
Asynchronous JS, Part
2

SWE 432, Fall 2019
Web Application Development

LaToza GMU SWE 432 Fall 2019

Review: Asynchronous
• Synchronous:

• Make a function call

• When function call returns, the work is done

• Asynchronous:

• Make a function call

• Function returns immediately, before completing
work!

!2

LaToza GMU SWE 432 Fall 2019

Review: Asynchronous
• How we do multiple things at a time in JS

• NodeJS magically handles these asynchronous
things in the background

• Really important when doing file/network input/
output

!3

LaToza GMU SWE 432 Fall 2019

Review: Run-to-completion semantics
• Run-to-completion

• The function handling an event and the functions that it
(transitively) synchronously calls will keep executing until the
function finishes.

• The JS engine will not handle the next event until the event
handler finishes.

!4

callback1
f

h

g

callback2

... i

j...

processing of
event queue

LaToza GMU SWE 432 Fall 2019

Review: Implications of run-to-completion

• Good news: no other code will run until you finish
(no worries about other threads overwriting your
data)

!5

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until after i

LaToza GMU SWE 432 Fall 2019

Review: Implications of run-to-completion

• Bad/OK news: Nothing else will happen until event handler
returns

• Event handlers should never block (e.g., wait for input) --> all
callbacks waiting for network response or user input are
always asynchronous

• Event handlers shouldn't take a long time either

!6

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until i finishes

LaToza GMU SWE 432 Fall 2019

Review: Chaining Promises

!7

myPromise.then(function(resultOfPromise){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep; 
})
.then(function(resultOfStep1){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep 
})
.then(function(resultOfStep2){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep 
})
.then(function(resultOfStep3){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep 
})
.catch(function(error){ 
  
});

LaToza GMU SWE 432 Fall 2019

Review: Promises example

!8

https://jsbin.com/fifihitiku/edit?js,console

https://jsbin.com/fifihitiku/edit?js,console

LaToza GMU SWE 432 Fall 2019

Today

• Async/await

• Programming activity

!9

LaToza GMU SWE 432 Fall 2019

Promising many things
• Can also specify that *many* things should be

done, and then something else

• Example: load a whole bunch of images at once:
Promise
 .all([loadImage("GMURGB.jpg"), loadImage(“CS.jpg")]) 
 .then(function (imgArray) { 
 imgArray.forEach(img => {document.body.appendChild(img)}) 
 })
 .catch(function (e) { 
 console.log("Oops");  
 console.log(e); 
 });

!10

LaToza GMU SWE 432 Fall 2019

Async Programming Example

!11

Go get a data
item

thenCombine

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Group all Cal
updates

Group all
news updates

when done

Update
display

Explain
example

1
se

co
nd

 e
ac

h
2

se
co

nd
s

ea
ch

LaToza GMU SWE 432 Fall 2019

Synchronous Version

!12

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Group all Cal
updates

Group all
news updates

Update the
display

Explain
example

LaToza GMU SWE 432 Fall 2019

Asynchronous Version

!13

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Explain
example

…
Group all Cal

updates
Group all

news updates

Update the
display

…

LaToza GMU SWE 432 Fall 2019

Async Programming
Example (Sync)

let lib = require("./lib.js");
let thingsToFetch = ['t1','t2','t3','s1','s2','s3','m1','m2','m3','t4'];
let stuff = [];
for(let thingToGet of thingsToFetch)
{
 stuff.push(lib.getSync(thingToGet));
 console.log("Got a thing");
}
//Got all my stuff
let ts = lib.groupSync(stuff,"t");
console.log("Grouped");
let ms = lib.groupSync(stuff,"m");
console.log("Grouped");
let ss = lib.groupSync(stuff,"s");
console.log("Grouped");

console.log("Done");

LaToza GMU SWE 432 Fall 2019

Async Programming Example
(Callbacks, no parallelism)

let lib = require("./lib.js");

let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;
let outstandingStuffToGet = thingsToFetch.length;

lib.getASync(thingsToFetch[0],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[1],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[2],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[3],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[4],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[5],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[6],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[7],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[8],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[9],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.groupAsync(stuff, "t", (t) => {
 ts = t;
 console.log("Grouped");
 lib.groupAsync(stuff, "m", (m) => {
 ss = s;
 console.log("Grouped");
 lib.groupAsync(stuff, "s", (s) => {

LaToza GMU SWE 432 Fall 2019

Async Programming Example
(Callbacks)

let lib = require("./lib.js");

let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;
let outstandingStuffToGet = thingsToFetch.length;
for (let thingToGet of thingsToFetch) {
 lib.getASync(thingToGet, (v) => {
 stuff.push(v);
 console.log("Got a thing")
 outstandingStuffToGet--;
 if (outstandingStuffToGet == 0) {
 let groupsOfStuffTogetStill = 3;
 lib.groupAsync(stuff, "t", (t) => {
 ts = t;
 console.log("Grouped");
 groupsOfStuffTogetStill--;
 if (groupsOfStuffTogetStill == 0)
 console.log("Done");

 });
 lib.groupAsync(stuff, "m", (m) => {
 ms = m;
 console.log("Grouped");
 groupsOfStuffTogetStill--;
 if (groupsOfStuffTogetStill == 0)
 console.log("Done");
 });
 lib.groupAsync(stuff, "s", (s) => {
 ss = s;
 console.log("Grouped");
 groupsOfStuffTogetStill--;
 if (groupsOfStuffTogetStill == 0)
 console.log("Done");
 })
 }
 });
}

LaToza GMU SWE 432 Fall 2019

Async Programming Example
(Promises, no parallelism)

let lib = require("./lib.js");

let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;
let outstandingStuffToGet = thingsToFetch.length;
lib.getPromise(thingsToFetch[0]).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[1]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[1]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[1]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[2]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[3]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[4]);
 }

LaToza GMU SWE 432 Fall 2019

Async Programming
Example (Promises)

let lib = require("./lib.js");

let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;

let promises = [];
for (let thingToGet of thingsToFetch) {
 promises.push(lib.getPromise(thingToGet));
}
Promise.all(promises).then((data) => {
 console.log("Got all things");
 stuff = data;
 return Promise.all([
 lib.groupPromise(stuff, "t"),
 lib.groupPromise(stuff, "m"),
 lib.groupPromise(stuff, "s")
]
)
}).then((groups) => {
 console.log("Got all groups");
 ts = groups[0];
 ms = groups[1];
 ss = groups[2];
 console.log("Done");
});

LaToza GMU SWE 432 Fall 2019

Problems with Promises
const makeRequest = () => {
 try {
 return promise1()
 .then(value1 => {
 // do something
 }).catch(err => {
 //This is the only way to catch async errors
 console.log(err);
 })
 }catch(ex){
 //Will never catch async errors!!
 }
}

LaToza GMU SWE 432 Fall 2019

Async/Await
• The latest and greatest way to work with async

functions

• A programming pattern that tries to make async
code look more synchronous

• Just “await” something to happen before
proceeding

• https://javascript.info/async-await

!20

https://javascript.info/async-await

LaToza GMU SWE 432 Fall 2019

Async keyword

• Denotes a function that can block and resume
execution later

• Automatically turns the return type into a Promise

!21

async function hello() { return "Hello" };
hello();

LaToza GMU SWE 432 Fall 2019

Async/Await Example

!22

function resolveAfter2Seconds() {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve('resolved');
 }, 2000);
 });
}

async function asyncCall() {
 console.log('calling');
 var result = await resolveAfter2Seconds();
 console.log(result);
 // expected output: 'resolved'
}

asyncCall();

https://jsbin.com/jivacodefo/edit?js,console

https://jsbin.com/jivacodefo/edit?js,console

LaToza GMU SWE 432 Fall 2019

Async/Await -> Synchronous
let lib = require("./lib.js");

async function getAndGroupStuff() {
 let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
 let stuff = [];
 let ts, ms, ss;

 let promises = [];
 for (let thingToGet of thingsToFetch) {
 stuff.push(await lib.getPromise(thingToGet));
 console.log("Got a thing");
 }
 ts = await lib.groupPromise(stuff,"t");
 console.log("Made a group");
 ms = await lib.groupPromise(stuff,"m");
 console.log("Made a group");
 ss = await lib.groupPromise(stuff,"s");
 console.log("Made a group");
 console.log("Done");
}

getAndGroupStuff();

LaToza GMU SWE 432 Fall 2019

Async/Await
• Rules of the road:

• You can only call await from a function that is
async

• You can only await on functions that return a
Promise

• Beware: await makes your code synchronous!

!24

async function getAndGroupStuff() {
...
 ts = await lib.groupPromise(stuff,"t");
...
}

LaToza GMU SWE 432 Fall 2019

Async/Await Activity

let lib = require("./lib.js");

async function getAndGroupStuff() {
 let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
 let stuff = [];
 let ts, ms, ss;

 let promises = [];
 for (let thingToGet of thingsToFetch) {
 stuff.push(await lib.getPromise(thingToGet));
 console.log("Got a thing");
 }
 ts = await lib.groupPromise(stuff,"t");
 console.log("Made a group");
 ms = await lib.groupPromise(stuff,"m");
 console.log("Made a group");
 ss = await lib.groupPromise(stuff,"s");
 console.log("Made a group");
 console.log("Done");
}

getAndGroupStuff();

Rewrite this code so that all of the things are fetched (in
parallel) and then all of the groups are collected

download lib.js: https://bit.ly/2QvyrOu
download this code: https://bit.ly/2OvsWhq

https://bit.ly/2QvyrOu
https://bit.ly/2OvsWhq

LaToza GMU SWE 432 Fall 2019

Async/Await
async function getAndGroupStuff() {
 let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
 let stuff = [];
 let ts, ms, ss;

 let promises = [];
 for (let thingToGet of thingsToFetch) {
 promises.push(lib.getPromise(thingToGet));
 }
 stuff = await Promise.all(promises);
 console.log("Got all things");
 [ts, ms, ss] = await Promise.all([lib.groupPromise(stuff, "t"),
lib.groupPromise(stuff, "m"), lib.groupPromise(stuff, "s")]);
 console.log("Got all groups");
 console.log("Done");
}

getAndGroupStuff();

