Organizing Code in JS

SWE 432, Fall 2019
Web Application Development

IFthissisinotthis

Whatis this?

LaToza

Today

Some basics on how and why to organize code
(SWE!)

Closures
Classes
Modules

For further reading:
http://stackoverflow.com/questions/111102/how-do-

Javascript-closures-work

GMU SWE 432 Fall 2019

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work
http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

LaToza

Logistics

« HW1 released today

» Basics of Javascript, including classes (covered
today)

 Due on Monday, Sept 16

GMU SWE 432 Fall 2019

LaToza

Running JavaScript

 More on this next time
e Some options for now
* a pastebin (e.qg., JSFiddle)
 an IDE (e.g, VSCode, Welbstorm)
 Webstorm is free for students:

e https://www.jetbrains.com/student/

GMU SWE 432 Fall 2019

https://www.jetbrains.com/student/

History + Motivation

“Wow back in my day before ES6 we didn’t have your fancy
modules”

hettl Code

Brian Foote and Joe Yoder

function setOperator(newOperator) -

window.onload = function () {
eqCtl = document.getElementById('e
currNumberCtl = document.getElemer

var eqCtl,
currNumberCtl,
operator,
operatorSet = false,
equalsPressed = false,
lastNumber = null;

function add(x,y) {
return x + y;

function subtract(x, y) {
return x - y;

function multiply(x, y) {
return x x y;

function divide(x, y) {
if (y ==0) {
alert("Can't divide by 0");
return 0;

return x / y;

function setval(val) {
currNumberCtl.innerHTML = val; }_

function setEquation(val) {
eqCtl.innerHTML = val;

function clearNumbers() {
lastNumber = null;
equalsPressed = operatorSet = fals
setval('e');
setEquation('"');

function setOperator(newOperator) {
if (newOperator == '=') {
equalsPressed = true;
calculate();
setEquation('');
return;

}

if (!equalsPressed) calculate();
equalsPressed = false; }.
operator = newOperator;

operatorSet = true;

if (newOperato

= - = !) '{

equalsPressed = true;

calculate();
setEquation(
return;

}

11) ;

if (!equalsPressed) calculate();

equalsPressed =
operator =

false;

newOperator;

operatorSet = true;

lastNumber =

var eqText = (eq

lastNumber +

eqCtl.innerH

parseFloat(currNumberCtl.innerHTML);

Ctl.innerHTM 't) ?
‘' + operator + ' ' :
™L + ' !

+ operator + ;

setEquation(eqText);

var button = (e.
if (operatorSet
setVal('"');
operatorSet
}
setVal(currNumbe
setEquation(eqCt

lastNumber = parseFloat(currNumberCtl.innerHTML);

var eqText = (eqCtl.innerHTML ==
lastNumber + '
eqCtl.innerHTML + ' '

setEquation(eqText);

+ operat

function numberClick(e) {
var button = (e.target) ? e.target
if (operatorSet == true || currNun
setval('');
operatorSet = false;

setVal(currNumberCtl.innerHTML + t
setEquation(eqCtl.innerHTML + butt
}

function calculate() {

if ('operator || lastNumber == nul
var currNumber = parseFloat(currNt
newVal = 0;
switch (operator) {
case '+':
newVal = add(lastNumber, ¢
break;
case '-':
newVal = subtract(lastNumk
break;
case 'x':
newVal = multiply(lastNumk
break;
case '/':
newVal = divide(lastNumber
break;
}
setVal(newval);
lastNumber = newVal;

if (loperator ||
var currNumber =
newVal = 0;
switch (operator)
case '+':
newVa'l
break;
case '-':
newVal =
break;
case 'x':
newVa'l
break;
1 // 1 :
newVa'l
break;

case

}
setVal(newVal);

function numberClick(e) {

target) ? e.target : e.srcElement;
== true || currNumberCtl.innerHTML ==
= false;

rCtl.innerHTML + button.innerHTML);
l.innerHTML + button.innerHTML);

Hleerstor TUNction calculate() {

lastNumbe null) return;
parseFloat (currNumberCtl.innerHTML),

{

add(lastNumber, currNumber);

subtract(lastNumber, currNumber);

multiply(lastNumber, currNumber);

divide(lastNumber, currNumber);

aka b| baII of mud aka

RS NT——
-'.\ — -

Brian Fooe and Joe Yoder

LaToza

Bad Code "Smells”

e Tons of not-very related functions in the same file

No/bad comments

Hard to understand

L ots of nested functions

fs.readdir(source, function (err, files) {

if (err) {

console.log('Error finding files:

} else {

+ err)

files.forEach(function (filename, fileIndex) {

console. log(filename)

gm(source + filename).size(function (err, values) {

)

if (err) {

console.log('Error identifying file size: ' + err)
} else {

console.log(filename + ' : ' + values)

aspect = (values.width / values.height)
widths.forEach(function (width, widthIndex) {
height = Math.round(width / aspect)
console.log('resizing ' + filename + 'to ' + height +
this.resize(width, height).write(dest + 'w' + width +
if (err) console. log
)
}.bind(this))

GMU SWE 432 Fall 2019 10

Design Goals

« Within a component
« Cohesive
« Complete
e Convenient

Clear

Consistent
 Between components

 Low coupling

LaToza GMU SWE 432 Fall 2019

LaToza

Cohesion and Coupling

Cohesion is a property or characteristic of an individual unit
Coupling is a property of a collection of units

High cohesion GOOD, high coupling BAD

Design for change:

 Reduce interdependency (coupling): You don't want a
change in one unit to ripple throughout your system

» Group functionality (cohesion): Easier to find things,
Intuitive metaphor aids understanding

GMU SWE 432 Fall 2019

12

Design for Reuse

o Why?
 Don't duplicate existing functionality
* Avoid repeated eftort

* How?

 Make it easy to extract a single component:

* Low coupling between com

 Have high cohesion within 3

LaToza GMU SWE 432 Fall 20 Skt

Design for Change

o Why?
« Want to be able to add new features
« Want to be able to easily maintain existing software
e Adapt to new environments
e Support new configurations

e How?

* Low coupling - prevents unintended side effects

* High cohesion - easier to find things

9999

LaToza GMU SWE 432 Fall 2019 14

Organizing Code

How do we structure things to achieve good organization?

Javascript

Individual Pieces
of Functional Classes
Components

Classes

Entire libraries Packages Modules

LaToza

Classes

A small correction:

Remember... There’s no Class’."

var profJon = {
firstName: "Jonathan",
lastName: "Bell",
teaches: "SWE 432",
office: "ENGR 4322",
fullName: function(){
return this.firstName + " " + this.lastName;
}

¥

| T—

Our Object

profJon.officeHours = "Tuesdays 10:30-12:00";

Lazily creates a new property and sets it

delete proflon.office;

S

Deletes a property

LaToza/Bell GMU SWE 432 Fall 2016 19

Lecture 4, JavaScript

GMU SWE 432 Fall 2019

16

LaToza

Classes

e ESOG introduces the class keyword

 Mainly just syntax - still not like Java Classes
function Faculty(first, last, teaches, office)

Old

New

{

this.firstName = first;

this.lastName = last;

this.teaches = teaches;

this.office = office;

this.fullName = function(){
return this.firstName + " " + this. lastName;

}
}

var prof = new Faculty("Thomas'", "LaToza", "SWE432", "ENGR 4431");

class Faculty A{

constructor(first, last, teaches, office)

return this.firstName + " " + this. lastName;

{
this.firstName = first;
this. lastName = last;
this.teaches = teaches;
this.office = office;

}

fullname() {

}

}

var prof = new FacuEE%(

"Thomas"
SWE 432 Fall 2019

LaToza", '"SWE432", "ENGR 4431");

17

Classes - Extends

extends allows an object created by a class to be linked to
a “super” class. Can (but dont have to) add parent

constructor.

class Faculty {
constructor(first, last, teaches, office)
{
this.firstName = first;
this.lastName = last;
this.teaches = teaches;
this.office = office;

}
fullname() {

return this.firstName + " " + this.lastName;
¥

}

class CoolFaculty extends Faculty {
fullname() {
return "The really cool " + super.fullname();
I3

LaToza GMU SWE 432 Fall 2019

LaToza

Classes - static

static declarations in a class work like in Java

class Faculty {
constructor(first, last, teaches, office)

{

this.firstName = first;

this. lastName = last;

this.teaches = teaches:

this.office = office:
¥
fullname() {

return this.firstName + " " + this.lastName;
¥
static formatFacultyName(f) {

return f.firstName + " " + f.lastName;
¥

GMU SWE 432 Fall 2019

19

LaToza

Modules (ES6)

With ESE, there is finally language support for modules
Module must be defined in its own JS file

Modules export declarations

* Publicly exposes functions as part of module interface

Code imports modules (and optionally only parts of
them)

e Specity module by path to the file

GMU SWE 432 Fall 2019

20

Modules (ES6) - Export Syntax

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

export function getFaculty(i) { Label each declaration with

\ /] - “export”

| ———

export var someVar = [1,2,3];

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

var someVar = [1,2,3];

function getFaculty(i) {

/] s Or name all of the exports at

L, once
export {getFaculty, someVar}; — S

export {getFaculty as aliasForFunction, someVar};

Can rename exports too

export default function getFaculty(i){...

Default export

LaToza GMU SWE 432 Fall 21

LaToza

Modules (ES6) - Import Syntax

e |Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";
getFaculty()...

e Import specific exports, binding them to a new name

import { getFaculty as aliasForFaculty } from "myModule";
aliasForFaculty()...

* Import default export, binding to specified name
import theThing from "myModule";
theThing()... —> calls getFaculty()

* Import all exports, binding to specitied name
import *x as facModule from "myModule";
facModule.getFaculty()...

GMU SWE 432 Fall 2019

22

LaToza

Patterns for using/creating libraries

Try to reuse as much as possible!

Name your module in all lower case, with hyphens

Include:

« README.md

e keywords, description, and license in package.json (from npm init)

Strive for high cohesion, low coupling
e Separate models from views

 How much code to put in a single module?

Cascades (see jQuery)

GMU SWE 432 Fall 2019

23

LaToza

Cascade Pattern

aka “chaining”
Offer set of operations that mutate object and returns the “this” object

e Build an APl that has single purpose operations that can be combined
easily

e | ets us read code like a sentence

Example (String):
str.replace("k","R").toUpperCase().substr(0,4);

Example (jQuery):
$(“#wrapper")
. fadeOut ()
html(“Welcome")
. fadeIn();

GMU SWE 432 Fall 2019

24

LaToza

Bind and This

var module = {
X: 42,
getX: function() {
return this.x:

}
}

var unboundGetX = module.getX;
console.log(unboundGetX());

GMU SWE 432 Fall 2019

25

LaToza

Binding This

var module = {
X: 42,
getX: function() {
return this.x;

}
}

var unboundGetX = module.getX;
console.log(unboundGetX()); // The function gets invoked at the global scope
/| expected output: undefined

var boundGetX = unboundGetX.bind(module);
console.log(boundGetX());
/| expected output: 42

The bind() method creates a new function that, when called, has its this keyword set

to the provided value, with a given sequence of arguments preceding any provided
when the new function is called.

GMU SWE 432 Fall 2019

26

LaToza

Closures

 (Closures are expressions that work with variables
IN a specific context

 (Closures contain a function, and its needed state
e (Closure is that function and a stack frame that is

allocated when a function starts executing and
not freed after the function returns

GMU SWE 432 Fall 2019

27

LaToza

Closures & Stack Frames

 \What is a stack frame?
* Variables created by function in its execution

 Maintained by environment executing code

function a() {
var Xx =5, z = 3;

b(x);
} (y)
function b(y . .
console.log(y); ar Xi J
/ z: 3
a(); -

Stack frame
Function called: stack frame created

Contents of memory:

28

LaToza

Closures & Stack Frames

 \What is a stack frame?
* Variables created by function in its execution

 Maintained by environment executing code

function a() {
var x =5, z = 3;

b(x) ; b: y:

+
function b(y) ’T”’//”//”//*

console. log(y);
I3
a();

d.

5
5
3

N X

Stack frame
Function called: new stack frame created

Contents of memory:

29

LaToza

Closures & Stack Frames

 \What is a stack frame?
* Variables created by function in its execution

 Maintained by environment executing code

function a() { Contents of memory:

var Xx =5, z = 3;
b(x);
+
function b(y) <
console. log(y);
I3

a();

d. X.
Z.

5
3

Stack frame

Function returned: stack frame popped N

Closures

e Closures are expressions that work with variables in a specific context

 (Closures contain a function, and its needed state

e Closure is a stack frame that is allocated when a function starts
executing and not freed after the function returns

* That state just refers to that state by name (sees updates)

var | X 1;

func™Nion\f() {
vaRy|= 2;
retyrpn function() {

console.log(x + y).

This function attaches itself to x and y
so that it can continue to access them.

I

y++,
¥; It “closes up”’ those references
}
var g = f();
g(); // 1+2 is 3

g(); // 1+3 is 4

LaToza GMU SWE 432 Fall 2019

I
¥
var g = f(); _
9(); // 1+2 is 3
9(); // 1+3 is 4

console.log(x + y);
y++;

Glob

al

var X

/

var y D

/

function

Closure

console.log(x + y);
y++;

var g = f();

g();
g();

// 1+2 15 3_

// 1+3 1s 4

Global

1

/

vary | 3

/

function

Closure

console.log(x + y);

y++;
F;

+

var g = f();

g(); // 142 is 3

Global

varx | 1

/

vary | 4

/

function

Closure

LaToza

Modules

e We can do It with closures!
e Define a function

e Variables/functions defined in that function are
“private”

* Return an object - every member of that object is
public!

e Remember: Closures have access to the outer
function’s variables even after it returns

GMU SWE 432 Fall 2019

35

Modules with Closures

var facultyAPI = (function(){

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

return {
getFaculty : function(i)

{

return faculty[i].name + " ("+facultyl[i].section +")";

}

F)();

console. log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all
variables of outer functions!

N ————-

Closures gone awry

var funcs = []:
for (var[i = 0;\1 < 5; i++) {

funcs[i] =| function() { return 1i: }:
}

What is the output of funcs[0]()?
>5

Why?
Closures retain a pointer to their needed state!

Closures under control

Solution: IIFE - Immediately-Invoked Function Expression
function makeFunction(n)]

{
return function(){ [ceturn n} };
¥
for (var i = 03 i < 5; i++) {
funcs[i] = makeFunction(i):
b

Why does it work?

Each time the anonymous function is called, it will create a new

variable n, rather than reusing the same variable i

Shortcut SyﬂtaX ...
var funcs = [];
for (var i1 = 0; i < 53 i++) {
funcs[i] = (functlon(n) {
return function() { [return nj; }

})(i);

¥

Exercise: Closures

var facultyAPI = (function(){
var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

return {
getFaculty : function(i)

{

return faculty[i].name + " ("+facultyl[i].section +")";

}

b https://jsbin.com/dohucunoci/edit?|s,console
) Q0);

console. log(facultyAPI.getFaculty(0));

Here’s our simple closure. Add a new function to create a new
faculty, then call getFaculty to view their formatted name.

https://jsbin.com/dohucunoci/edit?js,console

