Asynchronous JS

SWE 432, Fall 2019
Web Application Development

LaToza

Today

* \What is asynchronous programming®

 What are threads”
e Writing asynchronous code

For further reading:

* Using Promises https://developer.mozilla.org/en-Us/

docs/Web/JavaScript/Guide/Us;

Ng_pro

MISES

s.org/e

n/docs/quides/

* Node.js event loop https://node;

event-loop-timers-and-nexttick/

GMU SWE 432 Fall 2019

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

Review: Closures

e Closures are expressions that work with variables in a specific context

 (Closures contain a function, and its needed state

e Closure is a stack frame that is allocated when a function starts
executing and not freed after the function returns

* That state just refers to that state by name (sees updates)

var | X 1;

func™Nion\f() {
vaRy|= 2;
retyrpn function() {

console.log(x + y).

This function attaches itself to x and y
so that it can continue to access them.

I

y++,
¥; It “closes up”’ those references
}
var g = f();
g(); // 1+2 is 3

g(); // 1+3 is 4

LaToza GMU SWE 432 Fall 2019

Review: Closures

var |Xx 1;
func™Non\f() {
vaRy|= 2;
retyrp function() {

console.log(x + y);

V++;
F;
+
var g = f(); _
g(); // 142 is 3
g(); // 143 is 4

function

Global
varx | 1
Nvary | 2 | Closure
\

Review: Closures

var |Xx 1;
func™Non\f() {
vaRy|= 2;
retyrp function() {

console.log(x + y);
y++;

&
+
var g = f();

g(); // 1+2 15 3_

g(); // 143 is 4

Global varx | 1
Nvary | 3 | Closure
\

function

Review: Closures

ion %() {

vaRy|= 2;

var | X 1
func
retyrp function() {

}

b

console.log(x + y);
y++;

var g = f();

g();
g();

// 1+2 1s 3

Global

varx | 1

/

vary | 4

/

function

Closure

LaToza

Why Asynchronous?

 Maintain an interactive application while still doing
stuff

 Processing data
o Communicating with remote hosts
* Timers that countdown while our app Is running

 Anytime that an app is doing more than one thing
at a time, 1t Is asynchronous

GMU SWE 432 Fall 2019

LaToza

What is a thread?

Program execution: a series of sequential method calls (*s)

App Starts

App Ends

GMU SWE 432 Fall 2019

LaToza

What is a thread?

Program execution: a series of sequential method calls (*s)

App Starts

App Ends

Multiple threads can run at once -> allows for
asynchronous code

GMU SWE 432 Fall 2019

thread O

LaToza

Multi-Threading in Java

* Multi-Threading allows us to do more than one thing at a time
* Physically, through multiple cores and/or OS scheduler

« Example: Process data while interacting with user

Interacts with user
Draws Swing interface
on screen, updates
screen

Processes data,
generates results

Share data

main worker

Signal each other

GMU SWE 432 Fall 2019

thread 1

10

Woes of Multi-Threading

public static int v;

public static void threadl() public static void thread2()
{ {
v = 4; v =25
System.out.println(v); }
¥

This is a data race: the printin in thread1 might see either 2 OR 4

Thread 1 Thread 2 Thread 1 Thread 2

Write V=4 Write V =2
Write V =2 Write V =4
Read V (2) Read V (4)

LaToza GMU SWE 432 Fall 2019 11

Multi-Threading Iin JS

var request = require(‘request');

request('http://www.google.com', function (error, response,
body) {

console. log("Heard back from Google!");
F);

console. log("Made request");

Output:
Made request

Heard back from Google!

Request is an asynchronous call

| —

-

LaToza

Multi-Threading in JS

Everything you write will run in a single thread” (event loop)
Since you are not sharing data between threads, races don’t happen as easily
Inside of JS engine: many threads

Event loop processes events, and calls your callbacks

All of your code runs in this
one thread
event . s thread 4
loop

JS Engine

GMU SWE 432 Fall 2019

13

The Event Loop

Event Queue

response from response from response from
google.com facebook.com gmu.edu
—— |
Paissitashesnpeees inaiibouieespac Ue 11 [l
e Jlos e
JS Engine

Event Being Processed:

LaToza GMU SWE 432 Fall 2019 14

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

response from response from
facebook.com gmu.edu

JS Engine

Event Queue

Event Being Processed:

response from

google.com

Are there any listeners registered for this event?
It so, call listener with event

After the listener is finished, repeat

LaToza GMU SWE 432 Fall 2019 15

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

response from
gmu.edu

JS Engine

Event Queue

Event Being Processed:

response from
facebook.com

Are there any listeners registered for this event?
It so, call listener with event

After the listener is finished, repeat

LaToza GMU SWE 432 Fall 2019 16

http://facebook.com
http://gmu.edu

The Event Loop

JS Engine

Event Queue

Event Being Processed:

response from

amu.edu

Are there any listeners registered for this event?
It so, call listener with event

After the listener is finished, repeat

LaToza GMU SWE 432 Fall 2019 17

http://gmu.edu

LaToza

The Event Loop

e Remember that JS is event-driven

var request = require('request');
request('http://www.google.com', function (error, response, body) {
console. log("Heard back from Google!");

});

console. log("Made request");

* Event loop is responsible for dispatching events when
they occur

 Main thread for event loop:
while(queue.waitForMessage()){

queue.processNextMessage();

}

GMU SWE 432 Fall 2019

18

LaToza

How do you write a "good” event handler?

e Run-to-completion

« The JS engine will not handle the next event until your event
handler finishes

 (Good news: no other code will run until you finish (no worries about

other threads overwriting your data)

e Bad/OK news: Event handlers must not block

e Blocking -> Stall/wait for input (e.g. alert(), non-async network
requests)

e |f you *must® do something that takes a long time (e.qg.
computation), split it up into multiple events

GMU SWE 432 Fall 2019

19

LaToza

More Properties of Good Handlers

« Remember that event events are processed in the order they are

received

e Events might arrive in unexpected order

 Handlers should check the current state of the app to see if they

are still relevant

GMU SWE 432 Fall 2019

20

Prioritizing events in node.js

e« Some events are more _
important than others

e Keep separate queues
for each event "phase’

1

I incoming: |

* Process all events in T oo

| data, etc. |

each phase before
moving to next

Last close callbacks

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

LaToza GMU SWE 432 Fall 2019 21

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

LaToza

Benefits vs. Explicit Threading (Java)

* Writing your own threads is reason about and get
right:

 When threads share data, need to ensure they
correctly synchronize on it to avoid race conditions

e Main downside to events:
e (Can not have slow event handlers

* (Can still have races, although easier to reason
about

GMU SWE 432 Fall 2019 22

Run-to-completion semantics

* Run-to-completion

* The function handling an event and the functions that it

(transitively) synchronously calls will keep executing until the
function finishes.

* The JS engine will not handle the next event until the event
handler finishes.

processing of
event gueue f > Q

callback

~nh > ... > |

callback2 —— —» |

LaToza GMU SWE 432 Fall 2019 23

LaToza

Implications of run-to-completion

* (Good news: no other code will run until you finish
(no worries about other threads overwriting your
data)

processing of
event gqueue f > Q

callback < h

callback2 —— ——» |
\4

| will not execute until after i

GMU SWE 432 Fall 2019 24

Implications of run-to-completion

 Bad/OK news: Nothing else will happen until event handler
returns

 Event handlers should never block (e.g., wait for input) --> all
callbacks waiting for network response or user input are

always asynchronous

 Event handlers shouldn't take a long time either

processing of
event gueue f e

callback < .

> ... > |

callback2 —— —» |

J will not execute until i finishes

LaToza GMU SWE 432 Fall 2019

25

Decomposing a long-running computation

e |f you "must® do something that takes a long time
(e.g. computation), split it into multiple events

 doSomeWork();
... [let event loop process other events]..

o continueDoingMoreWork();

GMU SWE 432 Fall 2019

Dangers of decomposition

* Application state may change before event occurs

o QOther event handlers may be interleaved and occur before
event occurs and mutate the same application state

* --> Need to check that update still makes sense

* Application state may be in inconsistent state until event occurs
* Application
« |eaving data in inconsistent state...

* Loading some data from API, but not all of it...

LaToza GMU SWE 432 Fall 2019 27

LaToza

Example: Writing Asynchronous Tasks

* From an array of 10 URL's:
 Request each URL
* [hen for each page, save it to disk

 Then once all of the pages are downloaded and
saved, print out the total size of all of the files
that were saved

GMU SWE 432 Fall 2019

28

Sequencing events

« We'd like a better way to sequence events.

e (Goals:

e (Clearly distinguish synchronous from asynchronous
function calls.

* Enable computation to occur only after some event has
happened, without adding an additional nesting level each
time (no pyramid of doom).

 Make it possible to handle errors, including for multiple
related async requests.

 Make it possible to wait for multiple async calls to finish
before proceeding.

LaToza GMU SWE 432 Fall 2019 29

Sequencing events with Promises

* Promises are a wrapper around async callbacks
* Promises represents how to get a value
* Then you tell the promise what to do when it gets it

* Promises organize many steps that need to happen in order,
with each step happening asynchronously

* At any point a promise is either:
e |s unresolved
e Succeeds

* [alls

LaToza GMU SWE 432 Fall 2019

LaToza

Using a Promise

 Declare what you want to do when your promise Is
completed (then), or if there’s an error (catch)

fetch('https://github.com/")
.then (function (res) {
return res.text () ;

b) s

fetch('http://domain.invalid/")
.catch (function(err) {
console.log(err);

b) s

GMU SWE 432 Fall 2019

31

Promise one thing then
another

Promise to get

some data

* ’

*., If there’'s an error...
’0
then ‘.,
..QA
Promise to get
some data based ""=sssssus > Repz:trg:l the

on that data

v

‘Q

then
o It there’s an error. ..
Use that data to

update application
state

LaToza

Chaining Promises

myPromise.then(function(resultOfPromise){
//Do something, maybe asynchronously
return theResultOfThisStep;

})

.then(function(result0fStepl){
//Do something, maybe asynchronously
return theResultOfStep2;

})

.then(function(result0fStep2){
//Do something, maybe asynchronously
return theResultOfStep3;

})

.then(function(result0fStep3){
//Do something, maybe asynchronously
return theResultOfStep4;

})

.catch(function(error){

});

GMU SWE 432 Fall 2019

33

LaToza

Writing a Promise

* Most often, Promises will be generated by an API
function (e.g., fetch) and returned to you.

e But you can also create your own Promise.

var p = new Promise(function(resolve, reject) {

if () 1
resolve() ;
s
else {
reject() ;
s

1)

GMU SWE 432 Fall 2019

34

LaToza

Example: Writing a Promise

e |oadlmage returns a promise to load a given image

function loadImage(url){
return new Promise(function(resolve, reject) 1
var img = new Image();
img.src=url;
img.onload = function(){
resolve(img);
I3

img.onerror = function(e){
reject(e);
s

1) ;
Once the image is loaded, we'll resolve the promise

e —

If the Image has an error, the promise Is rejected

———a—

GMU SWE 432 Fall 2019 35

LaToza

Writing a Promise

e Basic syntax:

e do something (possibly asynchronous)

« when you get the result, call resolve() and pass the final result

* |n case of error, call reject()

var p = new Promise(function(resolve,reject){

// do something, who knows how long it will take?
if(everythingIsOK)

{
}

else
reject(Error("Some error happened"));
Fo);

resolve(stateIWantToSave):

GMU SWE 432 Fall 2019

36

LaToza

Promises In Action

 Firebase example: get some value from the database, then
push some new value to the database, then print out “OK”

todosRef.child(keyToGet).once(‘value")
.then(function(foundTodo){ :
return foundTodo.val().text; DO thIS

}) .
.then(function(theText){ Then, do this

todosRef.push({'text' : "Seriously: " + theText});
)

.then(function(){ Then do this
console. log("0K!");
})

.catch(function(error){
//something went wrong

F);
And if you ever had an error, do this

GMU SWE 432 Fall 2019

37

Testing Promises

function getUserName(userID) {
return request-promise(‘/users/‘ + userID).then(user => user.name);
s

{
ual(‘Mark’));

it('works with promises’,
expect(user.getUserName(4).

)

it('works with promises', () => {
expect.assertions(1);
return user.getUserName(4).then(data => expect(data).toEqual('Mark"'));

1)

it('works with resolves', () => {
expect.assertions(1);
return expect(user.getUserName(5)).resolves.toEqual('Paul’);

)

hitps://jestjs.io/docs/en/tutorial-async

LaToza GMU SWE 432 Fall 2019

38

https://jestjs.io/docs/en/tutorial-async

LaToza

Next Time

 More asynchronous examples
e async/wait keywords

 Threading in JS

GMU SWE 432 Fall 2019

39

