closure

LaToza GMU SWE 432 Fall 2019

Modules
• We can do it with closures!

• Define a function

• Variables/functions defined in that function are
“private”

• Return an object - every member of that object is
public!

• Remember: Closures have access to the outer
function’s variables even after it returns

!35

Modules with Closures
var facultyAPI = (function(){
 var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

 return {
 getFaculty : function(i)
 {
 return faculty[i].name + " ("+faculty[i].section +")";
 }

 };
})();

console.log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all
variables of outer functions!

Closures gone awry
var funcs = [];
for (var i = 0; i < 5; i++) {
 funcs[i] = function() { return i; };
}

What is the output of funcs[0]()?
>5

Why?
Closures retain a pointer to their needed state!

Closures under control
Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?
Each time the anonymous function is called, it will create a new

variable n, rather than reusing the same variable i

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 funcs[i] = makeFunction(i);
}

var funcs = [];
for (var i = 0; i < 5; i++) {
 funcs[i] = (function(n) {
 return function() { return n; }
 })(i);
}

Shortcut syntax:

Exercise: Closures

Here’s our simple closure. Add a new function to create a new
faculty, then call getFaculty to view their formatted name.

var facultyAPI = (function(){
 var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

 return {
 getFaculty : function(i)
 {
 return faculty[i].name + " ("+faculty[i].section +")";
 }

 };
})();

console.log(facultyAPI.getFaculty(0));

https://jsbin.com/dohucunoci/edit?js,console

https://jsbin.com/dohucunoci/edit?js,console

