
ARCHITECTURAL STYLES
SWE 621
FALL 2018

© THOMAS LATOZA

LaToza GMU SWE 621 Fall 2018

IN CLASS EXERCISE

▸ Why might one build a software system organized into
layers?

�2

LaToza GMU SWE 621 Fall 2018

LOGISTICS

▸ HW2 due today

▸ HW3 due in 3 weeks (10/25)

▸ Midterm in class next week

▸ ~80% based on lecture (including ideas covered in
lecture and textbook)

▸ ~20% based on readings

▸ Mix of multiple choice and free response

�3

LaToza GMU SWE 621 Fall 2018

MIDTERM REVIEW

▸ Examples of questions

▸ Questions on concepts, definitions, and process advice

▸ e.g., which one of these is not a characteristic of a good
abstraction?

▸ Questions applying concepts to real world examples

▸ e.g., critique this code snippet as an abstraction, based on this
code scenario.

▸ e.g., for these requirements, design a solution and describe
through a component and connector model

�4

LaToza GMU SWE 621 Fall 2018

SOFTWARE ARCHITECTURE

▸ Software architecture = { Elements, Constraints,
Consequences }

▸ Elements: the set of structures needed to reason
about the system

▸ Constraints: the ways in which functionality is
assigned to elements and elements can be composed

▸ Consequences: the resulting properties of systems
which conform to the constraints

�5

LaToza GMU SWE 621 Fall 2018

FREQUENT ARCHITECTURAL REQUIREMENTS

▸ Performance: how fast is the system

▸ Reliability: how likely is the system to be available

▸ Scalability: how well does adding more computing resources translate to better
performance

▸ Maintainability: how hard is system to change

▸ Extensibility: in what ways can new components be added without changing
existing components

▸ Configurability: how easily can the system behavior be changed by end-users

▸ Portability: in what environments can the system be used

▸ Testability: how easy is it to write tests of the system's behavior

�6

LaToza GMU SWE 621 Fall 2018

EXAMPLE OF ALTERNATIVE ARCHITECTURES: THE WEB

▸ Evolving competing architectures for organizing content
and computation between browser (client) and web server

▸ 1990s: static web pages

▸ 1990s: server-side scripting (CGI, PHP, ASP, ColdFusion,
JSP, …)

▸ 2000s: single page apps (JQuery)

▸ 2010s: front-end frameworks (Angular, Aurelia, React, …),
microservices

�7

LaToza GMU SWE 621 Fall 2018

STATIC WEB PAGES

▸ URL corresponds to directory location on server

▸ e.g. http://domainName.com/img/image5.jpg maps to img/
image5.jpg file on server

▸ Server responds to HTTP request by returning requested files

▸ Advantages

▸ Simple, easily cacheable, easily searchable

▸ Disadvantages

▸ No interactivity

�8

LaToza GMU SWE 621 Fall 2018

DYNAMIC WEB PAGES

�9

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from diskRuns a program

LaToza GMU SWE 621 Fall 2018

DYNAMIC WEB PAGES

�10

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server
Application

Syllabus
Generator

Application

Give	me	/syllabus/syllabi-fall16/SWE432BellJ.html

Here’s	some	text	to	send	back

Does whatever it wants

There’s a standard mechanism to talk to these
auxiliary applications, called CGI (Common

Gateway Interface)

LaToza GMU SWE 621 Fall 2018

SERVER SIDE SCRIPTING

▸ Generate HTML on the server through scripts

▸ Early approaches emphasized embedding server code
inside html pages

▸ Examples: CGI

�11

LaToza GMU SWE 621 Fall 2018

SERVER SIDE SCRIPTING SITE

�12

Browser
HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

HTML templates, server logic, load / store state to database

LaToza GMU SWE 621 Fall 2018

LIMITATIONS

▸ Poor modularity

▸ Code representing logic, database interactions,
generating HTML presentation all tangled

▸ Hard to understand, difficult to maintain

▸ Still a step up over static pages!

�13

LaToza GMU SWE 621 Fall 2018

SERVER SIDE FRAMEWORKS

▸ Framework that structures server into tiers, organizes logic
into classes

▸ Create separate tiers for presentation, logic, persistence
layer

▸ Can understand and reason about domain logic without
looking at presentation (and vice versa)

▸ Examples: ASP.NET, JSP

�14

LaToza GMU SWE 621 Fall 2018

SERVER SIDE FRAMEWORK SITE

�15

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

Presentation tier

Domain logic tier

Persistence tier

LaToza GMU SWE 621 Fall 2018

LIMITATIONS

▸ Need to load a whole new web page to get new data

▸ Users must wait while new web page loads, decreasing
responsiveness & interactivity

▸ If server is slow or temporarily non-responsive, whole
user interface hangs!

▸ Page has a discernible refresh, where old content is
replaced and new content appears rather than seamless
transition

�16

LaToza GMU SWE 621 Fall 2018

SINGLE PAGE APPLICATION (SPA)

▸ Client-side logic sends messages to server, receives response

▸ Logic is associated with a single HTML pages, written in Javascript

▸ HTML elements dynamically added and removed through DOM manipulation

▸ Processing that does not require server may occur entirely client side,
dramatically increasing responsiveness & reducing needed server resources

▸ Classic example: Gmail

�17

LaToza GMU SWE 621 Fall 2018

SINGLE PAGE APPLICATION SITE

�18

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Javascript

events

HTML elements

LaToza GMU SWE 621 Fall 2018

LIMITATIONS

▸ Poor modularity client-side

▸ As logic in client grows increasingly large and complex, becomes
Big Ball of Mud

▸ Hard to understand & maintain

▸ DOM manipulation is brittle & tightly coupled, where small
changes in HTML may cause unintended changes (e.g., two HTML
elements with the same id)

▸ Poor reuse: logic tightly coupled to individual HTML elements,
leading to code duplication of similar functionality in many places

�19

LaToza GMU SWE 621 Fall 2018

FRONT END FRAMEWORKS

▸ Client is organized into separate components, capturing model of web
application data

▸ Components are reusable, have encapsulation boundary (e.g., class)

▸ Components separate logic from presentation

▸ Components dynamically generate corresponding code based on
component state

▸ In contrast to HTML element manipulation, framework generates
HTML, not user code, decreasing coupling

▸ Examples: Meteor, Ember, Angular, Aurelia, React

�20

LaToza GMU SWE 621 Fall 2018

FRONT END FRAMEWORK SITE

�21

Browser

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

LaToza GMU SWE 621 Fall 2018

LIMITATIONS

▸ Duplication of logic in client & server

▸ As clients grow increasingly complex, must have logic in both
client & server

▸ May even need to be written twice in different languages! (e.g.,
Javascript, Java)

▸ Server logic closely coupled to corresponding client logic.
Changes to server logic require corresponding client logic
change.

▸ Difficult to reuse server logic

�22

LaToza GMU SWE 621 Fall 2018

MICROSERVICES

▸ Small, focused web server that communicates through
data requests & responses

▸ Focused only on logic, not presentation

▸ Organized around capabilities that can be reused in
multiple context across multiple applications

▸ Rather than horizontally scale identical web servers,
vertically scale server infrastructure into many, small
focused servers

�23

LaToza GMU SWE 621 Fall 2018

MICROSERVICE SITE

�24

Browser

Web Servers

Database

HTTP  
Request

HTTP  
Response

(JSON)

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

HTTP  
Request

HTTP  
Response

(JSON)

HTTP  
Request

HTTP  
Response

(JSON)

Microservice Microservice

HTTP  
Request

HTTP  
Response

(JSON)

LaToza GMU SWE 621 Fall 2018

CAN WE DRAW MORE GENERAL LESSONS?

▸ Lots of different ways to organize a web app

▸ Keep inventing new ones that are better by having some
new properties

▸ But may sometimes sacrifice others

▸ Can we draw any more general lessons about how to
organize software?

�25

LaToza GMU SWE 621 Fall 2018

IN CLASS ACTIVITY: PLUGIN ARCHITECTURE

▸ What is it mean to be a plugin architecture?

▸ How would you express this using

▸ An architectural design decision

▸ A component and connector diagram

�26

LaToza GMU SWE 621 Fall 2018

ARCHITECTURAL STYLES

▸ Architectural style specifies

▸ how to partition a system

▸ how components identify and communicate with each
other

▸ how information is communicated

▸ how elements of a system can evolve independently

�27

LaToza GMU SWE 621 Fall 2018

ARCHITECTURAL STYLES

▸ Can also be characterized by one or more architectural decisions

▸ e.g., elements in component A can send messages to elements
in component B but not vice versa (i.e., layers)

▸ Making this decision(s) immediately has one or more
consequences on architectural requirements

▸ Often binary

▸ Either code conforms to the constraints and gains the
consequences or has at least one violation and does not get the
consequences

�28

LaToza GMU SWE 621 Fall 2018

SOME COMMON ARCHITECTURAL STYLES

▸ Big ball of mud

▸ Layered

▸ Model-centered

▸ Publish/subscribe

▸ Pipe and filter

▸ REST

▸ Functional reactive programming

�29

LaToza GMU SWE 621 Fall 2018

BIG BALL OF MUD
▸ Forces

▸ Insufficient time to build the "right" way, with consideration of
how design decisions impact maintainability

▸ Constraints: none

▸ Anything can go anywhere.

▸ Anything can be written in any way.

▸ Consequences

▸ Leads to system that is disorganized.

▸ Makes it hard to find where to make change, understand
implications of change.

▸ Decreases maintainability

�30
http://www.laputan.org/mud/

http://www.laputan.org/mud/

LaToza GMU SWE 621 Fall 2018

LAYERED ARCHITECTURE

▸ Elements: layers

▸ Constraints: can only use lower layers

▸ Strictly layered: can only use adjacent lower layer

▸ Consequences

▸ Supports maintability by making it easier to find functionality

▸ Supports portability and reusability by enabling layers to be
swapped out

�31

LaToza GMU SWE 621 Fall 2018

MODEL-CENTERED

▸ Elements: model, view (optional), controller (optional), view-controller (optional)

▸ Constraints

▸ Components interact with a central model rather than each other

▸ Changes originates outside of model, propagate to model, trigger notifications to
elements depending on model

▸ Synonyms: repository, shared-data, data-centered

▸ Consequences

▸ Maintainable: can write data processing in terms of model rather than in terms of UI
abstractions

▸ Extensible: easy to add views, controllers, view/models without changing model

▸ Scalability: can run each element in a separate thread

�32

LaToza GMU SWE 621 Fall 2018

EXAMPLE: ANGULAR 1.0 -- MVVM

▸ Model: domain-specific data, doesn't
matter how much it's interact with

▸ View

▸ Visual representation of current state of
model

▸ View does not communicate with model
directly Models are much more dumb:
no formatting, etc

▸ ViewModel: processes user input,
translates into format which work for model

�33

LaToza GMU SWE 621 Fall 2018

PUBLISH/SUBSCRIBE

▸ Elements: component, event bus

▸ Components broadcast events to listeners on event bus

▸ Constraints

▸ Components do not know why an event is published

▸ Subscribing components do not know who published event, depending on event
type rather than specific publisher

▸ Synonyms: event-based, pub/sub

▸ Consequences

▸ Maintainability: can make changes to components without impacting others

▸ Performance: can (sometimes) reduce performance due to indirection

�34

LaToza GMU SWE 621 Fall 2018

REST (REPRESENTATIONAL STATE TRANSFER)
▸ Elements: HTTP server, request / response connector

▸ Constraints:

▸ Stateless: each client request contains all information necessary to service request

▸ Cacheable: clients and intermediaries may cache responses.

▸ Layered: client cannot determine if it is connected to end server or intermediary
along the way

▸ Uniform interface for resources: a single uniform interface (URIs) simplifies and
decouples architecture

▸ Consequences

▸ Scalability and reliability: enables servers to be added and removed at will at runtime

▸ Performance: enables caching

▸ Modifiability: hides changes behind URIs

�35

LaToza GMU SWE 621 Fall 2018

PIPE AND FILTER

▸ Elements: pipes, filters, read ports, write ports

▸ Constraints

▸ Filters may only interact through pipes

▸ Filters may not share any global state

▸ Filters may not make any assumptions about what happens upstream or downstream

▸ Filter should incrementally read input and generate output

▸ Consequences:

▸ Configurability, extensibility: can swap and compose networks of filters together, even at
runtime

▸ Scalability: can do computation in different filters in parallel

▸ Modifiability: can more easily make independent changes

�36

LaToza GMU SWE 621 Fall 2018

FUNCTIONAL REACTIVE PROGRAMMING

▸ Elements: component, stream of events

▸ Constraints:

▸ Component only gets input from rest of system through stream of events;
cannot access or mutate data elsewhere

▸ When event arrives, changes state (resulting in new output) and may emit
event to other components

▸ Consequences

▸ Maintainability: much easier to make changes to individual element
without having to think about consequences of that change to rest of
system

�37

LaToza GMU SWE 621 Fall 2018

SUMMARY

▸ Architectural style offer specific ways to achieve
architectural requirements

▸ Often offer ways to separate functionality into separate
elements and constraints on how these elements can
interact

▸ Violating constraints of an architectural style often means
that the consequences of the architectural style will no
longer be realized

�38

LaToza GMU SWE 621 Fall 2018

IN CLASS ACTIVITY

�39

LaToza GMU SWE 621 Fall 2018

DESIGN ACTIVITY: TODO APPLICATION

▸ Form group of 3 or 4

▸ Your goal: design an architecture for a todo application by applying an architectural
style (see next slide)

▸ Todo application requirements

▸ User interactions with todos: add, delete, rename, complete, copy

▸ Display todos to user

▸ Persist todos

▸ Deliverables:

▸ component and connector model showing elements in your system

▸ explanation of architectural style, including discussion of constrains imposed on
elements

�40

LaToza GMU SWE 621 Fall 2018

LIST OF ARCHITECTURAL STYLES
▸ Only 2 groups may pick the same architectural style. Raise your hand when you've

selected a style to claim it.

▸ Architectural styles

▸ Big ball of mud

▸ Layered

▸ Model-centered

▸ Publish/subscribe

▸ Pipes and filters

▸ REST

▸ Functional reactive programming

�41

LaToza GMU SWE 621 Fall 2018

DESIGN ACTIVITY: STEP 2: DISCUSSION

▸ Compare and contrast designs based on each architectural
style

�42

