IIIIIIIIII

SWE 621
FALL 2018

ARCHITECTURAL STYLES

IN CLASS EXERCISE

» Why might one build a software system organized into
layers?

LaToza GMU SWE 621 Fall 2018

LOGISTICS

» HW2 due today
» HW3 due in 3 weeks (10/25)
» Midterm in class next week

» ~80% based on lecture (including ideas covered in
lecture and textbook)

» ~20% based on readings

» Mix of multiple choice and free response

LaToza GMU SWE 621 Fall 2018

MIDTERM REVIEW

» Examples of questions
» Questions on concepts, definitions, and process advice

» e.d., which one of these is not a characteristic of a good
abstraction?

» Questions applying concepts to real world examples

» e.g., critique this code snippet as an abstraction, based on this
code scenario.

» e.g., for these requirements, design a solution and describe
through a component and connector model

LaToza GMU SWE 621 Fall 2018

SOFTWARE ARCHITECTURE

LaToza

Software architecture = { Elements, Constraints,
Consequences }

Elements: the set of structures needed to reason
about the system

Constraints: the ways in which functionality is
assigned to elements and elements can be composed

Consequences: the resulting properties of systems
which conform to the constraints

GMU SWE 621 Fall 2018

FREQUENT ARCHITECTURAL REQUIREMENTS

» Performance: how fast is the system
» Reliability: how likely is the system to be available

» Scalability: how well does adding more computing resources translate to better
performance

» Maintainability: how hard is system to change

» Extensibility: in what ways can new components be added without changing
existing components

» Configurability: how easily can the system behavior be changed by end-users
» Portability: in what environments can the system be used

» Testability: how easy is it to write tests of the system's behavior

LaToza GMU SWE 621 Fall 2018

EXAMPLE OF ALTERNATIVE ARCHITECTURES: THE WEB

LaToza

Evolving competing architectures for organizing content
and computation between browser (client) and web server

1990s: static web pages

1990s: server-side scripting (CGlI, PHP, ASP, ColdFusion,
JSP, ...)

2000s: single page apps (JQuery)

2010s: front-end frameworks (Angular, Aurelia, React, ...),
microservices

GMU SWE 621 Fall 2018

STATIC WEB PAGES

» URL corresponds to directory location on server

» e.g. http://domainName.com/img/image5.jpg maps to img/
imageb5.jpg file on server

» Server responds to HTTP request by returning requested files
» Advantages

» Simple, easily cacheable, easily searchable
» Disadvantages

» No interactivity

LaToza GMU SWE 621 Fall 2018

DYNAMIC WEB PAGES

O
ﬁ—} & http://cs.gmu.edu/syllabus/syllabi-fall16/SWE432BellJ.html &

HTTP Request

GET /syllabus/syllabi-falll6/SWE432BellJ.html HTTP/1.1
Host: cs.gmu.edu
Accept: text/html

HTTP Response
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

‘A(”””’<htm1><head>...

SWE 432 Section 002 Fall 2016 Syllabus and Schedule

“Design and Implementation of Software for the Web*

Class Hours: Tuesdays and Thursdays, 12:00pm-1:15pm Robinson Hall B228
Grades, Readings available as pdfs: Blackboard

Resources (Announcements, Schedule, Assignments, Discussion):

Piazza - https://piazza.com/gmu/fall2016/swe432001/home

Instructor: Prof. Jonathan Bell

bellj@gmu.edu

http://jonbell.net

Twitter: @_jon_bell_

Office: 4422 Engineering Building; (703) 993-6089

Office Hours: Anytime electronically, Tues 10:30am-12:00pm, or by appointment

LaToza GMU SWE 621 Fall 2018 9

O
ﬁ—’ & http://cs.gmu.edu/syllabus/syllabi-fall16/SWE432BellJ.html ¢

HTTP Request
GET /syllabus/syllabi-falll6/SWE432Bell].html HTTP/1.1

Host: cs.gmu.edu
Accept: text/html +

web server

== —m 1 RUns a program

Give me /syllabus/syllabi-falll6/SWE432Bell].html

>

Web Server < Does whatever it wantsieVALEISIEE
Application el (Generator

Here’s some text to send back Application

HTTP Response
HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

<html><head>...

12:;3:57:::::ﬁ::¢:::i‘:;i:x::::f::s::f‘*"'el There’s a standard mechanism to talk to these

Class Hours: Tuesdays and Thursdays, 12:00pm-1:15pm Robinson Hall B228

T auxiliary applications, called CGl (Common
T Gatew ay Inte rface)

LaToza GMU SWE 621 Fall 2018 10

SERVER SIDE SCRIPTING

> (<!DOCTYPE html> p <html> . _
<html> <head><title>First JSP</title></head>
<head> (bOdY)
<title>PHP Test</title> =
</head> double num = Math.random();
<body> , if (num > ©8.95) {
' J >
. /bo;;‘;hp echo ‘<p>Hello World</p>'; 7> . <h2>You'1l have a luck day!</h2><p>(<%= num %>)</p>
<
</html> W alse 1
%>
<h2>Well, life goes on ... </h2><p>(<%= num %>)</p>
<%
}
%>

» Early approaches emphasized embedding server code
inside html pages

» Examples: CGI

LaToza GMU SWE 621 Fall 2018

11

SERVER SIDE SCRIPTING SITE

tml>
nnnnn

Browser =
HTML
HTTP ATTP
Request Response
(HTML)

Web Server

Database

LaToza GMU SWE 621 Fall 2018

LIMITATIONS

» Poor modularity

» Code representing logic, database interactions,
generating HTML presentation all tangled

» Hard to understand, difficult to maintain

» Still a step up over static pages!

LaToza GMU SWE 621 Fall 2018

13

SERVER SIDE FRAMEWORKS

» Framework that structures server into tiers, organizes logic
into classes

» Create separate tiers for presentation, logic, persistence
layer

» Can understand and reason about domain logic without
looking at presentation (and vice versa)

» Examples: ASP.NET, JSP

LaToza GMU SWE 621 Fall 2018

14

SERVER SIDE FRAMEWORK SITE

Browser e
HTML
e He/;/;ggse
R
equest (HTML)

Web Server

Database

LaToza GMU SWE 621 Fall 2018

LIMITATIONS

» Need to load a whole new web page to get new data

» Users must wait while new web page loads, decreasing
responsiveness & interactivity

» If server is slow or temporarily non-responsive, whole
user interface hangs!

» Page has a discernible refresh, where old content is
replaced and new content appears rather than seamless
transition

LaToza GMU SWE 621 Fall 2018

16

SINGLE PAGE APPLICATION (SPA)

» Client-side logic sends messages to server, receives response
» Logic is associated with a single HTML pages, written in Javascript

» HTML elements dynamically added and removed through DOM manipulation

Projects:
<ol id="new-projects">

<script>
$("#new-projects").load("/resources/load.html #projects 1i");
</script>

</body>
</html>

» Processing that does not require server may occur entirely client side,
dramatically increasing responsiveness & reducing needed server resources

» Classic example: Gmail

LaToza GMU SWE 621 Fall 2018 17

SINGLE PAGE APPLICATION SITE

<IDOCTYPE html>
neme —_— helloWorld();
<head>
e t function helloWorld() {
u
Browser 62:::‘911" worldi</p> even S var message = "<hl>Hello, world!</h1>";
<t X $C"body"). html();

HTML HTML elements Javascript

HTTP
Response
(JSON)

HTTP
Request

Web Server

Database

LaToza GMU SWE 621 Fall 2018 18

LIMITATIONS

» Poor modularity client-side

» As logicin client grows increasingly large and complex, becomes
Big Ball of Mud

» Hard to understand & maintain

» DOM manipulation is brittle & tightly coupled, where small

changes in HTML may cause unintended changes (e.g., two HTML
elements with the same id)

» Poor reuse: logic tightly coupled to individual HTML elements,
leading to code duplication of similar functionality in many places

LaToza GMU SWE 621 Fall 2018

19

FRONT END FRAMEWORKS

LaToza

Client is organized into separate components, capturing model of web
application data

Components are reusable, have encapsulation boundary (e.g., class)
Components separate logic from presentation

Components dynamically generate corresponding code based on
component state

» In contrast to HTML element manipulation, framework generates
HTML, not user code, decreasing coupling

Examples: Meteor, Ember, Angular, Aurelia, React

GMU SWE 621 Fall 2018 20

FRONT END FRAMEWORK SITE

Browser _
HTTP HTTP
Request Response
(JSON)
Web Server
Database

LaToza GMU SWE 621 Fall 2018 21

LIMITATIONS

» Duplication of logic in client & server

LaToza

4

As clients grow increasingly complex, must have logic in both
client & server

May even need to be written twice in different languages! (e.g.,
Javascript, Java)

Server logic closely coupled to corresponding client logic.
Changes to server logic require corresponding client logic
change.

Difficult to reuse server logic

GMU SWE 621 Fall 2018

22

MICROSERVICES

» Small, focused web server that communicates through
data requests & responses

» Focused only on logic, not presentation

» Organized around capabilities that can be reused in
multiple context across multiple applications

» Rather than horizontally scale identical web servers,
vertically scale server infrastructure into many, small
focused servers

LaToza GMU SWE 621 Fall 2018

23

MICROSERVICE SITE

Browser
HTTP HTTP
HTTP Response HITP Response
Request Request SO
| (JSON) (JSON)
HTTP HTTP
Request Request
> >
HTTP HTTP
R R
Web Servers f,sggﬁ,je (?J?gﬁlje
< <

Database

LaToza GMU SWE 621 Fall 2018 24

CAN WE DRAW MORE GENERAL LESSONS?

» Lots of different ways to organize a web app

» Keep inventing new ones that are better by having some
new properties

» But may sometimes sacrifice others

» Can we draw any more general lessons about how to
organize software?

LaToza GMU SWE 621 Fall 2018

25

IN CLASS ACTIVITY: PLUGIN ARCHITECTURE

» What is it mean to be a plugin architecture?
» How would you express this using
» An architectural design decision

» A component and connector diagram

LaToza GMU SWE 621 Fall 2018

26

ARCHITECTURAL STYLES

» Architectural style specifies
» how to partition a system

» how components identify and communicate with each
other

» how information is communicated

» how elements of a system can evolve independently

LaToza GMU SWE 621 Fall 2018

27

ARCHITECTURAL STYLES

» Can also be characterized by one or more architectural decisions

» e.g., elements in component A can send messages to elements
in component B but not vice versa (i.e., layers)

» Making this decision(s) immediately has one or more
consequences on architectural requirements

» Often binary

» Either code conforms to the constraints and gains the
consequences or has at least one violation and does not get the
consequences

LaToza GMU SWE 621 Fall 2018

28

SOME COMMON ARCHITECTURAL STYLES

» Big ball of mud

» Layered

» Model-centered
» Publish/subscribe
» Pipe and filter

» REST

» Functional reactive programming

LaToza GMU SWE 621 Fall 2018

BIG BALL OF MUD

» Forces

» Insufficient time to build the "right" way, with consideration of
how design decisions impact maintainability

» Constraints: none

» Anything can go anywhere.

» Anything can be written in any way.
» Consequences

» Leads to system that is disorganized.

» Makes it hard to find where to make change, understand
implications of change.

» Decreases maintainability

http://www.laputan.org/mud/
LaToza GMU SWE 621 Fall 2018

; :- :

4 Fa SO o
3% o - % :

sa % f...f._'n‘f‘:ﬂ Waile? P

http://www.laputan.org/mud/

30

LAYERED ARCHITECTURE

» Elements: layers
» Constraints: can only use lower layers
» Strictly layered: can only use adjacent lower layer
» Consequences
» Supports maintability by making it easier to find functionality

» Supports portability and reusability by enabling layers to be
swapped out

LaToza GMU SWE 621 Fall 2018

31

Component instance

Publish connector instance
Request-reply connector instance
o E a7 Required update port instance
Provided update port instance
Publish port instance

Subscribe port instance

'Imms:lm

MODEL-CENTERED | [

» Elements: model, view (optional), controller (optional), view-controller (optional)

» Constraints
» Components interact with a central model rather than each other

» Changes originates outside of model, propagate to model, trigger notifications to
elements depending on model

» Synonyms: repository, shared-data, data-centered

» Consequences

» Maintainable: can write data processing in terms of model rather than in terms of Ul
abstractions

» Extensible: easy to add views, controllers, view/models without changing model

» Scalability: can run each element in a separate thread

LaToza GMU SWE 621 Fall 2018 32

View

EXAMPLE: ANGULAR 1.0 -- MWM e N
» Model: domain-specific data, doesn't W I)oma'nn:ﬁcﬁa

matter how much it's interact with

» View

» Visual representation of current state of
model

» View does not communicate with model

directly Models are much more dumb:
no formatting, etc

» ViewModel: processes user input,
translates into format which work for model

LaToza GMU SWE 621 Fall 2018

notifications

33

B Subscribe port instance

R ad ; e Rl
PUBLISH/SUBSCRIBE ‘

» Elements: component, event bus

» Components broadcast events to listeners on event bus

» Constraints

» Components do not know why an event is published

» Subscribing components do not know who published event, depending on event
type rather than specific publisher

» Synonyms: event-based, pub/sub

» Consequences

» Maintainability: can make changes to components without impacting others

» Performance: can (sometimes) reduce performance due to indirection

LaToza

GMU SWE 621 Fall 2018 34

REST (REPRESENTATIONAL STATE TRANSFER)

» Elements: HTTP server, request / response connector

» Constraints:

» Stateless: each client request contains all information necessary to service request

» Cacheable: clients and intermediaries may cache responses.

» Layered: client cannot determine if it is connected to end server or intermediary
along the way

» Uniform interface for resources: a single uniform interface (URIs) simplifies and
decouples architecture

» Consequences
» Scalability and reliability: enables servers to be added and removed at will at runtime
» Performance: enables caching

» Modifiability: hides changes behind URIs

LaToza GMU SWE 621 Fall 2018 35

Filter component instance
Pipe component instance
Write port instance
Read port instance

S|
PIPE AND FILTER e

p
z
-
.ol |

» Elements: pipes, filters, read ports, write ports
» Constraints
» Filters may only interact through pipes
» Filters may not share any global state
» Filters may not make any assumptions about what happens upstream or downstream

» Filter should incrementally read input and generate output

» Consequences:

» Configurability, extensibility: can swap and compose networks of filters together, even at
runtime

» Scalability: can do computation in different filters in parallel

» Modifiability: can more easily make independent changes

LaToza GMU SWE 621 Fall 2018 36

FUNCTIONAL REACTIVE PROGRAMMING

» Elements: component, stream of events
» Constraints:

» Component only gets input from rest of system through stream of events;
cannot access or mutate data elsewhere

» When event arrives, changes state (resulting in new output) and may emit
event to other components

» Consequences

» Maintainability: much easier to make changes to individual element
without having to think about consequences of that change to rest of
system

LaToza GMU SWE 621 Fall 2018 37

SUMMARY

» Architectural style offer specific ways to achieve
architectural requirements

» Often offer ways to separate functionality into separate

elements and constraints on how these elements can
Interact

» Violating constraints of an architectural style often means

that the consequences of the architectural style will no
longer be realized

LaToza GMU SWE 621 Fall 2018 38

IN CLASS ACTIVITY

aaaaaa

22222222222222222

39

DESIGN ACTIVITY: TODO APPLICATION

» Form group of 3 or 4

» Your goal: design an architecture for a todo application by applying an architectural
style (see next slide)

» Todo application requirements
» User interactions with todos: add, delete, rename, complete, copy
» Display todos to user
» Persist todos
» Deliverables:
» component and connector model showing elements in your system

» explanation of architectural style, including discussion of constrains imposed on
elements

LaToza GMU SWE 621 Fall 2018

40

LIST OF ARCHITECTURAL STYLES

» Only 2 groups may pick the same architectural style. Raise your hand when you've
selected a style to claim it.

» Architectural styles
» Big ball of mud
» Layered
» Model-centered
» Publish/subscribe
» Pipes and filters
» REST

» Functional reactive programming

LaToza GMU SWE 621 Fall 2018

LaToza

DESIGN ACTIVITY: STEP 2: DISCUSSION

» Compare and contrast designs based on each architectural
style

GMU SWE 621 Fall 2018

42

