Asynchronous J]S, Part
2

SWE 432, Fall 2019
Web Application Development

LaToza

Review: ASynchronous

* Synchronous:

 Make a function call

 When function call returns, the work is done
* Asynchronous:

 Make a function call

* Function returns immediately, before completing
work!

GMU SWE 432 Fall 2019

LaToza

Review: ASynchronous

 How we do multiple things at a time in JS

 NodedS magically handles these asynchronous
things in the background

« Really important when doing file/network input/
output

GMU SWE 432 Fall 2019

Review: Run-to-completion semantics

* Run-to-completion

* The function handling an event and the functions that it

(transitively) synchronously calls will keep executing until the
function finishes.

* The JS engine will not handle the next event until the event
handler finishes.

processing of
event gueue f > Q

callback

~nh > ... > |

callback2 —— —» |

LaToza GMU SWE 432 Fall 2019

LaToza

Review: Implications of run-to-completion

* (Good news: no other code will run until you finish
(no worries about other threads overwriting your
data)

processing of
event gqueue f > Q

callback < h

callback2 —— ——» |
\4

| will not execute until after i

GMU SWE 432 Fall 2019

Review: Implications of run-to-completion

 Bad/OK news: Nothing else will happen until event handler
returns

 Event handlers should never block (e.g., wait for input) --> all
callbacks waiting for network response or user input are

always asynchronous

 Event handlers shouldn't take a long time either

processing of
event gueue f e

callback < .

> ... > |

callback2 —— —» |

J will not execute until i finishes

LaToza GMU SWE 432 Fall 2019

LaToza

Review: Chaining Promises

myPromise.then(function(resultOfPromise){
//Do something, maybe asynchronously
return theResultOfThisStep;

})

.then(function(result0fStepl){
//Do something, maybe asynchronously
return theResultOfThisStep

})

.then(function(result0fStep2){
//Do something, maybe asynchronously
return theResultOfThisStep

})

.then(function(result0fStep3){
//Do something, maybe asynchronously
return theResultOfThisStep

})

.catch(function(error){

});

GMU SWE 432 Fall 2019

LaToza

Review: Promises example

https://isbin.com/fifihitiku/edit?js,console

GMU SWE 432 Fall 2019

https://jsbin.com/fifihitiku/edit?js,console

LaToza

logay

o Async/await

 Programming activity

GMU SWE 432 Fall 2019

Promising many tnings

* (Can also specity that *many* things should be
done, and then something else

 Example: load a whole bunch of images at once:

Promise
.all([loadImage("GMURGB.jpg"), loadImage(“CS.jpg")])
.then(function (imgArray) {
imgArray.forEach(img => {document.body.appendChild(img)})
)

.catch(function (e) {
console. log("0ops");
console. log(e);

F);

LaToza GMU SWE 432 Fall 2019

10

Async Programming Example

'§ Gogetadata Gogetadata Gogetadata Gogetadata Go geta data
[item item item item item
s
8 Gogetadata Gogetadata Gogetadata Gogetadata Go geta data
1‘2 item item item item item
£ thenCombine
©
3 Group all Cal Group all
2 updates news updates
7] when done
AN
Update
display

Explain
example

LaToza GMU SWE 432 Fall 2019 11

LaToza

Synchronous Version

Go get a data Go get a data
item item

Go get a data Go get a data
item item

Go get a data Group all Cal
item updates

Go get a data Group all
item news updates

Go get a data
item

Go get a data Update the
item display

Go get a data Explain
item example

Go get a data

item

GMU SWE 432 Fall 2019

12

Asynchronous Version

Gogetadata Gogetadata Gogetadata Gogetadata Go geta data
item item item item item

Gogetadata Gogetadata Gogetadata Gogetadata Go getadata
item item item item item

Group all Cal Group all
updates news updates

Update the
display

Explain
example

LaToza GMU SWE 432 Fall 2019 13

Async Programming
Example (Sync)

let lib = require("./lib.js");

let thingsToFetch = ['tl1','t2','t3"',"'sl"',"'s2',"'s3"','m1"','m2','m3"','t4'];
let stuff = [];
for(let thingToGet of thingsToFetch)
{
stuff.push(lib.getSync(thingToGet));
console. log("Got a thing");
I3
//Got all my stuff
let ts = lib.groupSync(stuff,"t");
console. log("Grouped");
let ms = lib.groupSync(stuff,"m");
console. log("Grouped");
let ss = lib.groupSync(stuff,"s");
console. log("Grouped");

console. log("Done");

LaToza GMU SWE 432 Fall 2019

LaToza

Async Programming Example
Callbacks, no parallelism

let

let
let
let
let

lib.

lib = require("./lib.js");

thingsToFetch = ['t1', 't2', 't3', 'sl', 's2', 's3', 'ml', 'm2', 'm3', 't4'];
stuff = [1;

ts, ms, ss;

outstandingStuffToGet = thingsToFetch.length;

getASync(thingsToFetch[0], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.getASync(thingsToFetch[1], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.getASync(thingsToFetch[2], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.getASync(thingsToFetch[3], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.getASync(thingsToFetch[4], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.getASync(thingsToFetch[5], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.getASync(thingsToFetch[6], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.getASync(thingsToFetch[7], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.getASync(thingsToFetch[8], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.getASync(thingsToFetch[9], (v)=>{
stuff.push(v);
console. log("Got a thing")
lib.groupAsync(stuff, "t", (t) => {
ts = t;
console. log("Grouped");
lib.groupAsync(stuff, "m", (m) => {
ss = s;
GMU SWE 432 Fallcoasele. log("Grouped");

-1 " o Y A T ol o

Async Programming Example
(Callbacks)

let lib = require("./lib.js");

let thingsToFetch = ['t1', 't2', 't3', 'sl', 's2', 's3', 'ml', 'm2', 'm3', 't4'];
let stuff = [1;
let ts, ms, ss;
let outstandingStuffToGet = thingsToFetch.length;
for (let thingToGet of thingsToFetch) {
lib.getASync(thingToGet, (v) => {
stuff.push(v);
console. log("Got a thing")
outstandingStuffToGet——;
if (outstandingStuffToGet == 0) {
let groupsOfStuffTogetStill = 3;
lib.groupAsync(stuff, "t", (t) => {
ts = 1;
console. log("Grouped");
groupsOfStuffTogetStill—;
if (groupsOfStuffTogetStill == 0)
console.log("Done");

});
lib.groupAsync(stuff, "m", (m) => {
ms = m;
console. log("Grouped");
groupsOfStuffTogetStill—;
if (groupsOfStuffTogetStill == 0)
console.log("Done");
});
lib.groupAsync(stuff, "s", (s) => {
ss = s;
console. log("Grouped");
groupsOfStuffTogetStill——;
if (groupsOfStuffTogetStill == 0)
console. log("Done");

})
});

LaToza GMU SWE 432 Fall 2019

Async Programming Example
Promises, no parallelism

let lib = require("./lib.js");

let thingsToFetch = ['tl1', 't2', 't3', 'sl', 's2', 's3', 'ml', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;
let outstandingStuffToGet = thingsToFetch.length;
lib.getPromise(thingsToFetch[@]).then(
(v)=>{
stuff.push(v);
console. log("Got a thing");
return lib.getPromise(thingsToFetch[1]);
}
) . then(
(v)=>{
stuff.push(v);
console. log("Got a thing");
return lib.getPromise(thingsToFetch[1]);
}
) . then(
(v)=>{
stuff.push(v);
console. log("Got a thing");
return lib.getPromise(thingsToFetch[1]);
}
) . then(
(v)=>{
stuff.push(v);
console. log("Got a thing");
return lib.getPromise(thingsToFetch[2]);
}
) . then(
(v)=>{
stuff.push(v);
console. log("Got a thing");
return lib.getPromise(thingsToFetch[3]);
}
) . then(
(v)=>{
stuff.push(v);
console. log("Got a thing");

LaToza return lib.getPromise(gMugsigEedshlfdn 2019

Async Programming
Example (Promises

let 1ib = require("./lib.js");

let thingsToFetch = ['tl1', 't2', 't3', 'sl', 's2', 's3', 'ml', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;

let promises = [];

for (let thingToGet of thingsToFetch) {
promises.push(lib.getPromise(thingToGet));

+

Promise.all(promises).then((data) => {
console. log("Got all things");
stuff = data;
return Promise.all([
lib.groupPromise(stuff, "t"),
lib.groupPromise(stuff, "m"),
lib.groupPromise(stuff, "s")
]
)
}).then((groups) => {
console. log("Got all groups");

ts = groups[0];
ms = groups[1];
ss = groups[2];

console. log("Done");

H;

LaToza GMU SWE 432 Fall 2019

Problems with Promises

const makeRequest = () => {
try {
return promisel()
.then(valuel => {
// do something
}).catch(err => {
//This is the only way to catch async errors
console. log(err);
)
}catch(ex){
//Will never catch async errors!!
I3

LaToza GMU SWE 432 Fall 2019

LaToza

Async/Await

The latest and greatest way to work with async
functions

A programming pattern that tries to make async
code ook more synchronous

Just "await” something to happen betore
proceeding

https://javascript.info/async-await

GMU SWE 432 Fall 2019

20

https://javascript.info/async-await

LaToza

Async keyword

async function hello() { return "Hello" };
hello();

e Denotes a function that can block and resume
execution later

 Automatically turns the return type into a Promise

GMU SWE 432 Fall 2019

21

Async/Await Example

function resolveAfter2Seconds() {
return new Promise(resolve => {
setTimeout(() => {
resolve('resolved’);
}, 2000);
H;
I

async function asyncCall() {

console. log('calling');
var result = await resolveAfter2Seconds():

console. log(result);
// expected output: 'resolved'

I3
asyncCall();

https://jsbin.com/jivacodefo/edit?js,console

LaToza GMU SWE 432 Fall 2019

22

https://jsbin.com/jivacodefo/edit?js,console

Async/Await -> Synchronous

let lib = require("./lib.js");

async function getAndGroupStuff() {
let thingsToFetch = ['t1', 't2', 't3', 'sl', 's2', 's3', 'ml', 'm2', 'm3',
let stuff = [];
let ts, ms, ss;

let promises = [];

for (let thingToGet of thingsToFetch) A{
stuff.push(await lib.getPromise(thingToGet));
console. log("Got a thing");

I3

ts = await lib.groupPromise(stuff,"t");

console. log("Made a group");

ms = await lib.groupPromise(stuff,"m");

console.log("Made a group");

ss = await lib.groupPromise(stuff,"s");

console. log("Made a group");

console. log("Done");

I3
getAndGroupStuff();

LaToza GMU SWE 432 Fall 2019

LaToza

Async/Await

Rules of the road:

* You can only call await from a function that is
async

* You can only await on functions that return a
Promise

 Beware: await makes your code synchronous!

async function getAndGroupStuff() {

ts = await lib.groupPromise(stuff,"t");

GMU SWE 432 Fall 2019

24

Async/Await Activity

Rewrite this code so that all of the things are fetched (in
parallel) and then all of the groups are collected

let lib = require("./lib.js");

async function getAndGroupStuff() A{
let thingsToFetch = ['t1', 't2', 't3', 'sl', 's2', 's3', 'ml', 'm2', 'm3', 't4'l];
let stuff = [];
let ts, ms, ss;

let promises = [];

for (let thingToGet of thingsToFetch) A{
stuff.push(await lib.getPromise(thingToGet));
console.log("Got a thing");

¥

ts = await lib.groupPromise(stuff,"t");

console.log("Made a group");

ms = await lib.groupPromise(stuff,"m");

console.log("Made a group");

ss = await lib.groupPromise(stuff,"s");

console.log("Made a group");

console. log("Done");

}

getAndGroupStuff(); dOWﬂlOad ||bJS M//blth//ZQVyr@
download this code: https://bit.ly/20vsWhag

LaToza GMU SWE 432 Fall 2019

https://bit.ly/2QvyrOu
https://bit.ly/2OvsWhq

Async/Await

async function getAndGroupStuff() {
let thingsToFetch = ['tl1', 't2', 't3', 'sl', 's2', 's3', 'ml', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;

let promises = [];

for (let thingToGet of thingsToFetch) {
promises.push(lib.getPromise(thingToGet));

I3

stuff = await Promise.all(promises);

console. log("Got all things");

[ts, ms, ss] = await Promise.all([lib.groupPromise(stuff, "t"),
lib.groupPromise(stuff, "m"), lib.groupPromise(stuff, "s")]);

console. log("Got all groups");

console. log("Done");

s
getAndGroupStuff();

LaToza GMU SWE 432 Fall 2019

