SWE 621
FALL 2018

DESIGN FOR CHANGE

© THOMAS LATOZA

LOGISTICS

» Midterms graded
» Will return in class today

» HW3 due next week

LaToza GMU SWE 621 Fall 2018

LaToza

IN CLASS EXERCISE

» What's an example of a decision you've hidden behind an
interface?

GMU SWE 621 Fall 2018

DESIGN FOR CHANGE

» Design consists of making decisions.
» What happens when these decisions change?

» Some decisions may be more likely to change than
others.

» How can we design software in ways that make
likely to change decisions easier to change?

LaToza GMU SWE 621 Fall 2018

CHOOSING ELEMENTS

» We've looked at three ways so far to divide systems into elements

» Design as domain modeling: choose elements that correspond
to domain elements

» Design for abstraction: choose elements that hide irrelevant
details and make writing code easy

» Architectural styles: choose elements which respect constraints
which enable quality attributes to be satisfied

» Will look at a fourth today: dividing systems into elements to
support change

LaToza GMU SWE 621 Fall 2018

KEY WORDS IN CONTEXT (KWIC) PROBLEM

» Accepts an ordered set of lines, each line is an ordered set
of words, and each word is an ordered set of characters.

» Any line may be "circularly shifted" by repeatedly
removing the first word and appending it at the end of the

line.

» Outputs a listing of all circular shifts of all lines in
alphabetical order.

LaToza GMU SWE 621 Fall 2018

"CLASSIC” FLOW CHART DECOMPOSITION

» Each module (except master control) corresponds to step
in flow chart

» Input: reads data from input and stores into data structures
» Circular shift: prepares data structure shifting words

» Alphabetizer: alphabetizes words

» Output: creates output listing

» Master control: invokes other modules

LaToza GMU SWE 621 Fall 2018

MODULARIZATION 2

» Line storage: functions and subroutines which give access to
line data structures

» Input: reads input, calls line storage to store lines

» Circular shifter: offers interface for accessing circularly shifted
lines as index on same underlying data structure

» Alphabetizer: alphabetizes words
» Output: renders data to console

» Master control: invokes other modules

LaToza GMU SWE 621 Fall 2018

WHAT ARE SOME DESIGN DECISIONS WHICH MIGHT CHANGE?

1. Input format: how is data entered into system

2. In memory: reading and storing data in memory rather than
externally on disk

3. Representation: the data structure used to store data efficiently in
memory

4. Index: generating output as an index into original data rather
than as a copy of original data

5. Eager sort: make search faster by sorting list rather than doing a
search on demand

LaToza GMU SWE 621 Fall 2018

DIFFERENCES BETWEEN MODULARIZATIONS

» Changing (2) in memory decision and (3) data structure
decisions would require making edits to all modules in first
decomposition

» Input: reads data from input and stores into data structures
» Circular shift: prepares data structure shifting words

» Alphabetizer: alphabetizes words

» Output: creates output listing

» Master control: invokes other modules

LaToza GMU SWE 621 Fall 2018 10

DIFFERENCES BETWEEN MODULARIZATIONS

» Changing (2) in memory decision and (3) data structure
decisions would require making edits to one module in second
decomposition

» Input: reads data from input and stores into data structures
» Circular shift: prepares data structure shifting words

» Alphabetizer: alphabetizes words

» Output: creates output listing

» Master control: invokes other modules

LaToza GMU SWE 621 Fall 2018 11

WHY?

» Knowledge of the exact way that the lines are stored is
entirely hidden

» Decisions (2) and (3) can be changed, and only the Line
Storage module would ever know

LaToza GMU SWE 621 Fall 2018

12

INFORMATION HIDING

» Can change a decision locally in a module without change
rippling to cause change in other module

» Modules characterized by knowledge of a design decision
and what it hides from others

» Usually expressed as inverse: here's what decisions are
exposed to clients through interface

LaToza GMU SWE 621 Fall 2018

13

INFORMATION HIDING VS. ABSTRACTION

» Isn't this abstraction all over again?
» Goal is different

» Abstraction: offer operations that make writing client
code compact and easy

» Information hiding: enable design decisions in module to
change

» Are there examples where a design increases abstraction
but decreases information hiding?

LaToza GMU SWE 621 Fall 2018

14

ASIDE: GOOD ABSTRACTIONS REALLY MATTER

» Parnas originally estimated that KWIC could be builtin a
week or two in 1972

» Assumed C style language with few collection
abstractions

» Can implement in a few dozen lines with modern
collection abstractions

LaToza GMU SWE 621 Fall 2018

15

EXAMPLE: UNIVERSAL RESOURCE IDENTIFIER (URI) DESIGN

» Uniquely describes a resource

» https://mail.google.com/mail/u/0/#inbox/157d5fb79515%ac0

» https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys

» http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov RESTIDontThinkltMeansWhatYouThinkltDoes.pdf

» Which is a file, external web service request, or stored in a database?

» It does not matter

» As client, only matters what actions we can do with resource, not how
resource is represented on server

LaToza GMU SWE 621 Fall 2018 16

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

PRIVATE MEMBERS

» Information hiding offered important motivation for inclusion of access
control in modern OO languages

» Can specify private or protected access to limit access to
"implementation details" (a.k.a. hidden design decisions) that clients

should not know about
» But principle applies much more broadly to design decisions

» Not necessarily about computing / caching data or how data is
stored

» Design decisions may not be closely associated with a data structure
or method

LaToza GMU SWE 621 Fall 2018

17

EXAMPLE: URI DESIGN

» Which is better?

» http://myservice.com/cities

» http://myservice.com/cities.cfm

» http://myservice.com/cities.aspx

LaToza GMU SWE 621 Fall 2018

18

http://myservice.com/cities
http://myservice.com/cities.cfm
http://myservice.com/cities.aspx

LaToza

TYRANNY OF THE DOMINANT DECOMPQSITION

» Many design decisions
» Can you hide all of them?
» No

» Inevitably, will make some design decisions easier to
change than others

GMU SWE 621 Fall 2018

19

COSTS OF INFORMATION HIDING

» Can't hide everything

» Will inevitably make some design decisions easy to
change, others harder to change

» What should you hide?
» Decisions that are most likely to change

» Get best payoff by reducing cost of making these
expected changes easier

LaToza GMU SWE 621 Fall 2018

20

REAL OPTIONS

» Having a design decision that you can change at low cost creates
options

» Second modularization offers the option to consider whether data
should be stored or handled online at low cost

» Option provides the right to make a change without the obligation
» Important mechanism for risk mitigation
» If decision is wrong, project might fail

» Mitigate risk by making it easy to change decision after made, by
reducing dependencies on decision

LaToza GMU SWE 621 Fall 2018 21

EXAMPLE: OPTIONS IN A COMPUTER

Design Structure Matrix Map of a Laptop Computer

LaToza

Drive
System

Main
Board

LCD
Screen

Packaging

X X X X -

xX X

X XX X X -

X X X
X X X X
X
X X X X X X
X
X X X X
X|| - X X
X X X X
X X X X X XX
X X
X X||IX X X
X X
X X
X X
X
X X
X
X X X
X X X .
X
X X X
X X
X X X
X X
X X X

Graphics controller on Main Board or not?
If yes, screen specifications change;

If no, CPU must process more; adopt different interrupt protocols

22

MAKING DEPENDENCY STRUCTURE EXPLICIT

» How do you know what options you
have?

» Build a design structure matrix (DSM)

» Design decisions (or "design
parameters") are rows

» What they depend on (every other
design decision) are columns

» What might happen if design
decision A changed?

LaToza GMU SWE 621 Fall 2018

A

B o

c | X

best choice of design decision B

depends on choice of design decision A

23

IN CLASS ACTIVITY: BUILD A DSM FOR A LAYERED ARCHITECTURE

» In groups of 2 or 3, build DSM that depicts dependency
structure of a system in the layered architectural style

aaaaaaaaaaaaaaaaaaaaaaa

24

CREATING MODULARITY

» How do you break dependencies between modules that you'd
like to be independent?

» Organize dependency structure so that there are shared decisions
that others depend on and assert that they won't change.

>

—>

@

x

x
oOw » —

x

x

O
>

» B and C are now independent of A, because they depend on |

LaToza GMU SWE 621 Fall 2018

25

DSM FOR MODULARIZATION 1

ABCDEFGHI JKLM

A -In Type
B - In Data
C-InAlg
ID - Circ Type
E - Circ Data
F - Circ Alg

G - Alph Type
H - Alph Data
| - Alph Alg
1J- Out Type
K - Out Data

X X X

Type: procedure interfaces
Data: data structures decisions
Alg: algorithm decisions

LaToza GMU SWE 621 Fall 2018

DSM FOR MODULARIZATION 2

LaToza

N - Line Type
A-InType

D - Circ Type
G - Alph Type
J - Out Type

O - Line Data
P - Line Alg

B - In Data
C -InAlg

E - Circ Data
F - Circ Alg

H - Alph Data
| - Alph Alg

K- Out Data
L - Out Alg

M - Master

NADGJOPBCETFH

KLM

X
X
X
X X
XX X X X

X X X X X
xX X

GMU SWE 621 Fall 2018

27

CONWAY'S LAW

» The structure of a designed system is

isomorphic to the organizational
structure of those who built it

» If a design decision depends on a

LaToza

design decision made by another
(e.g., developer, team, company),
there must be coordination when this
decision changes (e.g., email, face to
face meeting) to stay consistent

GMU SWE 621 Fall 2018

Design Structure Matrix Map of a Laptop Computer

System

X X X
X X X X X X

X X X X X X

Graphics controller on Main Board or not?
If yes, screen specifications change;
If no, CPU must process more; adopt different interrupt protocols

28

S0CIO-TECHNICAL CONGRUENCE

» What happens when the required coordination does not happen?

» e.g., the infrastructure team that owns the datastore just
changed the query engine

» Poor design (if system still works, but less well)
» Defects (if system no longer works)

» Can observe empirically by comparing decision dependencies
(module references) against coordination (emails sent) to find
divergences, which correlate with defects

Cataldo, M., & Herbsleb, J. D. (2013). Coordination Breakdowns and Their Impact on Development Productivity and Software Failures.
IEEE Transactions on Software Engineering 39(3), 343-360.

LaToza GMU SWE 621 Fall 2018 29

INFORMATION HIDING AND COORDINATION

» Want to have clear idea of what the external interface of
your team constitutes

» What design decisions which might change would
others care about?

» Need to manage coordination around these decisions

LaToza GMU SWE 621 Fall 2018

30

HYRUM'S LAW: A PESSIMISTIC VIEW

» With a sufficient number of users of an API,
» it does not matter what you promise in the contract:
» all observable behaviors of your system

» will be depended on by somebody.

» Interfaces evaporate with additional clients, as every
observable behavior eventually is depended on by someone

http://www.hyrumslaw.com/

LaToza GMU SWE 621 Fall 2018

31

http://www.hyrumslaw.com/

SUMMARY

LaToza

Different organizations of functionality into elements leads to
different design decisions being modularized and hidden
behind interfaces

What is hidden in a module is a design decision, not just a
variable or method

Hidden decisions offer real options, making it cheaper to
explore alternative designs

Technical dependencies require coordination between people,
or defects may result

GMU SWE 621 Fall 2018 32

IN CLASS ACTIVITY

aaaaaa

22222222222222222

33

DESIGN ACTIVITY: DESIGN TODO APPLICATION FOR CHANGE

» Form group of 2 or 3

» Consider again Todo application requirements

» Design a todo application for change, hiding decisions likely to change behind interfaces

4

>

>

User interactions with todos: add, delete, rename, complete, copy
Display todos to user

Persist todos

» Deliverables:

LaToza

>

component and connector model showing elements in your system
list of functionality for each element

list of important design decisions

DSM which shows dependencies between these design decisions

short description of how your design supports changes to a subset of these decisions

GMU SWE 621 Fall 2018

34

DESIGN ACTIVITY: STEP 2: DISCUSSION

aaaaaaaaaaaaaaaaaaaaaaa

35

