SWE 621
FALL 2018

DESIGN FOR REUSE

© THOMAS LATOZA

LOGISTICS

» HWS due on 11/29
» Project presentation on 12/6

» Will focus on a single design decision common to your reference
system and two additional systems

» For each of the three systems, describe the alternative design

choices each of these systems made. What are the consequences of
these design choices?

» Presentation should be 5 minutes. To ensure we have enough time
for all presentations, we will stop you and you will lose points if go
over 6 mins. Please practice to ensure your talk is the correct length.

LaToza GMU SWE 621 Fall 2018

EXAMPLE

» Your goal: build a todo application in React
» How?

» Need to learn how to reuse React framework

LaToza GMU SWE 621 Fall 2018

WHAT IS REUSE?

» Making use of previously written code rather than writing new code

» Often, reuse takes form of reusing a library or a framework

» Once made choice to reuse a library or framework, need to
understand how to achieve specific behavior with library or
framework

» Often finding code snippets that achieve desired behavior

LaToza GMU SWE 621 Fall 2018

APPLICATION PROGRAMMING INTERFACE (API)

» Boundary between code to be reused (library
or framework) and client which reuses code et o B

t painle: e Build encapsulated components that out
rrrrrrrrrrr s. Design views f manage tl he log SO Y/
our appl , and m to tul eact
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee without rewriting existin e.
I ° ° just the right components when your Since component logic is written in
} We Ve | O O ke d p rev I O u S | y at a b St ra Ct I O n S aaaaaaaaaaa JavaScript instead of templates, you React can also render on the server
can easily pass rich data through your using Node and power mobile apps
Declarative views make your code app and keep state out of the DOM. using React Native.

more predictable and easier to debug.

° ° °
» Design goal: chose operatlonsw ICN MakKe
4 React c mplement a render() method that takes input data and returns what to
e re u S e S ‘ e n a r I O S S O l I display. This example uses an XML-like syntax called JSX. Input data that is passed into the
component can be accessed by render() via this.props.
is optional and not ired to use i

» Choice of what operations to support one
of the most important choices in API

design

» Today we'll look more broadly at additional
considerations in designing code for reuse

LaToza GMU SWE 621 Fall 2018 5

API QUALITY ATTRIBUTES

» Largely similar to normal system design, but for
client code

» Usability

» Learnability

» Error prevention

» Consistency

» Matching user mental models
» Power

» Extensibility: ability for users to create new
elements

» Evolvability: ability for designers to change API
» Performance: speed, memory consumption

» Security

LaToza GMU SWE 621 Fall 2018

Key: Stakeholders
API Designers API Users Product Consumers
Usability
Learnability Productivity Error-Prevention

2 2 2

| I
Matching

Simplicity Consistency R
Power
Expressiveness Extensibility Evolvability Performance,

Robustness

g 8 2% X

SOME EXAMPLES OF API DESIGN DECISIONS

Structural Design Decisions
(Separating Functionality into Classes and Interfaces)

Design Patterns Package Design »Composition vs inheritance +Class vs struct

-N.\mmg s Hierarchy

oFactory Pattern « Maximizing information hiding +Class vs interface

+Matching organzation roles sinterfaces vs abstract classes

*Size
« Asynchronous Pattern

Class Design Decisions

(Separating a Class’s Functionality into Methods and Fields)

Clats naush What Methods and Flelds to Provide

*Lisposs pattern *Returning arrays Individual Method / Field Design

«Singleton pattern *Finalzers Exceptions Parameter Design

Naming

oNot-instantiatable pattern : eStandard types *Coastructors
+»Collections Types Language Modifiers «Types « Naming
.Optoornal feature paticerm OArnys sWhen to use e Startic OSyl\ChI onized Order ng eEvents

«Static +Message eSealed oProtected «Parameter checking

«Caught vs uncaughe oVirwua
*Nested ' ual

oFinal

eFloat vs double
s Performance s Abstract

LaToza GMU SWE 621 Fall 2018

MORE API DESIGN DECISIONS

» Documentation
» What to cover

» How to communicate: descriptions of methods?
examples?

» Audience: experts? novices? users of competing APIs?

LaToza GMU SWE 621 Fall 2018

HOW DEVELOPERS REUSE CODE

» In order to understand how to successfully design for
developers reusing code, helpful to understand how
developers reuse code

» Software engineering researchers run user studies to
identify general strategies and challenges developers
experience

» Companies with large APl ecosystems (e.g., Google,
Facebook, Microsoft) run user studies to evaluate and
improve specific APl designs

LaToza GMU SWE 621 Fall 2018

CHALLENGES WITH REUSE

LaToza

Design barriers—inherent cognitive difficulties of the programming problem, separate from
notation used

» | don't know what | want the computer to do
Selection barriers—finding programming interfaces available to achieve a particular behavior
» | don’t know what to use
Coordination barriers—constraints governing how languages & libraries can be combined
» | don’t know how to make them work together
Use barriers—determining how APl how to use API
» I don’t know how to use it

Understanding barriers—environment properties such as compile & runtime errors that prevent
seeing behavior

» It didn't do what | expected
Information barriers—environment properties that prevent understanding runtime execution state

» |think I know why didn’t behave as expected, but don’t know how to check

GMU SWE 621 Fall 2018 10

CHALLENGES WITH REUSE

» Mapping an abstract conceptual solution into the appropriate elements
» “How do | create a rectangle? Why is there no Rectangle tool?”

» Understanding control & data flow, hidden dependencies due to run-time binding or
inheritance, between classes in the API

» “I'm over-riding SelectionTool, and in particular mouseDown() so that when the figure
is clicked the box is drawn. This bit works, however when trying to drag the figure, if |
do something similar the rectangle flickers like mad.”

» Understanding how functionality works
» “How does ... work?”, “What does ... do?” or, “Where is ... defined/created/called?”
» Making changes consistent w/ architectural constrains of API

» Violating constraints of MVC architecture by passing references in prohibited ways

Douglas Kirk, Marc Roper, and Murray Wood. 2007. Identifying and addressing problems in object-oriented framework
reuse. Empirical Softw. Eng. 12, 3 (June 2007), 243-274.

LaToza GMU SWE 621 Fall 2018

11

VOCABULARY PROBLEM

» Developers are familiar with concepts using one set of
terminology.

» API, tutorials, or other resources use different terminology

» How do developers find the right concepts with alternative
terms?

LaToza GMU SWE 621 Fall 2018

12

CHALLENGES MAY VARY BY CONTEXT

» Size of desired snippet

» Reusing a line of code? A whole algorithm?

» Alternatives

» How many alternatives are there? How important is it to find the best
alternative?

» Integration

» What libraries or frameworks does a snippet require? How can they be
integrated?

LaToza GMU SWE 621 Fall 2018

13

SOME EXAMPLES OF REUSE STRATEGIES

» You'd like to reuse method x in framework f. How do you figure out
how to do this?

» Example reuse strategies
» Read the documentation
» Read tutorials
» Find StackOverflow snippets
» Find similar code in your own codebase that also reuses x

» Try out APl functions, see what they do

LaToza GMU SWE 621 Fall 2018

14

OPPORTUNISTIC VS. SYSTEMATIC DEVELOPERS

» Developers vary in which sorts of strategies they prefer

» Key choice: how completely do you need to understand APl before deciding
your understanding is "good enough"

» Systematic: as much as possible
» Opportunistic: as little as possible
» This leads to different developers preferring different types of strategies
» Opportunistic developers more likely to start with example code
» Systematic developers more likely to read the documentation first

» ---> APl documentation should support both types of strategies

LaToza GMU SWE 621 Fall 2018 15

STRATEGIES VARY WITH DEGREE OF PRIOR KNOWLEDGE OF API

WEB SESSION INTENTION:

LEARNING

CLARIFICATION

REMINDER

Reason for using Web

Just-in-time learning of

Connect high-level knowledge

Substitute for memorization (e.g., language

unfamiliar concepts to implementation details syntax or function usage lookup)

Web session length Tens of minutes ~ 1 minute < 1 minute
Starts with web search? Almost always Often Sometimes
Search terms Natural language related Mix of natural language and code, Mostly code (e.g., function

to high-level task cross-language analogies names, language keywords)
Example search “ajax tutorial” “javascript timer” “mysql_fetch_array”
Num. result clicks Usually several Fewer Usually zero or one
Num. query refinements Usually several Fewer Usually zero
Types of webpages visited Tutorials, API documentation, API documentation,

how-to articles blog posts, articles result snippets on search page

Amount of code copied Dozens of lines Several lines Varies
from Web (e.g., from tutorial snippets)
Immediately test copied code? Yes Not usually, often trust snippets Varies

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of

opportunistic programming: interleaving web foraging, learning, and writing code. Conference on Human Factors

in Computing Systems (CHI ‘09), 1589-1598.

LaToza

GMU SWE 621 Fall 2018

16

TYPES OF REUSE

» Learning—relies on selecting highest quality tutorials tutorials
» e.g., “update web page without reloading php”
» Clarification—learning syntax based on exiting understanding of the domain concepts
» e.g., reminding use of syntax of HTML forms
» Often search by analogy to domain concepts in other languages / frameworks
» e.g., Perl has a function to format dates as strings, what's the one for PHP?
» Reminder—using web as external memory aid
» e.g., forgot a word in a long function name

» e.d., 6 lines of code necessary to connect and disconnect from MySQL database
copied hundreds of times by individual

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code. Conference on Human Factors
in Computing Systems (CHI ‘09), 1589-1598.

LaToza GMU SWE 621 Fall 2018

17

EFFECTS OF API DESIGN CHOICES: METHOD PLACEMENT

» Where to put functions when doing
object-oriented design of APlIs

» mail_Server.send(mail_Message)

» VS.

» mail_Message.send(mail_Server)

Time to Find a Method
» When desired method is on the class 20
that they start with, users were
between 2.4 and 11.2 times faster

15

O Methods on
Expected Objects

® Methods on
Helper Objects

10

Time (min)

5
0

Email Task

Web Task Thingies Task

[Stylos FSE, 2008]

GMU SWE 621 Fall 2018

LaToza

18

EFFECTS OF API DESIGN CHOICES: REQUIRED PARAMETERS IN CONSTRUCTORS

» Compared default constructor (create-set-call) » vs. required constructor

» var foo = new FooClass();
» foo.Bar = barValue;
» foo.Use();
» foo.Use();
» Results

» All developers assumed there would be a
default constructor

What Object Do I Use?

Instantiate the object l

Satisfy Required Constructor

l

» Required constructors imposed premature
commitment: had to figure out how to
construct object before could decide if it
was the right object for task

Methods Do I Need?
Call the method / Set the propert}i
» Did not insure valid objects - passed in | orr———

What's the Next Step?
null

Is This the Right Object?

What Properties or

[Stylos & Clarke, ICSE’07]

LaToza GMU SWE 621 Fall 2018

» varfoo = new FooClass(barValue);

19

EFFECTS OF API DESIGN CHOICES: FACTORIES

III

» Compared “normal” creation: Widget w = new Widget();
» vs. creation using factory pattern
» AbstractFactory f = AbstractFactory.getDefault();
» Widget w = f.createWidget();
» Factory pattern frequently in Java (>61) and .Net (>13) and SAP

» Results

» Time to develop using factories took 2.1 to 5.3 times longer compared to
regular constructors (20:05 vs 9:31, 7:10 vs 1:20)

» All developers had difficulties using factories in APls
» --> Very important if using factory to document how to create objects

» Particularly in class developers might start with

[Ellis 2007]

LaToza GMU SWE 621 Fall 2018

20

LaToza

RECOMMENDATIONS FOR AP DESIGN AND DOCUMENTATION

» Given these (and other) findings, what should you do to
design for reuse?

» Some recommendations
» Create effective documentation

» Make API design choices which optimize for usability
and power quality attributes

GMU SWE 621 Fall 2018

21

CREATE EFFECTIVE DOCUMENTATION

LaToza

Include short code snippets that document APl usage patterns
of how multiple methods work together and capture best way
to use API

Focus on documenting higher level usage, not boilerplate
documentation that adds little beyond method signatures

Match scenarios capturing common use cases to how to do that
in API

Include discussion of performance consequences of specific
APl usage

GMU SWE 621 Fall 2018

22

LaToza

MAKE EFFECTIVE DESIGN CHOICES FOR USABILITY

» Design problem similar to designing for software for users
more generally

» Can apply Nielsen's Heuristic evaluation heuristics to API
design (see SWE 632 for more!)

GMU SWE 621 Fall 2018

23

VISIBILITY OF SYSTEM STATUS

» Should be easy for APl user to check state of framework
» e.g., whether file is open or closed

» Using wrong operation for the current state should
generate appropriate feedback

» e.g., writing to closed file should generate meaningful
error message

LaToza GMU SWE 621 Fall 2018

24

MATCH BETWEEN SYSTEM AND REAL WORLD

» Names given to methods and organization of methods
into classes should match APl users' expectations

» e.g., user wanting to write to File most likely to look for
File class first, not FileOutputStream

» Users often interact with class first by creating an instance

LaToza GMU SWE 621 Fall 2018

25

USER CONTROL AND FREEDOM

» APl users should be able to abort or reset operations and
return the APl back to previous state

LaToza GMU SWE 621 Fall 2018

26

CONSISTENCY AND STANDARDS

» All design choices should be consistent across API

» e.d., naming of classes and methods, naming of arguments,
order of arguments, placement of methods into classes

» Example violation: order of arguments in opposite order
» void writeStartElement(String namespaceURI, String localName)

» void writeStartElement(String prefix, String localName, String
namespaceURI)

LaToza GMU SWE 621 Fall 2018 27

ERROR PREVENTION

» APl should guide user into doing the right thing
» Have defaults that match users' expectations

» Avoid using String parameters, particularly long sequences
of String parameters

» Compiler cannot check if arguments in correct order

» e.g., void setShippingAddress (String firstName, String
lastName, String street, String city, String state, String
country, String zipCode, String email, String phone)

LaToza GMU SWE 621 Fall 2018

28

RECOGNITION RATHER THAN RECALL

» Developers often try to find the right method through
autocomplete

» Make names clear and understandable, so users can
recognize what they want

LaToza GMU SWE 621 Fall 2018

29

LaToza

FLEXIBILITY AND EFFICIENCY OF USE

» APl users should be able to accomplish their tasks
efficiently

GMU SWE 621 Fall 2018

30

LaToza

HELP USERS RECOGNIZE, DIAGNOSE, RECOVER FROM ERRORS

» When a developer uses APl incorrectly, APl should offer
error messages that explain the problem and offer
suggestions on how to resolve issue

GMU SWE 621 Fall 2018

31

SUMMARY

LaToza

Developers spend much of their time interacting with libraries and
frameworks through APlIs

Developers differ in use of opportunistic and systematic strategies for
reuse, requiring different considerations in APl and documentation
design

Documentation that focuses on scenarios and best practice usages,
rather than boilerplate, can make big impact in usability

Many design choices such as naming, organization of functionality into
classes, and error messages can have a profound choice on usability

Can apply usability heuristics to APl design

GMU SWE 621 Fall 2018

32

IN CLASS ACTIVITY

aaaaaa

22222222222222222

33

APPLY API DESIGN HEURISTICS

» Work individually, pick a framework (e.g., .NET framework, Java
standard library, React, ...)

» Critique the framework using API design heuristics (Slides 24-31)

» Identify one example for each heuristic (8 total) where the
framework either follows or violates the heuristic

» For exam
give an e
describe

ole of the 8 examples, list the name of the heuristic,
ement within the framework (e.g., method, class), and

how element either follows or violates the heuristic

» Hand in through Blackboard

» Your name, choice of framework, description of 8 examples

LaToza

GMU SWE 621 Fall 2018 34

