
DESIGN FOR REUSE
SWE 621
FALL 2018

© THOMAS LATOZA

LaToza GMU SWE 621 Fall 2018

LOGISTICS

▸ HW5 due on 11/29

▸ Project presentation on 12/6

▸ Will focus on a single design decision common to your reference
system and two additional systems

▸ For each of the three systems, describe the alternative design
choices each of these systems made. What are the consequences of
these design choices?

▸ Presentation should be 5 minutes. To ensure we have enough time
for all presentations, we will stop you and you will lose points if go
over 6 mins. Please practice to ensure your talk is the correct length.

�2

LaToza GMU SWE 621 Fall 2018

EXAMPLE

▸ Your goal: build a todo application in React

▸ How?

▸ Need to learn how to reuse React framework

�3

LaToza GMU SWE 621 Fall 2018

WHAT IS REUSE?

▸ Making use of previously written code rather than writing new code

▸ Often, reuse takes form of reusing a library or a framework

▸ Once made choice to reuse a library or framework, need to
understand how to achieve specific behavior with library or
framework

▸ Often finding code snippets that achieve desired behavior

�4

LaToza GMU SWE 621 Fall 2018

APPLICATION PROGRAMMING INTERFACE (API)

▸ Boundary between code to be reused (library
or framework) and client which reuses code

▸ We've looked previously at abstractions

▸ Design goal: chose operations which make
key reuse scenarios short

▸ Choice of what operations to support one
of the most important choices in API
design

▸ Today we'll look more broadly at additional
considerations in designing code for reuse

�5

LaToza GMU SWE 621 Fall 2018

API QUALITY ATTRIBUTES
▸ Largely similar to normal system design, but for

client code

▸ Usability

▸ Learnability

▸ Error prevention

▸ Consistency

▸ Matching user mental models

▸ Power

▸ Extensibility: ability for users to create new
elements

▸ Evolvability: ability for designers to change API

▸ Performance: speed, memory consumption

▸ Security

�6

LaToza GMU SWE 621 Fall 2018

SOME EXAMPLES OF API DESIGN DECISIONS

�7

LaToza GMU SWE 621 Fall 2018

MORE API DESIGN DECISIONS

▸ Documentation

▸ What to cover

▸ How to communicate: descriptions of methods?
examples?

▸ Audience: experts? novices? users of competing APIs?

�8

LaToza GMU SWE 621 Fall 2018

HOW DEVELOPERS REUSE CODE

▸ In order to understand how to successfully design for
developers reusing code, helpful to understand how
developers reuse code

▸ Software engineering researchers run user studies to
identify general strategies and challenges developers
experience

▸ Companies with large API ecosystems (e.g., Google,
Facebook, Microsoft) run user studies to evaluate and
improve specific API designs

�9

LaToza GMU SWE 621 Fall 2018

CHALLENGES WITH REUSE
▸ Design barriers—inherent cognitive difficulties of the programming problem, separate from

notation used

▸ I don’t know what I want the computer to do

▸ Selection barriers—finding programming interfaces available to achieve a particular behavior

▸ I don’t know what to use

▸ Coordination barriers—constraints governing how languages & libraries can be combined

▸ I don’t know how to make them work together

▸ Use barriers—determining how API how to use API

▸ I don’t know how to use it

▸ Understanding barriers—environment properties such as compile & runtime errors that prevent
seeing behavior

▸ It didn’t do what I expected

▸ Information barriers—environment properties that prevent understanding runtime execution state

▸ I think I know why didn’t behave as expected, but don’t know how to check

�10

LaToza GMU SWE 621 Fall 2018

CHALLENGES WITH REUSE
▸ Mapping an abstract conceptual solution into the appropriate elements

▸ “How do I create a rectangle? Why is there no Rectangle tool?”

▸ Understanding control & data flow, hidden dependencies due to run-time binding or
inheritance, between classes in the API

▸ “I’m over-riding SelectionTool, and in particular mouseDown() so that when the figure
is clicked the box is drawn. This bit works, however when trying to drag the figure, if I
do something similar the rectangle flickers like mad.”

▸ Understanding how functionality works

▸ “How does ... work?”, “What does ... do?” or, “Where is ... defined/created/called?”

▸ Making changes consistent w/ architectural constrains of API

▸ Violating constraints of MVC architecture by passing references in prohibited ways

�11

Douglas Kirk, Marc Roper, and Murray Wood. 2007. Identifying and addressing problems in object-oriented framework
reuse. Empirical Softw. Eng. 12, 3 (June 2007), 243-274.

LaToza GMU SWE 621 Fall 2018

VOCABULARY PROBLEM

▸ Developers are familiar with concepts using one set of
terminology.

▸ API, tutorials, or other resources use different terminology

▸ How do developers find the right concepts with alternative
terms?

�12

LaToza GMU SWE 621 Fall 2018

CHALLENGES MAY VARY BY CONTEXT

▸ Size of desired snippet

▸ Reusing a line of code? A whole algorithm?

▸ Alternatives

▸ How many alternatives are there? How important is it to find the best
alternative?

▸ Integration

▸ What libraries or frameworks does a snippet require? How can they be
integrated?

�13

LaToza GMU SWE 621 Fall 2018

SOME EXAMPLES OF REUSE STRATEGIES

▸ You'd like to reuse method x in framework f. How do you figure out
how to do this?

▸ Example reuse strategies

▸ Read the documentation

▸ Read tutorials

▸ Find StackOverflow snippets

▸ Find similar code in your own codebase that also reuses x

▸ Try out API functions, see what they do

�14

LaToza GMU SWE 621 Fall 2018

OPPORTUNISTIC VS. SYSTEMATIC DEVELOPERS

▸ Developers vary in which sorts of strategies they prefer

▸ Key choice: how completely do you need to understand API before deciding
your understanding is "good enough"

▸ Systematic: as much as possible

▸ Opportunistic: as little as possible

▸ This leads to different developers preferring different types of strategies

▸ Opportunistic developers more likely to start with example code

▸ Systematic developers more likely to read the documentation first

▸ ---> API documentation should support both types of strategies

�15

LaToza GMU SWE 621 Fall 2018

STRATEGIES VARY WITH DEGREE OF PRIOR KNOWLEDGE OF API

�16

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code. Conference on Human Factors
in Computing Systems (CHI ’09), 1589-1598.

LaToza GMU SWE 621 Fall 2018

TYPES OF REUSE

▸ Learning—relies on selecting highest quality tutorials tutorials

▸ e.g., “update web page without reloading php”

▸ Clarification—learning syntax based on exiting understanding of the domain concepts

▸ e.g., reminding use of syntax of HTML forms

▸ Often search by analogy to domain concepts in other languages / frameworks

▸ e.g., Perl has a function to format dates as strings, what’s the one for PHP?

▸ Reminder—using web as external memory aid

▸ e.g., forgot a word in a long function name

▸ e.g., 6 lines of code necessary to connect and disconnect from MySQL database
copied hundreds of times by individual

�17

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code. Conference on Human Factors
in Computing Systems (CHI ’09), 1589-1598.

LaToza GMU SWE 621 Fall 2018

EFFECTS OF API DESIGN CHOICES: METHOD PLACEMENT
▸ Where to put functions when doing

object-oriented design of APIs

▸ mail_Server.send(mail_Message)

▸ vs.

▸ mail_Message.send(mail_Server)

▸ When desired method is on the class
that they start with, users were
between 2.4 and 11.2 times faster

�18

[Stylos FSE, 2008]

Time to Find a Method

0

5

10

15

20

Email Task Web Task Thingies Task

Ti
m

e
(m

in
)

Methods on
Expected Objects
Methods on
Helper Objects

LaToza GMU SWE 621 Fall 2018

EFFECTS OF API DESIGN CHOICES: REQUIRED PARAMETERS IN CONSTRUCTORS

▸ Compared default constructor (create-set-call)

▸ var foo = new FooClass();

▸ foo.Bar = barValue;

▸ foo.Use();

▸ Results

▸ All developers assumed there would be a
default constructor

▸ Required constructors imposed premature
commitment: had to figure out how to
construct object before could decide if it
was the right object for task

▸ Did not insure valid objects – passed in
null

�19

[Stylos & Clarke, ICSE’07]

▸ vs. required constructor

▸ var foo = new FooClass(barValue);

▸ foo.Use();

LaToza GMU SWE 621 Fall 2018

EFFECTS OF API DESIGN CHOICES: FACTORIES
▸ Compared “normal” creation: Widget w = new Widget();

▸ vs. creation using factory pattern

▸ AbstractFactory f = AbstractFactory.getDefault();

▸ Widget w = f.createWidget();

▸ Factory pattern frequently in Java (>61) and .Net (>13) and SAP

▸ Results

▸ Time to develop using factories took 2.1 to 5.3 times longer compared to
regular constructors (20:05 vs 9:31, 7:10 vs 1:20)

▸ All developers had difficulties using factories in APIs

▸ --> Very important if using factory to document how to create objects

▸ Particularly in class developers might start with

�20

[Ellis 2007]

LaToza GMU SWE 621 Fall 2018

RECOMMENDATIONS FOR API DESIGN AND DOCUMENTATION

▸ Given these (and other) findings, what should you do to
design for reuse?

▸ Some recommendations

▸ Create effective documentation

▸ Make API design choices which optimize for usability
and power quality attributes

�21

LaToza GMU SWE 621 Fall 2018

CREATE EFFECTIVE DOCUMENTATION

▸ Include short code snippets that document API usage patterns
of how multiple methods work together and capture best way
to use API

▸ Focus on documenting higher level usage, not boilerplate
documentation that adds little beyond method signatures

▸ Match scenarios capturing common use cases to how to do that
in API

▸ Include discussion of performance consequences of specific
API usage

�22

LaToza GMU SWE 621 Fall 2018

MAKE EFFECTIVE DESIGN CHOICES FOR USABILITY

▸ Design problem similar to designing for software for users
more generally

▸ Can apply Nielsen's Heuristic evaluation heuristics to API
design (see SWE 632 for more!)

�23

LaToza GMU SWE 621 Fall 2018

VISIBILITY OF SYSTEM STATUS

▸ Should be easy for API user to check state of framework

▸ e.g., whether file is open or closed

▸ Using wrong operation for the current state should
generate appropriate feedback

▸ e.g., writing to closed file should generate meaningful
error message

�24

LaToza GMU SWE 621 Fall 2018

MATCH BETWEEN SYSTEM AND REAL WORLD

▸ Names given to methods and organization of methods
into classes should match API users' expectations

▸ e.g., user wanting to write to File most likely to look for
File class first, not FileOutputStream

▸ Users often interact with class first by creating an instance

�25

LaToza GMU SWE 621 Fall 2018

USER CONTROL AND FREEDOM

▸ API users should be able to abort or reset operations and
return the API back to previous state

�26

LaToza GMU SWE 621 Fall 2018

CONSISTENCY AND STANDARDS

▸ All design choices should be consistent across API

▸ e.g., naming of classes and methods, naming of arguments,
order of arguments, placement of methods into classes

▸ Example violation: order of arguments in opposite order

▸ void writeStartElement(String namespaceURI, String localName)

▸ void writeStartElement(String prefix, String localName, String
namespaceURI)

�27

LaToza GMU SWE 621 Fall 2018

ERROR PREVENTION

▸ API should guide user into doing the right thing

▸ Have defaults that match users' expectations

▸ Avoid using String parameters, particularly long sequences
of String parameters

▸ Compiler cannot check if arguments in correct order

▸ e.g., void setShippingAddress (String firstName, String
lastName, String street, String city, String state, String
country, String zipCode, String email, String phone)

�28

LaToza GMU SWE 621 Fall 2018

RECOGNITION RATHER THAN RECALL

▸ Developers often try to find the right method through
autocomplete

▸ Make names clear and understandable, so users can
recognize what they want

�29

LaToza GMU SWE 621 Fall 2018

FLEXIBILITY AND EFFICIENCY OF USE

▸ API users should be able to accomplish their tasks
efficiently

�30

LaToza GMU SWE 621 Fall 2018

HELP USERS RECOGNIZE, DIAGNOSE, RECOVER FROM ERRORS

▸ When a developer uses API incorrectly, API should offer
error messages that explain the problem and offer
suggestions on how to resolve issue

�31

LaToza GMU SWE 621 Fall 2018

SUMMARY

▸ Developers spend much of their time interacting with libraries and
frameworks through APIs

▸ Developers differ in use of opportunistic and systematic strategies for
reuse, requiring different considerations in API and documentation
design

▸ Documentation that focuses on scenarios and best practice usages,
rather than boilerplate, can make big impact in usability

▸ Many design choices such as naming, organization of functionality into
classes, and error messages can have a profound choice on usability

▸ Can apply usability heuristics to API design

�32

LaToza GMU SWE 621 Fall 2018

IN CLASS ACTIVITY

�33

LaToza GMU SWE 621 Fall 2018

APPLY API DESIGN HEURISTICS

▸ Work individually, pick a framework (e.g., .NET framework, Java
standard library, React, ...)

▸ Critique the framework using API design heuristics (Slides 24-31)

▸ Identify one example for each heuristic (8 total) where the
framework either follows or violates the heuristic

▸ For example of the 8 examples, list the name of the heuristic,
give an element within the framework (e.g., method, class), and
describe how element either follows or violates the heuristic

▸ Hand in through Blackboard

▸ Your name, choice of framework, description of 8 examples

�34

