
Organizing Code in JS
SWE 432, Fall 2019

Web Application Development





LaToza GMU SWE 432 Fall 2019

Today
• Some basics on how and why to organize code 

(SWE!) 
• Closures 
• Classes 
• Modules
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For further reading: 
http://stackoverflow.com/questions/111102/how-do-

javascript-closures-work

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work
http://stackoverflow.com/questions/111102/how-do-javascript-closures-work
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Logistics
• HW1 released today 

• Basics of JavaScript, including classes (covered 
today) 

• Due on Monday, Sept 16
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Running JavaScript
• More on this next time 

• Some options for now 

• a pastebin (e.g., JSFiddle) 

• an IDE (e.g, VSCode, Webstorm) 

• Webstorm is free for students: 

• https://www.jetbrains.com/student/ 
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https://www.jetbrains.com/student/


History + Motivation
“Wow back in my day before ES6 we didn’t have your fancy 

modules”



Spaghetti Code

Brian Foote and Joe Yoder



window.onload = function () { 
    eqCtl = document.getElementById('eq'); 
    currNumberCtl = document.getElementById('currNumber'); 
}; 

var eqCtl, 
    currNumberCtl, 
    operator, 
    operatorSet = false, 
    equalsPressed = false, 
    lastNumber = null; 

function add(x,y) { 
    return x + y; 
} 

function subtract(x, y) { 
    return x - y; 
} 

function multiply(x, y) { 
    return x * y; 
} 

function divide(x, y) { 
    if (y == 0) { 
        alert("Can't divide by 0"); 
        return 0; 
    } 
    return x / y; 
} 
      
function setVal(val) { 
    currNumberCtl.innerHTML = val; 
} 
         
function setEquation(val) { 
    eqCtl.innerHTML = val; 
} 
         
function clearNumbers() { 
    lastNumber = null; 
    equalsPressed = operatorSet = false; 
    setVal('0'); 
    setEquation(''); 
} 

function setOperator(newOperator) { 
    if (newOperator == '=') { 
        equalsPressed = true; 
        calculate(); 
        setEquation(''); 
        return; 
    } 
             
   if (!equalsPressed) calculate(); 
    equalsPressed = false; 
    operator = newOperator; 
    operatorSet = true; 
    lastNumber = parseFloat(currNumberCtl.innerHTML); 
    var eqText = (eqCtl.innerHTML == '') ?  
        lastNumber + ' ' + operator + ' ' :  
        eqCtl.innerHTML + ' ' + operator + ' '; 
    setEquation(eqText); 
} 

function numberClick(e) { 
    var button = (e.target) ? e.target : e.srcElement; 
    if (operatorSet == true || currNumberCtl.innerHTML == '0') { 
        setVal(''); 
        operatorSet = false;             
    } 
    setVal(currNumberCtl.innerHTML + button.innerHTML); 
    setEquation(eqCtl.innerHTML + button.innerHTML); 
} 

function calculate() { 
    if (!operator || lastNumber == null) return; 
    var currNumber = parseFloat(currNumberCtl.innerHTML), 
        newVal = 0; 
  switch (operator) { 
        case '+': 
            newVal = add(lastNumber, currNumber); 
            break; 
        case '-': 
            newVal = subtract(lastNumber, currNumber); 
            break; 
        case '*': 
            newVal = multiply(lastNumber, currNumber); 
            break; 
        case '/': 
            newVal = divide(lastNumber, currNumber); 
            break; 
    } 
    setVal(newVal); 
    lastNumber = newVal; 
} 

function setOperator(newOperator) { 
    if (newOperator == '=') { 
        equalsPressed = true; 
        calculate(); 
        setEquation(''); 
        return; 
    } 
             
   if (!equalsPressed) calculate(); 
    equalsPressed = false; 
    operator = newOperator; 
    operatorSet = true; 
    lastNumber = parseFloat(currNumberCtl.innerHTML); 
    var eqText = (eqCtl.innerHTML == '') ?  
        lastNumber + ' ' + operator + ' ' :  
        eqCtl.innerHTML + ' ' + operator + ' '; 
    setEquation(eqText); 
} 

function numberClick(e) { 
    var button = (e.target) ? e.target : e.srcElement; 
    if (operatorSet == true || currNumberCtl.innerHTML == '0') { 
        setVal(''); 
        operatorSet = false;             
    } 
    setVal(currNumberCtl.innerHTML + button.innerHTML); 
    setEquation(eqCtl.innerHTML + button.innerHTML); 
} 

function calculate() { 
    if (!operator || lastNumber == null) return; 
    var currNumber = parseFloat(currNumberCtl.innerHTML), 
        newVal = 0; 
   switch (operator) { 
        case '+': 
            newVal = add(lastNumber, currNumber); 
            break; 
        case '-': 
            newVal = subtract(lastNumber, currNumber); 
            break; 
        case '*': 
            newVal = multiply(lastNumber, currNumber); 
            break; 
        case '/': 
            newVal = divide(lastNumber, currNumber); 
            break; 
    } 
    setVal(newVal); 
    lastNumber = newVal; 



…aka big ball of mud aka 
shanty town code

Brian Foote and Joe Yoder
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Bad Code “Smells”
• Tons of not-very related functions in the same file 

• No/bad comments 

• Hard to understand 

• Lots of nested functions
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  fs.readdir(source, function (err, files) { 
             if (err) { 
             console.log('Error finding files: ' + err) 
             } else { 
             files.forEach(function (filename, fileIndex) { 
                           console.log(filename) 
                           gm(source + filename).size(function (err, values) { 
                                                      if (err) { 
                                                      console.log('Error identifying file size: ' + err) 
                                                      } else { 
                                                      console.log(filename + ' : ' + values) 
                                                      aspect = (values.width / values.height) 
                                                      widths.forEach(function (width, widthIndex) { 
                                                                     height = Math.round(width / aspect) 
                                                                     console.log('resizing ' + filename + 'to ' + height + 'x' + height) 
                                                                     this.resize(width, height).write(dest + 'w' + width + '_' + filename, function(err) { 
                                                                                                      if (err) console.log('Error writing file: ' + err) 
                                                                                                      }) 
                                                                     }.bind(this)) 
                                                      } 
                                                      }) 
                           }) 
             } 
             });
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Design Goals
• Within a component 

• Cohesive 

• Complete 

• Convenient 

• Clear 

• Consistent 

• Between components 

• Low coupling
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Cohesion and Coupling
• Cohesion is a property or characteristic of an individual unit 

• Coupling is a property of a collection of units 

• High cohesion GOOD, high coupling BAD 

• Design for change: 

• Reduce interdependency (coupling): You don't want a 
change in one unit to ripple throughout your system 

• Group functionality (cohesion): Easier to find things, 
intuitive metaphor aids understanding
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Design for Reuse
• Why? 

• Don’t duplicate existing functionality 

• Avoid repeated effort 

• How? 

• Make it easy to extract a single component: 

• Low coupling between components 

• Have high cohesion within a component 

!13



LaToza GMU SWE 432 Fall 2019

Design for Change
• Why? 

• Want to be able to add new features 

• Want to be able to easily maintain existing software 

• Adapt to new environments 

• Support new configurations  

• How? 

• Low coupling - prevents unintended side effects 

• High cohesion - easier to find things
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Organizing Code
How do we structure things to achieve good organization?

Java Javascript

Individual Pieces 
of Functional 
Components

Classes Classes

Entire libraries Packages Modules
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Classes

!16

Lecture 4, JavaScript

A small correction:

*
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Classes
• ES6 introduces the class keyword 

• Mainly just syntax - still not like Java Classes
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function Faculty(first, last, teaches, office) 
{ 
  this.firstName = first; 
  this.lastName = last; 
  this.teaches = teaches; 
  this.office = office; 
  this.fullName = function(){ 
    return this.firstName + " " + this.lastName; 
  } 
} 
var prof = new Faculty("Thomas", "LaToza", "SWE432", "ENGR 4431");

Old

class Faculty { 
    constructor(first, last, teaches, office) 
    { 
        this.firstName = first; 
        this.lastName = last; 
        this.teaches = teaches; 
        this.office = office; 
    } 
    fullname() { 
        return this.firstName + " " + this.lastName; 
    } 
} 
var prof = new Faculty("Thomas", "LaToza", "SWE432", "ENGR 4431");

New
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Classes - Extends
extends allows an object created by a class to be linked to 
a “super” class. Can (but don’t have to) add parent 
constructor.
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class Faculty { 
    constructor(first, last, teaches, office) 
    { 
        this.firstName = first; 
        this.lastName = last; 
        this.teaches = teaches; 
        this.office = office; 
    } 
    fullname() { 
        return this.firstName + " " + this.lastName; 
    } 
}

class CoolFaculty extends Faculty { 
    fullname() { 
        return "The really cool " + super.fullname(); 
    } 
}
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Classes - static
static declarations in a class work like in Java

!19

class Faculty { 
    constructor(first, last, teaches, office) 
    { 
        this.firstName = first; 
        this.lastName = last; 
        this.teaches = teaches; 
        this.office = office; 
    } 
    fullname() { 
        return this.firstName + " " + this.lastName; 
    } 

static formatFacultyName(f) { 
        return f.firstName + " " + f.lastName; 
    } 
}
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Modules (ES6)
• With ES6, there is finally language support for modules 

• Module must be defined in its own JS file 

• Modules export declarations 

• Publicly exposes functions as part of module interface 

• Code imports modules (and optionally only parts of 
them) 

• Specify module by path to the file

!20
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Modules (ES6) - Export Syntax

!21

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof 
LaToza", section:1}]; 
export function getFaculty(i) { 
    // .. 
} 
export var someVar = [1,2,3];
var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof 
LaToza", section:1}]; 
var someVar = [1,2,3]; 
function getFaculty(i) { 
    // .. 
} 
export {getFaculty, someVar}; 
export {getFaculty as aliasForFunction, someVar};

Label each declaration with 
“export”

Or name all of the exports at 
once

Can rename exports too

export default function getFaculty(i){...

Default export 
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Modules (ES6) - Import Syntax
• Import specific exports, binding them to the same name 
import { getFaculty, someVar } from "myModule"; 
getFaculty()... 

• Import specific exports, binding them to a new name 
import { getFaculty as aliasForFaculty } from "myModule"; 
aliasForFaculty()... 

• Import default export, binding to specified name 
import theThing from "myModule"; 
theThing()... -> calls getFaculty() 

• Import all exports, binding to specified name 
import * as facModule from "myModule"; 
facModule.getFaculty()...

!22
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Patterns for using/creating libraries
• Try to reuse as much as possible! 

• Name your module in all lower case, with hyphens 

• Include: 

• README.md 

• keywords, description, and license in package.json (from npm init) 

•  Strive for high cohesion, low coupling 

• Separate models from views 

• How much code to put in a single module? 

• Cascades (see jQuery)

!23
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Cascade Pattern
• aka “chaining” 

• Offer set of operations that mutate object and returns the “this” object 

• Build an API that has single purpose operations that can be combined 
easily 

• Lets us read code like a sentence 

• Example (String): 
 str.replace("k","R").toUpperCase().substr(0,4); 

• Example (jQuery): 
 $(“#wrapper") 

.fadeOut() 

.html(“Welcome") 

.fadeIn();
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Bind and This

!25

var module = { 
  x: 42, 
  getX: function() { 
    return this.x; 
  } 
} 

var unboundGetX = module.getX; 
console.log(unboundGetX());
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Binding This

!26

var module = { 
  x: 42, 
  getX: function() { 
    return this.x; 
  } 
} 

var unboundGetX = module.getX; 
console.log(unboundGetX()); // The function gets invoked at the global scope 
// expected output: undefined 

var boundGetX = unboundGetX.bind(module); 
console.log(boundGetX()); 
// expected output: 42

The bind() method creates a new function that, when called, has its this keyword set 
to the provided value, with a given sequence of arguments preceding any provided 
when the new function is called.
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Closures
• Closures are expressions that work with variables 

in a specific context 

• Closures contain a function, and its needed state 

• Closure is that function and a stack frame that is 
allocated when a function starts executing and 
not freed after the function returns

!27
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Closures & Stack Frames
• What is a stack frame? 

• Variables created by function in its execution 

• Maintained by environment executing code

!28

function a() { 
 var x = 5, z = 3; 
 b(x); 
} 
function b(y)  { 
 console.log(y); 
} 
a();

a: x: 5
z: 3

Contents of memory:

Stack frame 
Function called: stack frame created
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Closures & Stack Frames
• What is a stack frame? 

• Variables created by function in its execution 

• Maintained by environment executing code

!29

function a() { 
 var x = 5, z = 3; 
 b(x); 
} 
function b(y)  { 
 console.log(y); 
} 
a();

a:

b:

x: 5

y: 5

z: 3

Contents of memory:

Stack frame 
Function called: new stack frame created
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Closures & Stack Frames
• What is a stack frame? 

• Variables created by function in its execution 

• Maintained by environment executing code

!30

function a() { 
 var x = 5, z = 3; 
 b(x); 
} 
function b(y)  { 
 console.log(y); 
} 
a();

a: x: 5
z: 3

Contents of memory:

Stack frame 
Function returned: stack frame popped
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Closures
• Closures are expressions that work with variables in a specific context 
• Closures contain a function, and its needed state 

• Closure is a stack frame that is allocated when a function starts 
executing and not freed after the function returns 

• That state just refers to that state by name (sees updates)
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var x = 1; 
function f() { 
 var y = 2; 
 return function() { 

      console.log(x + y); 
     y++; 
 }; 
} 
var g = f(); 
g();           // 1+2 is 3 
g();           // 1+3 is 4

This function attaches itself to x and y 
so that it can continue to access them.

It “closes up” those references



var x = 1; 
function f() { 
 var y = 2; 
 return function() { 

      console.log(x + y); 
     y++; 
 }; 
} 
var g = f(); 
g();           // 1+2 is 3 
g();           // 1+3 is 4

Closures

f()

var x

var y

function

Global

Closure

1

2



var x = 1; 
function f() { 
 var y = 2; 
 return function() { 

      console.log(x + y); 
     y++; 
 }; 
} 
var g = f(); 
g();           // 1+2 is 3 
g();           // 1+3 is 4

Closures

f()

var x

var y

function

1

3

Global

Closure



var x = 1; 
function f() { 
 var y = 2; 
 return function() { 

      console.log(x + y); 
     y++; 
 }; 
} 
var g = f(); 
g();           // 1+2 is 3 
g();           // 1+3 is 4

Closures

f()

var x

var y

function

1

4

Global

Closure
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Modules
• We can do it with closures! 

• Define a function 

• Variables/functions defined in that function are 
“private” 

• Return an object - every member of that object is 
public! 

• Remember: Closures have access to the outer 
function’s variables even after it returns
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Modules with Closures
var facultyAPI = (function(){ 
  var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof 
LaToza", section:1}]; 

  return { 
   getFaculty : function(i) 
   { 
    return faculty[i].name + " ("+faculty[i].section +")"; 
   } 

 }; 
})(); 

console.log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all 
variables of outer functions!



Closures gone awry
var funcs = []; 
for (var i = 0; i < 5; i++) { 
    funcs[i] = function() { return i; }; 
}

What is the output of funcs[0]()? 
>5

Why?
Closures retain a pointer to their needed state!



Closures under control
Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?
Each time the anonymous function is called, it will create a new 

variable n, rather than reusing the same variable i

function makeFunction(n) 
{ 
    return function(){ return n; }; 
} 
for (var i = 0; i < 5; i++) { 
  funcs[i] = makeFunction(i); 
} 

var funcs = []; 
for (var i = 0; i < 5; i++) { 
  funcs[i] = (function(n) { 
    return function() { return n; } 
  })(i); 
}

Shortcut syntax:



Exercise: Closures

Here’s our simple closure. Add a new function to create a new 
faculty, then call getFaculty to view their formatted name.

var facultyAPI = (function(){ 
  var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof 
LaToza", section:1}]; 

  return { 
   getFaculty : function(i) 
   { 
    return faculty[i].name + " ("+faculty[i].section +")"; 
   } 

 }; 
})(); 

console.log(facultyAPI.getFaculty(0));

https://jsbin.com/dohucunoci/edit?js,console

https://jsbin.com/dohucunoci/edit?js,console

