
DESIGN PATTERNS
SWE 621
FALL 2018

© THOMAS LATOZA

LaToza GMU SWE 621 Fall 2018

LOGISTICS

▸ HW3 due today

▸ HW4 due in two weeks

�2

LaToza GMU SWE 621 Fall 2018

IN CLASS EXERCISE

▸ What's a software design problem you've solved from an
idea you learned from someone else?

�3

LaToza GMU SWE 621 Fall 2018

DESIGN PATTERN
▸ Solution to a problem in a context

▸ Rather than solving problems from scratch, borrow existing solution to a
common design problems

▸ Arrangement of elements that achieves particular quality attribute, often (but not
always) extensibility

▸ Similar to architectural style or abstraction

▸ Description of elements and their properties that is not tied to a specific
implementation

▸ Offers a name for a concept that makes concept easy to refer to

▸ But also different

▸ Unlike architectural styles, implications are localized to a few elements

▸ Design, not architectural; does NOT constraint how most elements in the system
interact

�4

LaToza GMU SWE 621 Fall 2018

DESIGN PATTERNS
▸ Idea popularized by "Gang of Four" (GOF) in the

1990s with their book Design Patterns

▸ Sometimes abbreviated as "GOF patterns"

▸ Today's first reading was immediate
precursor of book

▸ Helped explain to developers how to take
advantage of indirection facilities in OO to build
systems that were more modular and
maintainable by introducing indirection

▸ But... idea of design patterns is more general
than GOF patterns

▸ Popular book that inspired many follow ons
(e.g., Node.js design patterns)

�5

LaToza GMU SWE 621 Fall 2018 �6

LaToza GMU SWE 621 Fall 2018

BENEFITS OF DESIGN PATTERNS

▸ Patterns enable reuse of design solutions

▸ Capture knowledge of expert developers learned
through trial and error

▸ Patterns improve communication, by offering a name and
higher-level concept for something that commonly recurs

▸ Rather than trying to describe how set of classes should
be interacting, can simply reference concept

�7

LaToza GMU SWE 621 Fall 2018

DESIGN FOR CHANGE

▸ Many GOF patterns designed make specific types of
change easier

▸ How do you take some decision, hide it in a class, and
enable that decision to change with minimal impact on
rest of system?

▸ Enables many types of decisions to vary through
extension, where alternative implementations can be
written as planned extensions to system

�8

LaToza GMU SWE 621 Fall 2018

EXAMPLES OF DECISIONS

▸ The identity of a class

▸ Want to commit only to an interface of class, not an implementation

▸ Specific operations

▸ Want to commit to interface of an operation, not an implementation

▸ Specific algorithms

▸ Want to enable alternative algorithms

▸ Data representation

▸ Reduce client dependencies on how data is represented and stored

�9

LaToza GMU SWE 621 Fall 2018

FORMS OF GOF PATTERNS

▸ Creational: how objects are instantiated

▸ How can details about the type of element being created be
hidden from clients?

▸ Structural: how objects are composed

▸ How can objects be connected in way that reduce
dependencies?

▸ Behavioral: how objects behave

▸ How can objects encapsulate behaviors that may vary at runtime?

�10

LaToza GMU SWE 621 Fall 2018

CREATIONAL PATTERNS

�11

LaToza GMU SWE 621 Fall 2018

ABSTRACT FACTORY

▸ Provide an interface for
creating families of
related objects without
specifying their concrete
classes

▸ Client knows they get a
GenericProductA or B
without knowing the
particular
implementation, which
provider may vary
without breaking clients

�12

Participants

LaToza GMU SWE 621 Fall 2018

BUILDER

▸ Separates the construction
of a complex object from its
representation so that the
same construction process
can be used to create
different representations.

�13

▸ Builder

▸ Specifies an abstract interface for creating parts of a
product object

▸ ConcreteBuilder

▸ constructs and assemble parts of the product by
implementing the Builder interface

▸ defines and keeps track of the representation it creates

▸ provides an interface for retrieving the product

▸ Director

▸ constructs an object using the builder interface

▸ Product

▸ represents the complex object under construction

Participants

LaToza GMU SWE 621 Fall 2018

SINGLETON

▸ Ensure a class only
has one instance, and
provide a global
point of access to it.

�14

▸ Singleton

▸ defines an Instance operation that lets clients access its
unique instance. Instance is a static operation defined on
the class rather than the instance

▸ may be responsible for creating its own unique instance

Participants

LaToza GMU SWE 621 Fall 2018

STRUCTURAL PATTERNS

�15

LaToza GMU SWE 621 Fall 2018

WRAPPER

▸ Attach additional
properties or services to
an object without having
to subclass object

▸ Implements common
interface
(VisualComponent) rather
than subclassing
implementation (Button)
which may not be hidden.

▸ Enables nesting wrappers,
easily adding and
removing at runtime

�16

Participants

LaToza GMU SWE 621 Fall 2018

COMPOSITE

▸ Compose objects
into tree structures
to represent part-
whole hierarchies.

▸ Lets clients treat
individual objects
and compositions
uniformly

�17

▸ Component

▸ declares the interface for objects in the composition

▸ implements default behavior for the interface common to all classes

▸ declares interface for accessing and managing children

▸ Leaf (no children)

▸ defines behavior for primitive objects in the composition

▸ Composite

▸ defines behavior for components having children

▸ stores children

▸ implements child-related operations

▸ Client

▸ manipulates objects in composition through Component interface

Participants

LaToza GMU SWE 621 Fall 2018

PROXY

▸ Provide a surrogate or
placeholder for an object to
control access to it

▸ Can be used to

▸ avoid creating expensive
objects unless really
needed

▸ check access rights

▸ garbage collection

�18

▸ Proxy

▸ maintains reference that lets proxy access real subject

▸ controls access to real subject, which may include creating
and destroying it

▸ Subject

▸ defines common interface

▸ RealSubject

▸ defines the real object that proxy represents

Participants

LaToza GMU SWE 621 Fall 2018

FLYWEIGHT
▸ Use sharing to support

large numbers of fine-
grained object efficiently

▸ Requires clients to
interact with objects only
by value rather than
identity

�19

▸ Flyweight (common interface)

▸ ConcreteFlyweight

▸ Implements interface, stores state

▸ MUST be shareable

▸ FlyweightFactory

▸ creates and mangoes flyweight objects

▸ lazily creates instances, as necessary

▸ Client (uses flyweights)

Participants

LaToza GMU SWE 621 Fall 2018

FACADE

▸ Provide a higher-
level, unified
interface to a set
of interfaces in a
subsystem

�20

▸ Facade

▸ knows which subsystem classes are responsible for a
request

▸ delegates client request to appropriate subsystem
objects

▸ subsystem classes

▸ implement subsystem functionality

▸ handle work assigned by the Facade object

▸ have no references to facade

Participants

LaToza GMU SWE 621 Fall 2018

BEHAVIORAL PATTERNS

�21

LaToza GMU SWE 621 Fall 2018

OBSERVER

▸ Defines a one way
one-to-many
dependency, so that
one object changes
state all
dependencies are
notified automatically

▸ Lets subject emit
events to observers
without depending
on observers

�22

▸ Subject

▸ stores and manages its observers, which may be any number

▸ Observer

▸ defines an interface for updates

▸ ConcreteSubject

▸ stores state of interest to Observers

▸ sends notification to observers when state changes

▸ ConcreteObserver

▸ maintains reference to ConcreteSubject object

▸ stores state that is synchronized with subject

Participants

LaToza GMU SWE 621 Fall 2018

IN CLASS ACTIVITY: IMPLEMENT OBSERVER

▸ Form group of 2 or 3, pick an OO language (e.g., Java, C+
+, Python)

▸ Write an implementation of Observer

�23

LaToza GMU SWE 621 Fall 2018

COMMAND

▸ Encapsulate a
request as an object

▸ Enables
parameterizing
clients with requests,
queuing and
logging requests,
undoable operations

�24

▸ Command

▸ declares interface for executing an operation

▸ ConcreteCommand

▸ implements execute by invoking corresponding operation on
Receiver

▸ Client

▸ creates ConcreteCommand object and sets its receiver

▸ Invoker

▸ asks the command to carry out request

▸ Receiver

▸ knows how to perform the operation associated with request

Participants

LaToza GMU SWE 621 Fall 2018

STRATEGY

▸ Transform an algorithm
or behavior into an
object, allowing it to
vary independently

▸ Make it easy to change
algorithm by swapping
out an object

�25

▸ Strategy

▸ declares an interface common to all
supported algorithms

▸ ConcreteStrategy

▸ implements the algorithm

▸ Context

▸ configured with a ConcreteStrategy object

▸ maintains reference to strategy object

▸ may define interface that lets Strategy access
its data

Participants

LaToza GMU SWE 621 Fall 2018

VISITOR

▸ Represents an operation to
be performed on elements
of an object structure

▸ Enables defining new
operations without changing
implementation of elements
on which it operates

�26

▸ Visitor

▸ declares a Visit operation for each class of ConcreteElement

▸ ConcreteVisitor

▸ implements each operation for corresponding object

▸ accumulates state from visiting objets

▸ Element

▸ defines Accept operation that takes visitor as argument

▸ ConcreteElement

▸ implements an Accept operation

Participants

LaToza GMU SWE 621 Fall 2018

STATE

▸ Allows an objet to
alter its behavior
when its internal
state changes

▸ Object appears to
change its class at
runtime.

�27

▸ Context

▸ defines an interface of interest to clients

▸ maintains an interface of a ConcreteState
subclass that defines the current state

▸ State

▸ defines an interface for encapsulating the
behavior associated with a particular state

▸ ConcreteState subclasses

▸ implements behavior associated with its state

Participants

LaToza GMU SWE 621 Fall 2018

WORKING WITH DESIGN PATTERNS

�28

LaToza GMU SWE 621 Fall 2018

WORKING WITH DESIGN PATTERNS

▸ Useful patterns arise from practical experience

▸ If you commonly see the same problem, pattern can describe a solution

▸ Validating pattern comes from experience with it

▸ Teams can create a process to author and disseminate their own
patterns

▸ Patterns capture tradeoffs

▸ Using a pattern brings both pros and cons, which can be captured in
pattern

▸ Important to understand context in which pattern can be useful

�29

LaToza GMU SWE 621 Fall 2018

SUMMARY

▸ Design patterns offer a solution to a problem in a context

▸ GOF patterns offer solutions to how to design for change by enabling
extensibility

▸ Ways to encapsulate decisions that may change into classes decoupled
from client code

▸ Design patterns broader than GOF patterns

▸ Can have design patterns which describe technical solutions to variety of
design problems that recur

▸ Sometimes used to document how to teach how to use a new technology
effectively (e.g., node.js design patterns)

�30

LaToza GMU SWE 621 Fall 2018

IN CLASS ACTIVITY

�31

LaToza GMU SWE 621 Fall 2018

IMPLEMENT COMPOSITE

▸ Form group of 2 or 3, pick an OO language (e.g., Java, C++, Python)

▸ Write an implementation of composite for a Drawing application

▸ Implement common interface of Graphic

▸ Primitive drawing elements: Line, Rectangle, Text.

▸ Picture consists of one or more Graphic elements

▸ Code should focus only on portion of implementation relevant to Composite
Pattern

▸ e.g., do not need to write render function

▸ Deliverables:

▸ Code implementing Composite for a drawing application

�32

LaToza GMU SWE 621 Fall 2018

DESIGN ACTIVITY: STEP 2: DISCUSSION

�33

