
Asynchronous JS
SWE 432, Fall 2019

Web Application Development

LaToza GMU SWE 432 Fall 2019

Today
• What is asynchronous programming?
• What are threads?
• Writing asynchronous code

!2

For further reading:
• Using Promises https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Guide/Using_promises
• Node.js event loop https://nodejs.org/en/docs/guides/

event-loop-timers-and-nexttick/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

LaToza GMU SWE 432 Fall 2019

• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts
executing and not freed after the function returns

• That state just refers to that state by name (sees updates)

!3

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

It “closes up” those references

Review: Closures

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

f()

var x

var y

function

Global

Closure

1

2

Review: Closures

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

f()

var x

var y

function

1

3

Global

Closure

Review: Closures

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Review: Closures

f()

var x

var y

function

1

4

Global

Closure

LaToza GMU SWE 432 Fall 2019

Why Asynchronous?
• Maintain an interactive application while still doing

stuff

• Processing data

• Communicating with remote hosts

• Timers that countdown while our app is running

• Anytime that an app is doing more than one thing
at a time, it is asynchronous

!7

LaToza GMU SWE 432 Fall 2019

What is a thread?

!8

App Starts

App Ends

Program execution: a series of sequential method calls (s)

LaToza GMU SWE 432 Fall 2019

What is a thread?

!9

App Starts

App Ends

Program execution: a series of sequential method calls (s)

Multiple threads can run at once -> allows for
asynchronous code

LaToza GMU SWE 432 Fall 2019

Multi-Threading in Java
• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user

!10

main

thread 0

Interacts with user
Draws Swing interface

on screen, updates
screen

worker

thread 1

Processes data,
generates results

Share data
Signal each other

LaToza GMU SWE 432 Fall 2019

Woes of Multi-Threading

!11

Thread 1 Thread 2
Write V = 4

Write V = 2
Read V (2)

Thread 1 Thread 2
Write V = 2

Write V = 4
Read V (4)

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Multi-Threading in JS
var request = require(‘request');
request('http://www.google.com', function (error, response,
body) {
 console.log("Heard back from Google!");
});
console.log("Made request");

Made request
Heard back from Google!

Output:

Request is an asynchronous call

LaToza GMU SWE 432 Fall 2019

Multi-Threading in JS
• Everything you write will run in a single thread* (event loop)

• Since you are not sharing data between threads, races don’t happen as easily

• Inside of JS engine: many threads

• Event loop processes events, and calls your callbacks

!13

thread 1 thread 2 thread 3 thread n…
JS Engine

event
looperevent
loop

All of your code runs in this
one thread

event
queue

LaToza GMU SWE 432 Fall 2019

Event Being Processed:

The Event Loop

!14

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

response from
google.com

response from
facebook.com

response from
gmu.edu

Pushes new event into queuePushes new event into queuePushes new event into queue

http://google.com
http://facebook.com
http://gmu.edu

LaToza GMU SWE 432 Fall 2019

Event Being Processed:

The Event Loop

!15

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

response from
google.com

response from
facebook.com

response from
gmu.edu

http://google.com
http://facebook.com
http://gmu.edu

LaToza GMU SWE 432 Fall 2019

Event Being Processed:

The Event Loop

!16

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

response from
facebook.com

response from
gmu.edu

http://facebook.com
http://gmu.edu

LaToza GMU SWE 432 Fall 2019

Event Being Processed:

The Event Loop

!17

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

response from
gmu.edu

http://gmu.edu

LaToza GMU SWE 432 Fall 2019

The Event Loop
• Remember that JS is event-driven
var request = require('request');
request('http://www.google.com', function (error, response, body) {
 console.log("Heard back from Google!");
});
console.log("Made request");

• Event loop is responsible for dispatching events when
they occur

• Main thread for event loop:
while(queue.waitForMessage()){	
		queue.processNextMessage();	
}

!18

LaToza GMU SWE 432 Fall 2019

How do you write a “good” event handler?

• Run-to-completion

• The JS engine will not handle the next event until your event
handler finishes

• Good news: no other code will run until you finish (no worries about
other threads overwriting your data)

• Bad/OK news: Event handlers must not block

• Blocking -> Stall/wait for input (e.g. alert(), non-async network
requests)

• If you *must* do something that takes a long time (e.g.
computation), split it up into multiple events

!19

LaToza GMU SWE 432 Fall 2019

More Properties of Good Handlers
• Remember that event events are processed in the order they are

received

• Events might arrive in unexpected order

• Handlers should check the current state of the app to see if they
are still relevant

!20

LaToza GMU SWE 432 Fall 2019

Prioritizing events in node.js
• Some events are more

important than others

• Keep separate queues
for each event "phase"

• Process all events in
each phase before
moving to next

!21

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

First

Last

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

LaToza GMU SWE 432 Fall 2019

Benefits vs. Explicit Threading (Java)

• Writing your own threads is reason about and get
right:

• When threads share data, need to ensure they
correctly synchronize on it to avoid race conditions

• Main downside to events:

• Can not have slow event handlers

• Can still have races, although easier to reason
about

!22

LaToza GMU SWE 432 Fall 2019

Run-to-completion semantics
• Run-to-completion

• The function handling an event and the functions that it
(transitively) synchronously calls will keep executing until the
function finishes.

• The JS engine will not handle the next event until the event
handler finishes.

!23

callback1
f

h

g

callback2

... i

j...

processing of
event queue

LaToza GMU SWE 432 Fall 2019

Implications of run-to-completion

• Good news: no other code will run until you finish
(no worries about other threads overwriting your
data)

!24

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until after i

LaToza GMU SWE 432 Fall 2019

Implications of run-to-completion
• Bad/OK news: Nothing else will happen until event handler

returns

• Event handlers should never block (e.g., wait for input) --> all
callbacks waiting for network response or user input are
always asynchronous

• Event handlers shouldn't take a long time either

!25

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until i finishes

LaToza GMU SWE 432 Fall 2019

Decomposing a long-running computation

• If you *must* do something that takes a long time
(e.g. computation), split it into multiple events

• doSomeWork();

• ... [let event loop process other events]..

• continueDoingMoreWork();

• ...

!26

LaToza GMU SWE 432 Fall 2019

Dangers of decomposition
• Application state may change before event occurs

• Other event handlers may be interleaved and occur before
event occurs and mutate the same application state

• --> Need to check that update still makes sense

• Application state may be in inconsistent state until event occurs

• Application

• leaving data in inconsistent state...

• Loading some data from API, but not all of it...

!27

LaToza GMU SWE 432 Fall 2019

Example: Writing Asynchronous Tasks

• From an array of 10 URL’s:

• Request each URL

• Then for each page, save it to disk

• Then once all of the pages are downloaded and
saved, print out the total size of all of the files
that were saved

!28

LaToza GMU SWE 432 Fall 2019

Sequencing events
• We'd like a better way to sequence events.

• Goals:

• Clearly distinguish synchronous from asynchronous
function calls.

• Enable computation to occur only after some event has
happened, without adding an additional nesting level each
time (no pyramid of doom).

• Make it possible to handle errors, including for multiple
related async requests.

• Make it possible to wait for multiple async calls to finish
before proceeding.

!29

LaToza GMU SWE 432 Fall 2019

Sequencing events with Promises
• Promises are a wrapper around async callbacks

• Promises represents how to get a value

• Then you tell the promise what to do when it gets it

• Promises organize many steps that need to happen in order,
with each step happening asynchronously

• At any point a promise is either:

• Is unresolved

• Succeeds

• Fails

!30

LaToza GMU SWE 432 Fall 2019

Using a Promise
• Declare what you want to do when your promise is

completed (then), or if there’s an error (catch)

!31

fetch('https://github.com/')
 .then(function(res) {
 return res.text();
 });

fetch('http://domain.invalid/')
 .catch(function(err) {
 console.log(err);
 });

Promise one thing then
another

Promise to get
some data

Promise to get
some data based

on that data

then

then

Use that data to
update application

state

Report on the
error

If there’s an error…

If there’s an error…

LaToza GMU SWE 432 Fall 2019

Chaining Promises

!33

myPromise.then(function(resultOfPromise){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep; 
})
.then(function(resultOfStep1){ 
 //Do something, maybe asynchronously 
 return theResultOfStep2; 
})
.then(function(resultOfStep2){ 
 //Do something, maybe asynchronously 
 return theResultOfStep3; 
})
.then(function(resultOfStep3){ 
 //Do something, maybe asynchronously 
 return theResultOfStep4; 
})
.catch(function(error){ 
  
});

LaToza GMU SWE 432 Fall 2019

Writing a Promise
• Most often, Promises will be generated by an API

function (e.g., fetch) and returned to you.

• But you can also create your own Promise.

!34

var p = new Promise(function(resolve, reject) {
 if (/* condition */) {
 resolve(/* value */); // fulfilled successfully
 }
 else {
 reject(/* reason */); // error, rejected
 }
});

LaToza GMU SWE 432 Fall 2019

Example: Writing a Promise
• loadImage returns a promise to load a given image
function loadImage(url){ 
 return new Promise(function(resolve, reject) { 
 var img = new Image(); 
 img.src=url; 
 img.onload = function(){ 
 resolve(img); 
 } 
 img.onerror = function(e){ 
 reject(e); 
 } 
 }); 
}

!35

Once the image is loaded, we’ll resolve the promise

If the image has an error, the promise is rejected

LaToza GMU SWE 432 Fall 2019

Writing a Promise
• Basic syntax:

• do something (possibly asynchronous)

• when you get the result, call resolve() and pass the final result

• In case of error, call reject()

!36

var p = new Promise(function(resolve,reject){ 
 // do something, who knows how long it will take? 
 if(everythingIsOK) 
 { 
 resolve(stateIWantToSave); 
 } 
 else 
 reject(Error("Some error happened")); 
});

LaToza GMU SWE 432 Fall 2019

Promises in Action

• Firebase example: get some value from the database, then
push some new value to the database, then print out “OK”

todosRef.child(keyToGet).once(‘value')
.then(function(foundTodo){ 
 return foundTodo.val().text;  
})
.then(function(theText){ 
 todosRef.push({'text' : "Seriously: " + theText}); 
})
.then(function(){ 
 console.log("OK!");  
})
.catch(function(error){ 
 //something went wrong 
});

!37

Do this
Then, do this

Then do this

And if you ever had an error, do this

LaToza GMU SWE 432 Fall 2019

Testing Promises

!38

https://jestjs.io/docs/en/tutorial-async

function getUserName(userID) {
 return request-promise(‘/users/‘ + userID).then(user => user.name);
}

it('works with promises', () => {
 expect.assertions(1);
return user.getUserName(4).then(data => expect(data).toEqual('Mark'));
});

it('works with resolves', () => {
 expect.assertions(1);
return expect(user.getUserName(5)).resolves.toEqual('Paul');
});

it('works with promises', () => {
expect(user.getUserName(4).toEqual(‘Mark’));
});

https://jestjs.io/docs/en/tutorial-async

LaToza GMU SWE 432 Fall 2019

Next Time
• More asynchronous examples

• async/wait keywords

• Threading in JS

!39

