
Backend Development
SWE 432, Fall 2019

Web Application Development

LaToza GMU SWE 432 Fall 2019

Review: Async Programming Example

!2

Go get a
candy bar

thenCombine

Go get a
candy bar

Go get a
candy bar

Go get a
candy bar

Go get a
candy bar

Go get a
candy bar

Go get a
candy bar

Go get a
candy bar

Go get a
candy bar

Go get a
candy bar

Group all Twix Group all 3
Musketeers

Group all
MilkyWay

Group all
Snickers

Group all
MilkyWay Dark

when done

Eat all the
Twix

Explain
example

1
se

co
nd

 e
ac

h
2

se
co

nd
s

ea
ch

LaToza GMU SWE 432 Fall 2019

Review: Async/Await
• Rules of the road:

• You can only call await from a function that is
async

• You can only await on functions that return a
Promise

• Beware: await makes your code synchronous!

!3

async function getAndGroupStuff() {
...
 ts = await lib.groupPromise(stuff,"t");
...
}

LaToza GMU SWE 432 Fall 2019

Logistics
• HW2 released

• Due 10/7 before class

!4

LaToza GMU SWE 432 Fall 2019

Today
• What is a backend for?

• History of backend web programming

• NodeJS backends with Express

!5

LaToza GMU SWE 432 Fall 2019

Why we need backends
• Security: SOME part of our code needs to be “trusted”

• Validation, security, etc. that we don’t want to allow users to
bypass

• Performance:

• Avoid duplicating computation (do it once and cache)

• Do heavy computation on more powerful machines

• Do data-intensive computation “nearer” to the data

• Compatibility:

• Can bring some dynamic behavior without requiring much JS
support

!6

Bell GMU SWE 432 Fall 2018

Dynamic Web Apps
Web “Front End”

“Back End”

What th
e user in

teracts with

What th
e fro

nt end interacts with

Persistent
Storage

Some
other APIs

Presentation
Some logic

Data storage
Some other logic

Frontend programming
next week

Bell GMU SWE 432 Fall 2018

Where do we put the logic?
Web “Front End”

“Back End”

Persistent
Storage

Some other
APIs

Presentation

Some logic

Data storage

Some other logic

What th
e user in

teracts with

What th
e fro

nt end interacts with

Frontend
Pros

Very responsive (low latency)

Cons
Security
Performance
Unable to share between front-ends

Backend
Pros

Easy to refactor between multiple
clients

Logic is hidden from users (good for
security, compatibility, and intensive
computation)

Cons
Interactions require a round-trip to

server

LaToza GMU SWE 432 Fall 2019

Why Trust Matters
• Example: Banking app  

Imagine a banking app where the following code
runs in the browser:

function updateBalance(user, amountToAdd) 
{  
 user.balance = user.balance + amountToAdd; 
}

• What’s wrong?

• How do you fix that?

!9

LaToza GMU SWE 432 Fall 2019

What does our backend look like?

!10

Our own backend

Connection to
FrontendWeb “Front End”

AJAX

Logic

Persistent Data

LaToza GMU SWE 432 Fall 2019

The “good” old days of backends

!11

HTTP Request
GET	/myApplicationEndpoint	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server
Application

My
Application
Backend

Give	me	/myApplicationEndpoint

Here’s	some	text	to	send	back

Does whatever it wants

What’s wrong with this
picture?

LaToza GMU SWE 432 Fall 2019

History of Backend Development
• In the beginning, you wrote whatever you wanted using

whatever language you wanted and whatever framework you
wanted

• Then… PHP and ASP

• Languages “designed” for writing backends

• Encouraged spaghetti code

• A lot of the web was built on this

• A whole lot of other languages were also springing up in the
90’s…

• Ruby, Python, JSP

!13

LaToza GMU SWE 432 Fall 2019

Microservices vs. Monoliths
• Advantages of microservices over monoliths include

• Support for scaling

• Scale vertically rather than horizontally

• Support for change

• Support hot deployment of updates

• Support for reuse

• Use same web service in multiple apps

• Swap out internally developed web service for externally developed web
service

• Support for separate team development

• Pick boundaries that match team responsibilities

• Support for failure

!14

LaToza GMU SWE 432 Fall 2019

Support for scaling

!15

Our Cool App

Frontend

Backend Server

Database

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

LaToza GMU SWE 432 Fall 2019

Now how do we scale it?

!16

Our Cool App

Backend Server

Database

Backend Server Backend Server

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

We run multiple copies of the backend, each with each of
the modules

Frontend

LaToza GMU SWE 432 Fall 2019

What's wrong with this picture?
• This is called the

“monolithic” app

• If we need 100 servers…

• Each server will have to
run EACH module

• What if we need more of
some modules than
others?

!17

Our Cool App

Backend Server

Database

Backend Server Backend Server
Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Frontend

LaToza GMU SWE 432 Fall 2019

Microservices

!18

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todos
NodeJS, Firebase

Mailer
Java, MySQL

Accounts
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase

LaToza GMU SWE 432 Fall 2019

Goals of microservices
• Add them independently

• Upgrade the independently

• Reuse them independently

• Develop them independently

• ==> Have ZERO coupling between microservices,
aside from their shared interface

!19

LaToza GMU SWE 432 Fall 2019

Node.JS
• We’re going to write backends with Node.JS

• Why use Node?

• Event based: really efficient for sending lots of
quick updates to lots of clients

• Very large ecosystem of packages, as we've seen

• Why not use Node?

• Bad for CPU heavy stuff

!20

LaToza GMU SWE 432 Fall 2019

Express
• Basic setup:

• For get:
app.get("/somePath", function(req, res){ 
 //Read stuff from req, then call res.send(myResponse) 
});

• For post:
app.post("/somePath", function(req, res){ 
 //Read stuff from req, then call res.send(myResponse) 
});

• Serving static files:
app.use(express.static('myFileWithStaticFiles'));

• Make sure to declare this *last*

• Additional helpful module - bodyParser (for reading POST data)

!21

 https://expressjs.com/

https://expressjs.com/

LaToza GMU SWE 432 Fall 2019

Demo: Hello World Server

!22

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

var	express	=	require('express');	
var	app	=	express();	
var	port	=	process.env.port	||	3000;		
app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Tells NPM that you want to use
express, and to save that in your

project config

Runs your app

http://localhost:3000

LaToza GMU SWE 432 Fall 2019

Demo: Hello World Server

!23

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Runs your app

Tells NPM that you want to use
express, and to save that in your

project config

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.port	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

Import the module express

Create a new instance of express

Decide what port we want express to listen on

Create a callback for express to call when we have a “get” request to “/“. That
callback has access to the request (req) and response (res).

Tell our new instance of express to listen on port, and print to the console once it
starts successfully

http://localhost:3000

LaToza GMU SWE 432 Fall 2019

Core concept: Routing
• The definition of end points (URIs) and how they respond to client

requests.

• app.METHOD(PATH, HANDLER)

• METHOD: all, get, post, put, delete, [and others]

• PATH: string

• HANDLER: call back

app.post('/',	function	(req,	res)	{	
		res.send('Got	a	POST	request');	
});

!24

LaToza GMU SWE 432 Fall 2019

Route paths
• Can specify strings, string patterns, and regular expressions

• Can use ?, +, *, and ()

• Matches request to root route
app.get('/',	function	(req,	res)	{	
		res.send('root');	
});	

• Matches request to /about
app.get('/about',	function	(req,	res)	{	
		res.send('about');	
});	

• Matches request to /abe and /abcde
app.get('/ab(cd)?e',	function(req,	res)	{	
	res.send('ab(cd)?e');	
});

!25

LaToza GMU SWE 432 Fall 2019

Route parameters
• Named URL segments that capture values at specified location in

URL

• Stored into req.params object by name

• Example

• Route path /users/:userId/books/:bookId

• Request URL http://localhost:3000/users/34/books/8989

• Resulting req.params: { "userId": "34", "bookId": "8989" }

app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.send(req.params);	
});

!26

LaToza GMU SWE 432 Fall 2019

Request object
• Enables reading properties of HTTP request

• req.body: JSON submitted in request body
(must define body-parser to use)

• req.ip: IP of the address

• req.query: URL query parameters

!27

LaToza GMU SWE 432 Fall 2019

HTTP Responses
• Larger number of response codes (200 OK, 404

NOT FOUND)

• Message body only allowed with certain response
status codes

!28

“OK response”
Response status codes:
1xx Informational
2xx Success
3xx Redirection
4xx Client error
5xx Server error

“HTML returned  
content”
Common MIME types:
application/json
application/pdf
image/png

[HTML data]

LaToza GMU SWE 432 Fall 2019

Response object
• Enables a response to client to be generated

• res.send() - send string content

• res.download() - prompts for a file download

• res.json() - sends a response w/ application/json Content-Type header

• res.redirect() - sends a redirect response

• res.sendStatus() - sends only a status message

• res.sendFile() - sends the file at the specified path

app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.json({	“id”:	req.params.bookID	});	
});

!29

LaToza GMU SWE 432 Fall 2019

Describing Responses
• What happens if something goes wrong while handling HTTP request?

• How does client know what happened and what to try next?

• HTTP offers response status codes describing the nature of the response

• 1xx Informational: Request received, continuing

• 2xx Success: Request received, understood, accepted, processed

• 200: OK

• 3xx Redirection: Client must take additional action to complete request

• 301: Moved Permanently

• 307: Temporary Redirect

!30

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

LaToza GMU SWE 432 Fall 2019

Describing Errors
• 4xx Client Error: client did not make a valid request to server. Examples:

• 400 Bad request (e.g., malformed syntax)

• 403 Forbidden: client lacks necessary permissions

• 404 Not found

• 405 Method Not Allowed: specified HTTP action not allowed for
resource

• 408 Request Timeout: server timed out waiting for a request

• 410 Gone: Resource has been intentionally removed and will not return

• 429 Too Many Requests

!31

LaToza GMU SWE 432 Fall 2019

Describing Errors
• 5xx Server Error: The server failed to fulfill an

apparently valid request.

• 500 Internal Server Error: generic error message

• 501 Not Implemented

• 503 Service Unavailable: server is currently
unavailable

!32

LaToza GMU SWE 432 Fall 2019

Error handling in Express
• Express offers a default error handler

• Can specific error explicitly with status

• res.status(500);

!33

LaToza GMU SWE 432 Fall 2019

Persisting data in memory
• Can declare a global variable in node

• i.e., a variable that is not declared inside a class or
function

• Global variables persist between requests

• Can use them to store state in memory

• Unfortunately, if server crashes or restarts, state will
be lost

• Will look later at other options for persistence

!34

LaToza GMU SWE 432 Fall 2019

Making HTTP Requests
• May want to request data from other servers from backend

• Fetch

• Makes an HTTP request, returns a Promise for a response

• Part of standard library in browser, but need to install library to use in
backend

• Installing:
 

npm install node-fetch --save

• Use: 

const fetch = require('node-fetch');  

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => console.log(body));  
 
var res = await fetch('https://github.com/');

!35

 https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

LaToza GMU SWE 432 Fall 2019

Responding later
• What happens if you'd like to send data back to

client in response, but not until something else
happens (e.g., your request to a different server
finishes)?

• Solution: wait for event, then send the response!
 
 
 
fetch('https://github.com/')
 .then(res => res.text())
 .then(body => res.send(body));

!36

