
DESIGN FOR CHANGE
SWE 621
FALL 2018

© THOMAS LATOZA

LaToza GMU SWE 621 Fall 2018

LOGISTICS

▸ Midterms graded

▸ Will return in class today

▸ HW3 due next week

�2

LaToza GMU SWE 621 Fall 2018

IN CLASS EXERCISE

▸ What's an example of a decision you've hidden behind an
interface?

�3

LaToza GMU SWE 621 Fall 2018

DESIGN FOR CHANGE

▸ Design consists of making decisions.

▸ What happens when these decisions change?

▸ Some decisions may be more likely to change than
others.

▸ How can we design software in ways that make
likely to change decisions easier to change?

�4

LaToza GMU SWE 621 Fall 2018

CHOOSING ELEMENTS

▸ We've looked at three ways so far to divide systems into elements

▸ Design as domain modeling: choose elements that correspond
to domain elements

▸ Design for abstraction: choose elements that hide irrelevant
details and make writing code easy

▸ Architectural styles: choose elements which respect constraints
which enable quality attributes to be satisfied

▸ Will look at a fourth today: dividing systems into elements to
support change

�5

LaToza GMU SWE 621 Fall 2018

KEY WORDS IN CONTEXT (KWIC) PROBLEM

▸ Accepts an ordered set of lines, each line is an ordered set
of words, and each word is an ordered set of characters.

▸ Any line may be "circularly shifted" by repeatedly
removing the first word and appending it at the end of the
line.

▸ Outputs a listing of all circular shifts of all lines in
alphabetical order.

�6

LaToza GMU SWE 621 Fall 2018

"CLASSIC" FLOW CHART DECOMPOSITION

▸ Each module (except master control) corresponds to step
in flow chart

▸ Input: reads data from input and stores into data structures

▸ Circular shift: prepares data structure shifting words

▸ Alphabetizer: alphabetizes words

▸ Output: creates output listing

▸ Master control: invokes other modules

�7

LaToza GMU SWE 621 Fall 2018

MODULARIZATION 2

▸ Line storage: functions and subroutines which give access to
line data structures

▸ Input: reads input, calls line storage to store lines

▸ Circular shifter: offers interface for accessing circularly shifted
lines as index on same underlying data structure

▸ Alphabetizer: alphabetizes words

▸ Output: renders data to console

▸ Master control: invokes other modules

�8

LaToza GMU SWE 621 Fall 2018

WHAT ARE SOME DESIGN DECISIONS WHICH MIGHT CHANGE?

1. Input format: how is data entered into system

2. In memory: reading and storing data in memory rather than
externally on disk

3. Representation: the data structure used to store data efficiently in
memory

4. Index: generating output as an index into original data rather
than as a copy of original data

5. Eager sort: make search faster by sorting list rather than doing a
search on demand

�9

LaToza GMU SWE 621 Fall 2018

DIFFERENCES BETWEEN MODULARIZATIONS

▸ Changing (2) in memory decision and (3) data structure
decisions would require making edits to all modules in first
decomposition

▸ Input: reads data from input and stores into data structures

▸ Circular shift: prepares data structure shifting words

▸ Alphabetizer: alphabetizes words

▸ Output: creates output listing

▸ Master control: invokes other modules

�10

LaToza GMU SWE 621 Fall 2018

DIFFERENCES BETWEEN MODULARIZATIONS

▸ Changing (2) in memory decision and (3) data structure
decisions would require making edits to one module in second
decomposition

▸ Input: reads data from input and stores into data structures

▸ Circular shift: prepares data structure shifting words

▸ Alphabetizer: alphabetizes words

▸ Output: creates output listing

▸ Master control: invokes other modules

�11

LaToza GMU SWE 621 Fall 2018

WHY?

▸ Knowledge of the exact way that the lines are stored is
entirely hidden

▸ Decisions (2) and (3) can be changed, and only the Line
Storage module would ever know

�12

LaToza GMU SWE 621 Fall 2018

INFORMATION HIDING

▸ Can change a decision locally in a module without change
rippling to cause change in other module

▸ Modules characterized by knowledge of a design decision
and what it hides from others

▸ Usually expressed as inverse: here's what decisions are
exposed to clients through interface

�13

LaToza GMU SWE 621 Fall 2018

INFORMATION HIDING VS. ABSTRACTION

▸ Isn't this abstraction all over again?

▸ Goal is different

▸ Abstraction: offer operations that make writing client
code compact and easy

▸ Information hiding: enable design decisions in module to
change

▸ Are there examples where a design increases abstraction
but decreases information hiding?

�14

LaToza GMU SWE 621 Fall 2018

ASIDE: GOOD ABSTRACTIONS REALLY MATTER

▸ Parnas originally estimated that KWIC could be built in a
week or two in 1972

▸ Assumed C style language with few collection
abstractions

▸ Can implement in a few dozen lines with modern
collection abstractions

�15

LaToza GMU SWE 621 Fall 2018

EXAMPLE: UNIVERSAL RESOURCE IDENTIFIER (URI) DESIGN

▸ Uniquely describes a resource

▸ https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0

▸ https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys

▸ http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

▸ Which is a file, external web service request, or stored in a database?

▸ It does not matter

▸ As client, only matters what actions we can do with resource, not how
resource is represented on server

�16

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

LaToza GMU SWE 621 Fall 2018

PRIVATE MEMBERS

▸ Information hiding offered important motivation for inclusion of access
control in modern OO languages

▸ Can specify private or protected access to limit access to
"implementation details" (a.k.a. hidden design decisions) that clients
should not know about

▸ But principle applies much more broadly to design decisions

▸ Not necessarily about computing / caching data or how data is
stored

▸ Design decisions may not be closely associated with a data structure
or method

�17

LaToza GMU SWE 621 Fall 2018

EXAMPLE: URI DESIGN

▸ Which is better?

▸ http://myservice.com/cities

▸ http://myservice.com/cities.cfm

▸ http://myservice.com/cities.aspx

�18

http://myservice.com/cities
http://myservice.com/cities.cfm
http://myservice.com/cities.aspx

LaToza GMU SWE 621 Fall 2018

TYRANNY OF THE DOMINANT DECOMPOSITION

▸ Many design decisions

▸ Can you hide all of them?

▸ No

▸ Inevitably, will make some design decisions easier to
change than others

�19

LaToza GMU SWE 621 Fall 2018

COSTS OF INFORMATION HIDING

▸ Can't hide everything

▸ Will inevitably make some design decisions easy to
change, others harder to change

▸ What should you hide?

▸ Decisions that are most likely to change

▸ Get best payoff by reducing cost of making these
expected changes easier

�20

LaToza GMU SWE 621 Fall 2018

REAL OPTIONS

▸ Having a design decision that you can change at low cost creates
options

▸ Second modularization offers the option to consider whether data
should be stored or handled online at low cost

▸ Option provides the right to make a change without the obligation

▸ Important mechanism for risk mitigation

▸ If decision is wrong, project might fail

▸ Mitigate risk by making it easy to change decision after made, by
reducing dependencies on decision

�21

LaToza GMU SWE 621 Fall 2018

EXAMPLE: OPTIONS IN A COMPUTER

�22

LaToza GMU SWE 621 Fall 2018

MAKING DEPENDENCY STRUCTURE EXPLICIT

▸ How do you know what options you
have?

▸ Build a design structure matrix (DSM)

▸ Design decisions (or "design
parameters") are rows

▸ What they depend on (every other
design decision) are columns

▸ What might happen if design
decision A changed?

�23

best choice of design decision B  
depends on choice of design decision A

LaToza GMU SWE 621 Fall 2018

IN CLASS ACTIVITY: BUILD A DSM FOR A LAYERED ARCHITECTURE

▸ In groups of 2 or 3, build DSM that depicts dependency
structure of a system in the layered architectural style

�24

LaToza GMU SWE 621 Fall 2018

CREATING MODULARITY

▸ How do you break dependencies between modules that you'd
like to be independent?

▸ Organize dependency structure so that there are shared decisions
that others depend on and assert that they won't change.

▸ B and C are now independent of A, because they depend on I

�25

LaToza GMU SWE 621 Fall 2018

DSM FOR MODULARIZATION 1

�26

Type: procedure interfaces 
Data: data structures decisions 
Alg: algorithm decisions

LaToza GMU SWE 621 Fall 2018

DSM FOR MODULARIZATION 2

�27

LaToza GMU SWE 621 Fall 2018

CONWAY'S LAW

▸ The structure of a designed system is
isomorphic to the organizational
structure of those who built it

▸ If a design decision depends on a
design decision made by another
(e.g., developer, team, company),
there must be coordination when this
decision changes (e.g., email, face to
face meeting) to stay consistent

�28

LaToza GMU SWE 621 Fall 2018

SOCIO-TECHNICAL CONGRUENCE

▸ What happens when the required coordination does not happen?

▸ e.g., the infrastructure team that owns the datastore just
changed the query engine

▸ Poor design (if system still works, but less well)

▸ Defects (if system no longer works)

▸ Can observe empirically by comparing decision dependencies
(module references) against coordination (emails sent) to find
divergences, which correlate with defects

�29

Cataldo, M., & Herbsleb, J. D. (2013). Coordination Breakdowns and Their Impact on Development Productivity and Software Failures.
IEEE Transactions on Software Engineering 39(3), 343-360.

LaToza GMU SWE 621 Fall 2018

INFORMATION HIDING AND COORDINATION

▸ Want to have clear idea of what the external interface of
your team constitutes

▸ What design decisions which might change would
others care about?

▸ Need to manage coordination around these decisions

�30

LaToza GMU SWE 621 Fall 2018

HYRUM'S LAW: A PESSIMISTIC VIEW

▸ With a sufficient number of users of an API,

▸ it does not matter what you promise in the contract:

▸ all observable behaviors of your system

▸ will be depended on by somebody.

▸ Interfaces evaporate with additional clients, as every
observable behavior eventually is depended on by someone

�31

http://www.hyrumslaw.com/

http://www.hyrumslaw.com/

LaToza GMU SWE 621 Fall 2018

SUMMARY

▸ Different organizations of functionality into elements leads to
different design decisions being modularized and hidden
behind interfaces

▸ What is hidden in a module is a design decision, not just a
variable or method

▸ Hidden decisions offer real options, making it cheaper to
explore alternative designs

▸ Technical dependencies require coordination between people,
or defects may result

�32

LaToza GMU SWE 621 Fall 2018

IN CLASS ACTIVITY

�33

LaToza GMU SWE 621 Fall 2018

DESIGN ACTIVITY: DESIGN TODO APPLICATION FOR CHANGE
▸ Form group of 2 or 3

▸ Consider again Todo application requirements

▸ User interactions with todos: add, delete, rename, complete, copy

▸ Display todos to user

▸ Persist todos

▸ Design a todo application for change, hiding decisions likely to change behind interfaces

▸ Deliverables:

▸ component and connector model showing elements in your system

▸ list of functionality for each element

▸ list of important design decisions

▸ DSM which shows dependencies between these design decisions

▸ short description of how your design supports changes to a subset of these decisions

�34

LaToza GMU SWE 621 Fall 2018

DESIGN ACTIVITY: STEP 2: DISCUSSION

�35

