Backend Development

SWE 432, Fall 2019
Web Application Development

Review: Async Programming Example

.§ Go get a Go get a Go get a Go get a Go get a
o candy bar candy bar candy bar candy bar candy bar
o

c

o

S Gogeta Gogeta Go geta Go get a Gogeta
1’ candy bar candy bar candy bar candy bar candy bar
< thenCombine

©

Q

” : Group all 3 Group all Group all Group all
g |l MilkyWay [MilkyWay Dark] Snickers
o)

o

& when done
AN

Eat all the
Twix

Explain
example

LaToza GMU SWE 432 Fall 2019

Review: Async/Awalit

e Rules of the road:

* You can only call await from a function that is
async

* You can only await on functions that return a
Promise

 Beware: await makes your code synchronous!

async function getAndGroupStuff() {

ts = await lib.groupPromise(stuff,"t");

LaToza GMU SWE 432 Fall 2019

LaToza

| ogistics
e HW?2 released

e Due 10/7 before class

GMU SWE 432 Fall 2019

LaToza

logay
 \What is a backend for?

* History of backend web programming

 NodedS backends with Express

GMU SWE 432 Fall 2019

LaToza

Whny we need backends

e Security: SOME part of our code needs to be “trusted”

e Validation, security, etc. that we don’'t want to allow users to
bypass

e Performance:
e Avoid duplicating computation (do it once and cache)
e Do heavy computation on more powerful machines
e Do data-intensive computation “nearer” to the data

e Compatibility:

e Can bring some dynamic behavior without requiring much JS
support

GMU SWE 432 Fall 2019

Dynamic Web Apps

o

wWeb “Front End” :
Presentation

Frontend programming .
next week Some logic

Data storage
Some other logic

Persistent Some
Storage other APls

Bell GMU SWE 432 Fall 2018

Where do we put the logic”

NN

Presentation

Some logic

Data storage

Some other logic

Frontend Backend

Pros Pros

Very responsive (low latency) Easy to refactor between multiple
clients
Logic is hidden from users (good for

Cons security, compatibility, and intensive
Security computation)
Performance Cons

Unable to share between front-ends Interactions require a round-trip to
server

Bell GMU SWE 432 Fall 2018

Why lrust Matters

 Example: Banking app
magine a banking app where the following code
'uns in the browser:

function updateBalance(user, amountToAdd)

{
}

user.balance = user.balance + amountToAdd;

 What's wrong?

 How do you fix that”

LaToza GMU SWE 432 Fall 2019

LaToza

What does our backend look like™

Our own backend

Connection to

Web “Front End Frontend

Persistent Data

GMU SWE 432 Fall 2019

10

The “good” old days of backends

HTTP Request
GET /myApplicationEndpoint HTTP/1.1

Host: cs.gmu.edu
Accept: text/html +

web server

=== 10 RUns a program

Give me /myApplicationEndpoint

>

Web Server @whatever it wants My .
el Application

Here’s some text to send back Backend

Application

HTTP Response
HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

<html><head>...

LaToza GMU SWE 432 Fall 2019

11

What's wrong with this
picture”

LaToza

History of Backend Development

In the beginning, you wrote whatever you wanted using
whatever language you wanted and whatever framework you
wanted

Then... PHP and ASP
* Languages “designed” for writing backends
* Encouraged spaghetti code

A ot of the web was built on this

A whole lot of other languages were also springing up in the
90’s...

* Ruby, Python, JSP

GMU SWE 432 Fall 2019

13

LaToza

Microservices vs. Monoliths

e Advantages of microservices over monoliths include
e Support for scaling

e Scale vertically rather than horizontally

Support for change

e Support hot deployment of updates

Support for reuse
 Use same web service in multiple apps

e Swap out internally developed web service for externally developed web
service

Support for separate team development

* Pick boundaries that match team responsibilities

Support for failure

GMU SWE 432 Fall 2019

14

Support for scaling

Our Cool App

Frontend

Backend Server

Mod 1 Mod 2
Mod 3 Mod 4
Mod 5 Mod 6

Database

GMU SWE 432 Fall 2019

Now how do we scale 1t

Our Cool App

Frontend

Backend Server Backend Server Backend Server

Mod 1 Mod 2 Mod 1 Mod 2 Mod 1 Mod 2
Mod 3 Mod 4 Mod 3 Mod 4 Mod 3 Mod 4
Mod 5 Mod 6 Mod 5 Mod 6 Mod 5 Mod 6

Database

We run multiple copies of the backend, each with each of
the modules

LaToza GMU SWE 432 Fall 2019

16

LaToza

What's wrong with this picture®

 Thisis called the
‘monolithic™ app

e |fwe need 100 servers...

e Each server will have to
run EACH module

e What if we need more of
some modules than
others?

GMU SWE 432 Fall 2019

17

Vlicroservices

Java, MySQL
Mailer

NodedS, Firebase

Todos

REST
service

Our Cool App

Frontend Database

“Dumb AJAX

Google Service

Accounts

REST
service

Database

REST
service

Database

Backend

Search Engine

REST
service

Database

Java, Neo4J

Analytics

REST
service

Database

C#, SQLServer

LaToza GMU SWE 432 Fall 2019

Facebook Crawler

REST
service

Database

Python, Firebase
18

LaToza

(Goals of microservices

 Add them independently

Upgrade the independently
Reuse them independently

Develop them independently

==> Have ZERO coupling between microservices,
aside from their shared intertace

GMU SWE 432 Fall 2019

19

LaToza

Node.dS

 \We're going to write backends with Node.JS

 \Why use Node”

 Event based: really efficient for sending lots of
quick updates to lots of clients

e \ery large ecosystem of packages, as we've seen
 \Why not use Node”

 Bad for CPU heavy stuff

GMU SWE 432 Fall 2019

20

LaToza

EXPress

* Basic setup:

e [or get:

app.get("/somePath", function(req, res){
//Read stuff from req, then call res.send(myResponse)

});

e [or post:

app.post("/somePath", function(req, res){
//Read stuff from req, then call res.send(myResponse)

});

e Serving static files:

app.use(express.static('myFileWithStaticFiles'));

« Make sure to declare this *last®

« Additional helpful module - bodyParser (for reading POST data)

https://expressis.com/

GMU SWE 432 Fall 2019

21

https://expressjs.com/

Demo: Hello World Server

Creates a configuration file

1. Make a directory, myapp for your project

2. Enter that directory, type npm init (accept all defaults)

3: Type npm install express --save Tells NPM that you want to use
express, and to save that in your

4: Create text file app.js: : .
project config

var express = require('express’);

var app = express();

var port = process.env.port || 3000;

app.get('/', function (req, res) {
res.send('Hello World!"');

1)

app.listen(port, function () {
console.log('Example app listening on port' + port);

})s

5: Type node app.js
6: Point your browser to http://localhost:3000 Runs your app

——

LaToza GMU SWE 432 Fall 2019

22

http://localhost:3000

Demo: Hello World Server

var express = require(‘express’
Import the module express

var app = express
Create a new instance of express

var port = process.env.port || 3000;
Decide what port we want express to listen on

app.get('/"', function (reqg, res
res.send('Hello World!'

Create a callback for express to call when we have a “get” request to “/“. That
callback has access to the request (req) and response (res).

app.listen(port, function
console.log('Example app listening on port' + port

Tell our new instance of express to listen on port, and print to the console once it
starts successftully

CaT1oOZda GNMMOSWLE ™SS2 TdinmrzZuls

LD

http://localhost:3000

LaToza

Core concept: Routing

* The definition of end points (URIs) and how they respond to client
requests.

* app METHOD(PATH, HANDLER

« METHOD: all, get, post, put, delete, [and others]

* PATH: string

e HANDLER: call back

app.post('/', function (req, res
res.send('Got a POST request’

GMU SWE 432 Fall 2019

24

Route paths

e (Can specity strings, string patterns, and regular expressions
e Canuse?, +, *, and ()

 Matches request to root route

app.get('/"', function (req, res
res.send('root’

« Matches request to /about

app.get('/about', function (req, res
res.send('about’

« Matches request to /abe and /abcde

app.get('/ab(cd)?e', function(req, res
res.send('ab(cd)?e’

LaToza GMU SWE 432 Fall 2019

Route parameters

« Named URL segments that capture values at specified location in
URL

e Stored into req.params object by name
e Example
* Route path /users/:userld/books/:bookld
 Request URL http://localhost:3000/users/34/books/8989

 Resulting req.params: { "userId": "34", "bookId": "8989" }

app.get('/users/:userld/books/:bookId', function(req, res
res.send(req.params

LaToza GMU SWE 432 Fall 2019

26

LaToza

Reqguest object

 Enables reading properties of HT TP request

* req.body: JSON submitted in request body
(must define body-parser to use)

 req.1p: IP of the address

* req.query: URL query parameters

GMU SWE 432 Fall 2019

27

LaToza

A1 1P Responses

* |Larger number of response codes (200 OK, 404

NOT FOUND)

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT
Content-Type: text/html; charset=UTF-8
Content-Encoding: UTF-8

Content-Length: 138

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
ETag: "3f80f-1b6-3elcb03b"

Accept-Ranges: bytes

Connection: close

<html>
<head>
<title>An Example Page</title>
</head>
<body>
Hello World, this is a very simple HTML document.
</body>
</html>

[HTML data]

GMU SWE 432 Fall 2019

"OK response”

1 - | | 81 egﬁ'konse status Cﬁdse

2XX SUCCesSs

3xx Redirection
4xx Client error
5xx Server error

"HTML returned

content”

Common MIME types:
application/json
application/pdf
image/png

28

Response object

* Enables a response to client to be generated
e res.send() - send string content
 res.download() - prompts for a file download
* res.json() - sends aresponse w/ application/json Content-Type header
* res.redirect() - sends a redirect response
 res.sendStatus() - sends only a status message

 res.sendFile() - sends the file at the specified path

app.get('/users/:userld/books/:bookId’', function(req, res
res.json req.params.bookID }

LaToza GMU SWE 432 Fall 2019

Describing Responses

« What happens if something goes wrong while handling HTTP request?
 How does client know what happened and what to try next?
« HTTP offers response status codes describing the nature of the response
o 1xx Informational: Request received, continuing
e 2xx Success: Request received, understood, accepted, processed
e 200: OK
o 3xx Redirection: Client must take additional action to complete request
e 301: Moved Permanently

e 307: Temporary Redirect

https://en.wikipedia.org/wiki/List_of HTTP_status_codes

LaToza GMU SWE 432 Fall 2019

30

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

LaToza

Describing Errors

o 4xx Client Error: client did not make a valid request to server. Examples:

400 Bad request (e.g., malformed syntax)
403 Forbidden: client lacks necessary permissions

404 Not found

405 Method Not Allowed: specitied HTTP action not allowed for
resource

408 Request Timeout: server timed out waiting for a request
410 Gone: Resource has been intentionally removed and will not return

429 Too Many Requests

GMU SWE 432 Fall 2019

31

LaToza

Describing Errors

e 5xx Server Error: The server failed to fulfill an
apparently valid request.

* 500 Internal Server Error: generic error message
501 Not Implemented

* 503 Service Unavailable: server is currently
unavallable

GMU SWE 432 Fall 2019

32

LaToza

Error handling In EXpress

* EXxpress offers a default error handler

e (Can specific error explicitly with status

¢ res.status(500):

GMU SWE 432 Fall 2019

33

LaToza

Persisting data in memory

Can declare a global variable in node

e |.€., avariable that Is not declared inside a class or
function

Global variables persist between requests
Can use them to store state in memory

Unfortunately, it server crashes or restarts, state will
be |ost

 Will look later at other options for persistence

GMU SWE 432 Fall 2019

34

LaToza

Making HIT TP Requests

* May want to request data from other servers from backend
* Fetch
« Makes an HTTP request, returns a Promise for a response

« Part of standard library in browser, but need to install library to use in
backend

* |nstalling:

npm install node-fetch --save

e Use:

const fetch = require('node-fetch');

fetch('https://github.com/")
.then(res => res.text())
.then(body => console.log(body));

var res = await fetch('https://github.com/');

https://www.npmjs.com/package/node-fetch

GMU SWE 432 Fall 2019

35

https://www.npmjs.com/package/node-fetch

LaToza

Responding later

 What happens it you'd like to send data back to
client in response, but not until something else

happens (e.q., your request to a different server
finishes)?

e Solution: wait for event, then send the response!

fetch('https://github.com/")
.then(res => res.text())
. then(body => res.send(body));

GMU SWE 432 Fall 2019

36

