
Handling HTTP
Requests

SWE 432, Fall 2019
Web Application Development

LaToza GMU SWE 432 Fall 2019

Quiz
Go to:

b.socrative.com, Click student login
Room name: SWE432

Student Name: Your G-number (Including
the G)

Reminder: Survey can only be completed if you are in
class. If you are not in class and do it you will be

referred directly to the honor code board, no
questions asked, no warning.

!2

http://b.socrative.com

LaToza GMU SWE 432 Fall 2019

Review: Express

!3

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Runs your app

Tells NPM that you want to use
express, and to save that in your

project config

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.port	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

Import the module express

Create a new instance of express

Decide what port we want express to listen on

Create a callback for express to call when we have a “get” request to “/“. That
callback has access to the request (req) and response (res).

Tell our new instance of express to listen on port, and print to the console once it
starts successfully

http://localhost:3000

LaToza GMU SWE 432 Fall 2019

Review: Route parameters
• Named URL segments that capture values at specified location in

URL

• Stored into req.params object by name

• Example

• Route path /users/:userId/books/:bookId

• Request URL http://localhost:3000/users/34/books/8989

• Resulting req.params: { "userId": "34", "bookId": "8989" }

app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.send(req.params);	
});

!4

LaToza GMU SWE 432 Fall 2019

Review: Making HTTP Requests
• May want to request data from other servers from backend

• Fetch

• Makes an HTTP request, returns a Promise for a response

• Part of standard library in browser, but need to install library to use in
backend

• Installing:
 

npm install node-fetch --save

• Use: 

const fetch = require('node-fetch');  

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => console.log(body));  
 
var res = await fetch('https://github.com/');

!5

 https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

LaToza GMU SWE 432 Fall 2019

Today

• Design considerations in identifying resources
• REST

• What is it?
• Why use it?

!6

LaToza GMU SWE 432 Fall 2019

Logistics
• HW2 due on 10/7 (2 weeks)

• Questions

!7

LaToza GMU SWE 432 Fall 2019

Demo: Using fetch to post data
var express = require('express');
var app = express();
const fetch = require('node-fetch');

const body = { 'a': 1 };

fetch('http://localhost:3000/book/23', {
 method: 'post',
 body: JSON.stringify(body),
 headers: { 'Content-Type': 'application/json' },
})
 .then(res => res.json())
 .then(json => console.log(json));

!8

LaToza GMU SWE 432 Fall 2019

Demo: Making http request with postman

!9

https://www.getpostman.com/

https://www.getpostman.com/

LaToza GMU SWE 432 Fall 2019

Demo: Building a microservice w/ Express

!10

Microservice API

GET /loadCityList
GET /updateDetails

cityinfo.org

LaToza GMU SWE 432 Fall 2019

API: Application Programming Interface

• Microservice offers public interface for
interacting with backend
• Offers abstraction that hides

implementation details
• Set of endpoints exposed on micro

service

• Users of API might include
• Frontend of your app
• Frontend of other apps using your

backend
• Other servers using your service

!11

Microservice API

GET /loadCityList
GET /updateDetails

cityinfo.org

LaToza GMU SWE 432 Fall 2019

APIs for functions and classes

!12

function sort(elements)
{
 [sort algorithm A]
}

class Graph
{
 [rep of Graph A]
}

Implementation change Consistent interface

V1

V2

function sort(elements)
{
 [sort algorithm B]
}

class Graph
{
 [rep of Graph B]
}

LaToza GMU SWE 432 Fall 2019

Support scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

• Can you just add more servers?
• What should you have done yesterday to

make sure you can scale quickly today?

!13

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

cityinfo.org

LaToza GMU SWE 432 Fall 2019

Support change
• Due to your popularity, your

backend data provider just backed
out of their contract and are now
your competitor.

• The data you have is now in a
different format.

• Also, you've decided to migrate
your backend from PHP to node.js
to enable better scaling.

• How do you update your backend
without breaking all of your clients?

!14

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

cityinfo.org

LaToza GMU SWE 432 Fall 2019

Support reuse

• You have your own frontend for
cityinfo.org. But everyone now wants
to build their own sites on top of your
city analytics.

• Can they do that?

!15

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

cityinfo.org

http://cityinfo.org

LaToza GMU SWE 432 Fall 2019

Design Considerations for Microservice
APIs

• API: What requests should be supported?
• Identifiers: How are requests described?
• Errors: What happens when a request fails?
• Heterogeneity: What happens when different clients

make different requests?
• Caching: How can server requests be reduced by

caching responses?
• Versioning: What happens when the supported

requests change?

!16

LaToza GMU SWE 432 Fall 2019

REST: REpresentational State Transfer

• Defined by Roy Fielding in his 2000 Ph.D. dissertation
• Used by Fielding to design HTTP 1.1 that generalizes

URLs to URIs
• http://www.ics.uci.edu/~fielding/pubs/dissertation/

fielding_dissertation.pdf
• “Throughout the HTTP standardization process, I was

called on to defend the design choices of the Web. That is
an extremely difficult thing to do… I had comments from
well over 500 developers, many of whom were
distinguished engineers with decades of experience. That
process honed my model down to a core set of principles,
properties, and constraints that are now called REST.”

• Interfaces that follow REST principles are called RESTful

!17

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

LaToza GMU SWE 432 Fall 2019

Properties of REST
• Performance
• Scalability
• Simplicity of a Uniform Interface
• Modifiability of components (even at runtime)
• Visibility of communication between components

by service agents
• Portability of components by moving program code

with data
• Reliability

!18

LaToza GMU SWE 432 Fall 2019

Principles of REST
• Client server: separation of concerns (reuse)
• Stateless: each client request contains all information

necessary to service request (scaling)
• Cacheable: clients and intermediaries may cache

responses. (scaling)
• Layered system: client cannot determine if it is

connected to end server or intermediary along the way.
(scaling)

• Uniform interface for resources: a single uniform
interface (URIs) simplifies and decouples architecture
(change & reuse)

!19

LaToza GMU SWE 432 Fall 2019

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred
on the web

!20

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

LaToza GMU SWE 432 Fall 2019

Uniform Interface for Resources
• Originally files on a web server

• URL refers to directory path and file of a resource
• But… URIs might be used as an identity for any entity

• A person, location, place, item, tweet, email, detail
view, like

• Does not matter if resource is a file, an entry in a
database, retrieved from another server, or
computed by the server on demand

• Resources offer an interface to the server
describing the resources with which clients can
interact

!21

LaToza GMU SWE 432 Fall 2019

URI: Universal Resource Identifier

• Uniquely describes a resource
• https://mail.google.com/mail/u/0/#inbox/

157d5fb795159ac0
• https://www.amazon.com/gp/yourstore/home/

ref=nav_cs_ys
• http://gotocon.com/dl/goto-amsterdam-2014/slides/

StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.
pdf

• Which is a file, external web service request, or stored in a
database?
• It does not matter

• As client, only matters what actions we can do with resource,
not how resource is represented on server

!22

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

LaToza GMU SWE 432 Fall 2019

Intermediaries

!23

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

Web “Front End” “Origin” server

HTTP Response
HTTP/1.1 200 OK
Server: Apache/2.2.15 (CentOS)
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max-age=0, no-cache
Pragma: no-cache
Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589
Connection: keep-alive

{
 "response": {
 "version":"0.1",
 "termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
 "features": {

LaToza GMU SWE 432 Fall 2019

Intermediaries

!24

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI
• But it never knows (or cares) whether it interacts with origin

server or an unknown intermediary server
• Might be randomly load balanced to one of many servers
• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)
• Might be server checking security and rejecting requests

LaToza GMU SWE 432 Fall 2019

Challenges with intermediaries
• But can all requests really be intercepted in the

same way?
• Some requests might produce a change to a

resource
• Can’t just cache a response… would not get

updated!
• Some requests might create a change every

time they execute
• Must be careful retrying failed requests or

could create extra copies of resources

!25

LaToza GMU SWE 432 Fall 2019

HTTP Actions
• How do intermediaries know what they can and

cannot do with a request?
• Solution: HTTP Actions

• Describes what will be done with resource
• GET: retrieve the current state of the resource
• PUT: modify the state of a resource
• DELETE: clear a resource
• POST: initialize the state of a new resource

!26

LaToza GMU SWE 432 Fall 2019

HTTP Actions
• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache
response

• PUT, DELETE: idempotent method that can be repeated
with same result
• Requests that fail can be retried indefinitely till they

succeed
• POST: creates new element

• Retrying a failed request might create duplicate copies
of new resource

!27

