SWE 621
FALL 2018

DESIGN PATTERNS

© THOMAS LATOZA

LOGISTICS

» HW3 due today

» HW4 due in two weeks

LaToza GMU SWE 621 Fall 2018

IN CLASS EXERCISE

» What's a software design problem you've solved from an
idea you learned from someone else?

LaToza GMU SWE 621 Fall 2018

DESIGN PATTERN

» Solution to a problem in a context

» Rather than solving problems from scratch, borrow existing solution to a

common design problems

» Arrangement of elements that achieves particular quality attribute, often (but not

always) extensibility
» Similar to architectural style or abstraction

» Description of elements and their properties that is not tied to a specific

implementation

» Offers a name for a concept that makes concept easy to refer to

» But also different

» Unlike architectural styles, implications are localized to a few elements

» Design, not architectural; does NOT constraint how most elements in the system

interact

LaToza GMU SWE 621 Fall 2018

DESIGN PATTERNS

» Idea popularized by "Gang of Four" (GOF) in the
1990s with their book Design Patterns

» Sometimes abbreviated as "GOF patterns"

» Today's first reading was immediate
precursor of book

» Helped explain to developers how to take
advantage of indirection facilities in OO to build
systems that were more modular and
maintainable by introducing indirection

» But... idea of design patterns is more general
than GOF patterns

» Popular book that inspired many follow ons
(e.g., Node.js design patterns)

LaToza GMU SWE 621 Fall 2018

Desion Patterns

Elements of Reusable
Object-Oriente

Erich Gamma
Richard el

foreword by Grady Booch

-

-~
”~
o
o/
v
-~
~
-
<
V'
<
A
~
~/
N
N
”~
-
>
~
~
-~
<
—
B,
~—~
]
~

SIS

LaToza

DESIGN PATTERN NAME Jurisdiction Characterization

What is the pattern’s name and classification? The name should convey the pattern’s essence succinctly. A
good name is vital, as it will become part of the design vocabulary.

Intent
What does the design pattern do? What is its rationale and intent? What particular design issue
or problem does it address?

Motivation
A scenario in which the pattern is applicable, the particular design problem or issue the pattern ad-
dresses, and the class and object structures that address this issue. This information will help the reader
understand the more abstract description of the pattern that follows.

Applicability
What are the situations in which the design pattern can be applied? What are examples of poor
designs that the pattern can address? How can one recognize these situations?

Participants
Describe the classes and/or objects participating in the design pattern and their responsibilities us-
ing CRC conventions [5].

Collaborations
Describe how the participants collaborate to carry out their responsibilities.

Diagram
A graphical representation of the pattern using a notation based on the Object Modeling Technique
(OMT) [25], to which we have added method pseudo-code.

Consequences
How does the pattern support its objectives? What are the trade-offs and results of using the pat-
tern? What does the design pattern objectify? What aspect of system structure does it allow to be
varied independently?

Implementation
What pitfalls, hints, or techniques should one be aware of when implementing the pattern? Are there
language-specific issues?

Examples
This section presents examples from real systems. We try to include at least two examples from different
domains.

See Also

What design patterns have closely related intent? What are the important differences? With which
other patterns should this one be used?

BENEFITS OF DESIGN PATTERNS

» Patterns enable reuse of design solutions

» Capture knowledge of expert developers learned
through trial and error

» Patterns improve communication, by offering a name and
higher-level concept for something that commonly recurs

» Rather than trying to describe how set of classes should
be interacting, can simply reference concept

LaToza GMU SWE 621 Fall 2018

DESIGN FOR CHANGE

LaToza

Many GOF patterns designed make specific types of
change easier

How do you take some decision, hide it in a class, and
enable that decision to change with minimal impact on
rest of system?

Enables many types of decisions to vary through
extension, where alternative implementations can be
written as planned extensions to system

GMU SWE 621 Fall 2018

EXAMPLES OF DECISIONS

» The identity of a class

» Want to commit only to an interface of class, not an implementation
» Specific operations

» Want to commit to interface of an operation, not an implementation
» Specific algorithms

» Want to enable alternative algorithms
» Data representation

» Reduce client dependencies on how data is represented and stored

LaToza GMU SWE 621 Fall 2018

FORMS OF GOF PATTERNS

» Creational: how objects are instantiated

» How can details about the type of element being created be
hidden from clients?

» Structural: how objects are composed

» How can objects be connected in way that reduce
dependencies?

» Behavioral: how objects behave

» How can objects encapsulate behaviors that may vary at runtime?

LaToza GMU SWE 621 Fall 2018

10

CREATIONAL PATTERNS

aaaaaa

22222222222222222

11

ABSTRACT FACTORY

» Provide an interface for

LaToza

creating families of
related objects without
specifying their concrete
classes

Client knows they get a
GenericProductA or B
without knowing the
particular
implementation, which
provider may vary
without breaking clients

AbstractFactory GenericProductA GenericProductB
MakeProductA()
MakeProductB()
A ProductA1 ProductA2 ProductB1 ProductB2
ConcreteFactory1 ConcreteFactory2 N
MakeProductA() © | | MakeProductA() o-———— 1 R
MakeProductB() | MakeProductB()
1
|
____________ return
- - new ProductA1
[} []
Participants

e AbstractFactory
— declares a generic interface for operations that create generic product objects.
¢ ConcreteFactory
— defines the operations that create specific product objects.
e GenericProduct
— declares a generic interface for product objects.
e SpecificProduct

— defines a product object created by the corresponding concrete factory.

— all product classes must conform to the generic product interface.

GMU SWE 621 Fall 2018 12

BUILDER

» Separates the construction
of a complex object from its
representation so that the
same construction process
can be used to create
different representations.

LaToza

Participants

» Builder

» Specifies an abstract interface for creating parts of a
product object

» ConcreteBuilder

» constructs and assemble parts of the product by
implementing the Builder interface

» defines and keeps track of the representation it creates
» provides an interface for retrieving the product

» Director
» constructs an object using the builder interface

» Product

» represents the complex object under construction

GMU SWE 621 Fall 2018

13

SINGLETON

» Ensure a class only

Singleton

static Instance() O---q---------+ return uniquelnstance H
SingletonOperation()

GetSingletonData()

static uniquelnstance
singletonData

Participants

» Singleton

h as one instan ce, an d » defines an Instance operation that lets clients access its

provide a global
point of access to it.

LaToza

unique instance. Instance is a static operation defined on
the class rather than the instance

» may be responsible for creating its own unique instance

GMU SWE 621 Fall 2018 14

STRUCTURAL PATTERNS

aaaaaa

22222222222222222

15

WRAPPER

» Attach additional

LaToza

properties or services to
an object without having
to subclass object

Implements common
interface
(VisualComponent) rather
than subclassing
implementation (Button)
which may not be hidden.

Enables nesting wrappers,
easily adding and
removing at runtime

VisualComponent

Draw()

l

Button BorderWrapper
Draw() Draw() 0= — — — = ——
borderWidth
[] []
Participants

¢ Component

component

_____ -»1 draw Border;
component->Draw()

— the object to which additional properties or behaviors are attached.

¢ Wrapper

— encapsulates and enhances its Component. It defines an interface that conforms to its Compo-

nent’s.

— Wrapper maintains a reference to its Component.

((BorderWrapper))

| »{ (ScrollWrapper))

Lcomponent .—J

Lcomponent [S
/

GMU SWE 621 Fall 2018

. (TextView))
L J

16

COMPOSITE

» Compose objects
into tree structures
to represent part-
whole hierarchies.

» Lets clients treat
individual objects
and compositions
uniformly

LaToza

Participants

» Component

» declares the interface for objects in the composition
» implements default behavior for the interface common to all classes
» declares interface for accessing and managing children
» Leaf (no children)
» defines behavior for primitive objects in the composition
» Composite
» defines behavior for components having children
» stores children
» implements child-related operations
» Client

» manipulates objects in composition through Component interface

GMU SWE 621 Fall 2018

17

PROXY

» Provide a surrogate or
placeholder for an object to
control access to it

» Can be used to

» avoid creating expensive
objects unless really
needed

» check access rights

» garbage collection

LaToza

Participants
» Proxy

» maintains reference that lets proxy access real subject

» controls access to real subject, which may include creating
and destroying it

» Subject
» defines common interface
» RealSubject

» defines the real object that proxy represents

GMU SWE 621 Fall 2018 18

FLYWEIGHT

» Use sharing to support
large numbers of fine-
grained object efficiently

» Requires clients to
interact with objects only
by value rather than
identity

LaToza

Participants

» Flyweight (common interface)
» ConcreteFlyweight
» Implements interface, stores state
» MUST be shareable
» FlyweightFactory
» creates and mangoes flyweight objects
» lazily creates instances, as necessary

» Client (uses flyweights)

GMU SWE 621 Fall 2018

19

FACADE

4

LaToza

Provide a higher-
level, unified
interface to a set
of interfaces in a
subsystem

Participants

» Facade

» knows which subsystem classes are responsible for a
request

» delegates client request to appropriate subsystem
objects

» subsystem classes
» implement subsystem functionality
» handle work assigned by the Facade object

» have no references to facade

GMU SWE 621 Fall 2018

20

BEHAVIORAL PATTERNS

aaaaaa

22222222222222222

21

OBSERVER

» Defines a one way
one-to-many
dependency, so that
one object changes

LaToza

state all

dependencies are
notified automatically

Lets subject emit
events to observers
without depending
on observers

Subject observers Observer
Attach(Observer) Update()
Detgch(Observer) for all o in observers {
Notify() o -----4 --| o->Update()
}
4 ConcreteObserver
subject -L -] observerState =
ConcreteSubject |e— = { Update() & subject->GetState(ﬁ
s pey bserverState
CRRE) 2 return subjectState o
SetState()
subjectState
[] []
Participants
» Subject

» stores and manages its observers, which may be any number
» Observer

» defines an interface for updates
» ConcreteSubject

» stores state of interest to Observers

» sends notification to observers when state changes
» ConcreteObserver

» maintains reference to ConcreteSubject object

» stores state that is synchronized with subject

GMU SWE 621 Fall 2018 22

LaToza

IN CLASS ACTIVITY: IMPLEMENT OBSERVER

» Form group of 2 or 3, pick an OO language (e.g., Java, C+
+, Python)

» Write an implementation of Observer

GMU SWE 621 Fall 2018

23

COMMAND

oo reoeiver»moﬂ

» Encapsulate a
request as an object Participants

» Command

» Enables
parameterizing » declares interface for executing an operation
clients with requests, » ConcreteCommand
queuing and » implements execute by invoking corresponding operation on
. Receiver
logging requests,
» Client

undoable operations

» creates ConcreteCommand object and sets its receiver
» Invoker

» asks the command to carry out request
» Receiver

» knows how to perform the operation associated with request

LaToza GMU SWE 621 Fall 2018 24

STRATEGY

» Transform an algorithm
or behavior into an
object, allowing it to
vary independently

» Make it easy to change
algorithm by swapping
out an object

LaToza

Participants

» Strategy

» declares an interface common to all
supported algorithms

» ConcreteStrategy
» implements the algorithm

» Context
» configured with a ConcreteStrategy object
» maintains reference to strategy object

» may define interface that lets Strategy access
its data

GMU SWE 621 Fall 2018

25

VISITOR

» Represents an operation to
be performed on elements
of an object structure

» Enables defining new
operations without changing
implementation of elements
on which it operates

Participants

» Visitor

» declares a Visit operation for each class of ConcreteElement
» ConcreteVisitor

» implements each operation for corresponding object

» accumulates state from visiting objets
» Element

» defines Accept operation that takes visitor as argument
» ConcreteElement

» implements an Accept operation

LaToza GMU SWE 621 Fall 2018 26

STATE

» Allows an objet to

» Object appears to

LaToza

alter its behavior
when its internal
state changes

change its class at
runtime.

Participants
» Context

» defines an interface of interest to clients

» maintains an interface of a ConcreteState
subclass that defines the current state

» State

» defines an interface for encapsulating the
behavior associated with a particular state

» ConcreteState subclasses

» implements behavior associated with its state

GMU SWE 621 Fall 2018 27

WORKING WITH DESIGN PATTERNS

aaaaaaaaaaaaaaaaaaaaaaa

28

WORKING WITH DESIGN PATTERNS

» Useful patterns arise from practical experience

» If you commonly see the same problem, pattern can describe a solution

» Validating pattern comes from experience with it

» Teams can create a process to author and disseminate their own

patterns

» Patterns capture tradeoffs

» Using a pattern brings both pros and cons, which can be captured in

pattern

» Important to understand context in which pattern can be useful

LaToza GMU SWE 621 Fall 2018 29

SUMMARY

» Design patterns offer a solution to a problem in a context

» GOF patterns offer solutions to how to design for change by enabling
extensibility

» Ways to encapsulate decisions that may change into classes decoupled
from client code

» Design patterns broader than GOF patterns

» Can have design patterns which describe technical solutions to variety of
design problems that recur

» Sometimes used to document how to teach how to use a new technology
effectively (e.g., node.js design patterns)

LaToza GMU SWE 621 Fall 2018 30

IN CLASS ACTIVITY

aaaaaa

22222222222222222

31

IMPLEMENT COMPOSITE

» Form group of 2 or 3, pick an OO language (e.g., Java, C++, Python)
» Write an implementation of composite for a Drawing application

» Implement common interface of Graphic

» Primitive drawing elements: Line, Rectangle, Text.

» Picture consists of one or more Graphic elements

» Code should focus only on portion of implementation relevant to Composite
Pattern

» e.g., do not need to write render function
» Deliverables:

» Code implementing Composite for a drawing application

LaToza GMU SWE 621 Fall 2018

32

DESIGN ACTIVITY: STEP 2: DISCUSSION

aaaaaaaaaaaaaaaaaaaaaaa

33

