SWE 621
FALL 2018

FOLLOWING A DESIGN

© THOMAS LATOZA

LOGISTICS

» HW4 due next week
» No class meeting next week

» Lecture will be recorded and posted online

LaToza GMU SWE 621 Fall 2018

IN CLASS EXERCISE: INVERSION OF CONTROL

» Problem: imagine a layered architecture,
where the low level A layer should not
depend on higher-level B. But when
some event in A happens (e.g, network
packet arrives), B should find out.

» Propose a design to achieve this.

LaToza GMU SWE 621 Fall 2018

FOLLOWING A DESIGN

» So far we've considered how design choices can help system achieve
quality attributes

» abstractions, architectural styles, design patterns

» by minimizing risk, by following domain model, hiding decisions likely
to change

» What happens when a developer makes a code change that fails to
follow the constraints imposed by the design decision?

» How do you prevent developers from not following design decisions?
» What happens when the design decision should change?
» Requirement changes may lead to decisions no longer being effective.

» May find better design choices as better understand problem.

LaToza GMU SWE 621 Fall 2018

EXAMPLE: HOW SOFTWARE EVOLVES OVER TIME

» ATM Simulator

g.?< done
i imes

» Describes

behavior of
ATM machine

invalidcard

CardInvalid

as user doe abortrdnsaction,p . rancakion VAP
interacts with done (‘s
machine PR
Pay
mr——

PrintReceipt

LaToza GMU SWE 621 Fall 2018

V1: STATE PATTERN

» Decisions

» Use the state
pattern

» Put data in
context class

» Make context a
property of
ATMState

» Use command
line for Ul

LaToza

ATMMain

Note that:

- get/set methods have been omitted
- we don't include all states and events in the mode

+main(in Args[] : String)
I

N
ATMContext

-state : ATMState ATMState

-card : String -context : ATMContex{

-pincodesentered :intf _ _ _ __ _____ __ _ Sf+abortTransaction()

+abortTransaction() +proceed()

+proceed() +payAmount()

+payAmount() +invalidPIN()

+invalidPIN() /\

EjectCard Pay PinCodelnvalid

+abortTransaction() +payAmount() +invalidPIN()
+proceed()

GMU SWE 621 Fall 2018

V1: STATE PATTERN

» ATMContext stores variables used by ATMState subclasses
» Need to be shared between subclasses
» Everything needs references to context class

» ATMContext contains many methods that only forward the call
to the current state

» ATMContext does not check whether a particular event is
supported by the current state

» Potential for defects

LaToza GMU SWE 621 Fall 2018

V2: FLYWEIGHT

» Goals

LaToza

» Memory

usage:
instantiate
each state
class only
once

Performance:
reduce
startup time
for simulator

ATMMain

+main(in Args(] : String)
1

I
~

ATMContext

-state : ATMState
-card : String
-pincodesentered : int

Note that:

- we don't include all states and events in the mode

- get/set methods have been omitted ll]

ATMState

+proceed(in ¢ : ATMContext)
+payAmount(in ¢ : ATMContext)
+invalidPIN(in ¢ : ATMContext)

+abortTransaction(in ¢ : ATMContext

>{+abortTransaction(in ¢ : ATMContext

+proceed(in ¢ : ATMContext)
+payAmount(in ¢ : ATMContext)
+invalidPIN(in c : ATMContext)

yAN

EjectCard

+abortTransaction(in ¢ : ATMContext)

+proceed(in ¢ : ATMContext)

Pay

+payAmount(in ¢ : ATMContext)

GMU SWE 621 Fall 2018

PinCodelnvalid

+invalidPIN(in ¢ : ATMContext

V2: FLYWEIGHT

» Each state class is only created once

» Removed the context property from ATMState, added
context parameter in each event method

LaToza GMU SWE 621 Fall 2018

V3: MULTIPLE INSTANCES

» Goals

«3:‘22:» Alvsesn Note that:
o - get/set methods have been omitted
} Pa Fa I I e I ISM.: +main(in Args[] : String) - we don't include all states and events in the mode
&
ena ble eaCh Af ATMContext
-state : ATMState
o InpOutFrame -cgwd : String .
Simu |at0 r to “outField : JTextAreal -pincodesentered : int
inField : JTextField |- -~ -~ - br : BufferedReader ATMState
o -pw : PipedWriter -myGUI : InpOutFrame
run in a +abortTransaction(in ¢ : ATMContext —
+proceed(in ¢ : ATMContext) - — — - {+abortTransaction(in ¢ : ATMContext
+payAmount(in ¢ : ATMContext) "P"O;O:‘g(i" <(= : AT“A?;’(\;:“) |
invalidPIN(in ¢ : ATMContext +pay unt(inc: ntext
S e p a rate e (ne L +invalidPIN(in ¢ : ATMContext)
___________________ .
thread :
—_——— e -
EjectCard Pay PinCodelnvalid |
|
|
} U I . S u p p O r‘t +abortTransaction(in ¢ : ATMContext +payAmount(in ¢ : ATMContext) +invalidPIN(in ¢ : ATMContext L _
¢ +proceed(in ¢ : ATMContext)
multiple
simulators

LaToza GMU SWE 621 Fall 2018

V3: MULTIPLE INSTANCES

» Replaced command line with GUI, each containing
multiple windows

» Each window associated with ATMContext
» GUI connected to ATMContext with pipes and filters

» Whenever a user enters data, can read from |IOStream
from GUI just as if it were the command line

LaToza GMU SWE 621 Fall 2018

11

V4: DELEGATION-BASED APPROACH

» Goals

» Configurability: allow for adding new states and
transitions at runtime (e.g., machine runs out of paper)

» Separation of concerns: decouple state machine further

LaToza GMU SWE 621 Fall 2018

12

Vi: DELEGATION-BASED APPROACH

LaToza

public class ATMSimulator extends FSMContext {
static FSMState ejectcard = new FSMState(“ejectcard”);
static FSMState pay = new FSMState (“pay’);
static FSMState pincodeinvalid = new FSMState(“pincodeinvalid™);
static FSMState cardvalid = new FSMState(“cardvalid”);
...// more state definitions
static { // static -> it’s executed only once
pincodeinvalid. setInitAction(
new AbstractFSMAction() { // Inner class definition
public void execute(FSMContext fsmc) {
...// desired behavior

}
f)s

pincodeinvalid. addTransition(cardvalid, new DummyAction(), “validcard”);
...// more transition and action definitons

h

...//rest of the class

b

FSMState
FSMContext -name : String
- "FSMState b ------- -initAction : FSMAction
;u.rrents;‘tafte S NState. St >-exitAction : FSMAction
lspatchiin eventName : String) +dispatch(in eventName : String, in context : FSMContext)

+addTransition(in transition : FSMTransition, in eventName : String)

\/
FSMAction FSMTransition
i — -targetState : FSMState
- -myAction : FSMAction
+exacute(in context : FSMContext) +execute(in context : FSMContext)

GMU SWE 621 Fall 2018

13

V4: DELEGATION BASED APPROACH

» User delegation rather than inheritance
» States no longer subclass FSMState
» Transitions are now first class

» Transitions delegate behavior to Action

LaToza GMU SWE 621 Fall 2018

14

Va: DECOUPLING

FSM
startState : FSMState
} G O a I S states : Hashtable
addState(in init : FSMAction, in name : String, in exit : FSMAction)
addTransition(in source : String, in target : String, in action : FSMAction, in event : String)
/N
e
|
» Reduce use of :
L FSMState
. FSMContext name : String
static currentState : FSMState | ________ sfinitAction : FSMAction
fsm : FSM exitAction : FSMAction
dispatch(in eventName : String) dispatch(in eventName : String, in context : FSMContext)
addTransition(in transition : FSMTransition, in eventName : String)
I
|
|
|
|
|
|
V4
FSMAction FSMTransition
A —— targetState : FSMState
: |myAction : FSMAction
execute(in context : FSMContext) execute(in context : FSMContext)

» Introduce FSM, which separate responsibility of storing FSM
from dispatching events

LaToza GMU SWE 621 Fall 2018

SUMMARY OF EVOLUTION

» Later decisions revised earlier

Version Decision Effect on system
vl 1.1 Use the State pattern For each state in a FSM, a subclass of State has
to be created
1.2 Put data in context class Each event method in the State subclasses refers
to the Context class to access data
1.3 Make context a property of ATMState The context is available to all State instances
1.4 Use command line for Ul The code is littered with calls to System.in and
System.out
v2 2.1 Make instances of State static The keyword static needs to be put before
instantiations of State subclasses
2.2 Remove context property from ATM- All event methods need to be edited
State and use parameter in event
method instead
v3 3.1 Create a GUI A class is added to the system
3.2 Replace System.in and System.out All event methods need to be revised
calls with calls to the GUI
33 Apply the pipes and filters for commu- The changes needed in the event methods are
nication between GUI and simulator relatively small
v4 4.1 Refactor the system to use delegation New classes are created that model the behaviour
(Van Gurp and Bosch, 1999). of states and transitions. All existing State sub-
classes are removed from the system.
4.2 Use the command pattern to separate For each event method in the State subclasses, an
behaviour from structure inner class needs to be created that implements
the FSMAction interface. An instance of such
classes needs to be associated with the appropri-
ate transition(s)
4.3 Introduce state exit and entry events to The event dispatching mechanism needs to be
the FSM model changed to support this type of events
vS 5.1 Introduce factory classes for states and A new class is created. The initialisation code for

transitions

FSMs can be made non static and becomes much
simpler

LaToza

GMU SWE 621 Fall 2018

16

SUMMARY OF EVOLUTION

» Design decisions changed over time
» Driven by making a particular usage or scenario easier
» Reasons may not be apparent without knowing these scenarios

» Easy to lose track of decisions

» Constant change makes it harder to stay up to date with the current
version of each design decision

» Risk that might make change inconsistent with design
» Risk that when changing a decision might not update everything

required

LaToza GMU SWE 621 Fall 2018

17

SOFTWARE EVOLUTION

» As requirements are added and change, code must
implement these changes.

» This requires making changes to system that are either
» consistent with the existing design

» changing decisions to better accommodate these new
requirements, updating the relevant implementation

LaToza GMU SWE 621 Fall 2018 18

ARCHITECTURAL EROSION

» Software architectural erosion (or decay): the gap between
the architecture as designed as an as built

» e.g., intended to be a pipes and filters architecture, but isn't
entirely

» Consequences of design decision are no longer achieved
» if decision helped enable maintainability, it does not longer

» May lead to behaviorally observable defects, but not
necessarily

LaToza GMU SWE 621 Fall 2018

19

CODEBASES TEND T0 DECAY OVER TIME

» Study of large software system, as observed through commit
data

» Over time
» Increase in # of files touched per commit
» Increase in # of modules touched per commit
» These increases lead to increased effort to make change

» Relationship between edits and defects introduced

S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus. Does code decay? Assessing the evidence from change
management data. IEEE Trans. Softw. Eng. (TSE), 27(1):1-12, Jan 2001.

LaToza GMU SWE 621 Fall 2018

20

Component instance

Publish port instance

B Subscribe port instance

Pub-sub connector instance

AN EXAMPLE SRR

» You've built a system following the publish / subscribe
architectural style.

» Wanted to enable adding and removing components without
impacting existing code

» Constraints
» Components do not know why an event is published

» Subscribing components do not know who published event,
depending on event type rather than specific publisher

LaToza GMU SWE 621 Fall 2018

21

IN CLASS ACTIVITY

» Imagine a publish subscribe system which contains the
following events

» Userlnput, ScreenResize, AppStart, AppClosing

» Imagine a developer who implements functionality which
should execute whenever the screen resizes.

» To do this, they look for a message from the RenderLoop
class rather than looking for a ScreenResize event.

» What are potential consequences of this?

LaToza GMU SWE 621 Fall 2018

22

TECHNICAL DEBT

» Sometime you know that you've broken the design, but
still decide to do it anyway.

» Why? Schedule pressure.
» But.... then have to live with the consequences

» Changes get more expensive

LaToza GMU SWE 621 Fall 2018

23

MANAGING TECHNICAL DEBT

» Debt metaphor: deferred some of the work necessary to
complete changes to the future

» It passes these tests, but violates design principles that
enable extensibility and maintainability.

» Need to have a plan to pay down debt.

» Plan work to improve design to make it again consistent
with design.

LaToza GMU SWE 621 Fall 2018

24

WHAT T0 DO ABOUT CODE DECAY?

» Prevent code decay

» Better communicate design to developers

» Check that changes are consistent with design
» Fix code decay after it occurs

» Refactor code to be consistent with design

» Change code to be consistent with design changes

LaToza GMU SWE 621 Fall 2018

25

BETTER COMMUNICATE DESIGN TO DEVELOPERS

» How does a developer know that there's a design decision
they should follow?

» Ask a teammate
» Read a comment
» Read documentation

» e.g., in our codebase, we only create element x by
doingy.

LaToza GMU SWE 621 Fall 2018

26

CHECK THAT CHANGES ARE CONSISTENT WITH DESIGN

» Code reviews offer important quality gate

» Before any change is committed, another developer must
review the a delta of the code change

» That developer looks for potential defects in the code as
well as violations of design decisions.

» Gives comments, which original developer must then fix
before code is committed

LaToza GMU SWE 621 Fall 2018

27

FIX CODE DECAY AFTER IT OCCURS

» Make changes that improve the design of the code without changing the
behavior: refactoring

» Goal: before and after change, code should behave exactly the same
» Involves moving and renaming functionality
» Modern IDEs support automatic low-level refactorings

» e.g., move method.

» Finds references to functionality and updates

» Tries to guarantee that defects are not inserted.
» Often need to make many low-level changes to achieve higher-level goal

» Many may not be supported directly through automated refactoring

LaToza GMU SWE 621 Fall 2018 28

EXAMPLE: REFACTORING SUPPORT
00 CodeRefractoring - Microsoft Visual Studio (Administrator) " wid ~ i v I

File Edit View

@ - " 5

NERR SN

LMl Program.cs >

,;@(—edeRefra
[=)

Refactor[Project Build Debug Team Data Tools Architecture Test ReSharper Analyze W

U
f
~
— >,
y -
2
!

LaToza

at” Rename... L‘Wlndowsphone7 Emulator ~||Debug -
¢ Bxract Method... Ctrl+R, Ctrl+M) _[; O] ¢ ¢ ab s eH]|| :
@l Encapsulate Field...
=¥ Extract Interface... Ctrl+R, Ctrl+I
ah Remove Parameters... Ctrl+R, Ctrl+V
ab Reorder Parameters...
string firstName = "Jalpesh”;
string lastName = "Vadgama";
PrintMyName(firstName, lastName);
¥

private static void PrintMyName(string firstName, string lastName)

{

Console.Writeline(string.Format("FirstName:{0}", firstName));
Console.lWriteline(string.Format("LastName:{0}", lastName));

GMU SWE 621 Fall 2018 29

SOME EXAMPLES OF REFACTORINGS

LaToza

Encapsulate field - force code to access the field with getter and setter methods
Generalize type - create more general types to allow for more code sharing
Replace conditional with polymorphism

Extract class: moves part of the code from an existing class into a new class.
Extract method: turn part of a larger method into a new method.

Move method or move field: move to a more appropriate class or source file

Rename method or rename field: changing the name into a new one that better
reveals its purpose

Pull up: move to a superclass

Push down: move to a subclass

GMU SWE 621 Fall 2018

30

SUMMARY

» As software evolves, its requirements may change, necessiting
changes to implementation

» Code that is inconsistent with design introduces code decay,
where expected consequences of design decisions are no
longer realized

» Code decay makes code harder to change and can lead to
defects

» To reduce code decay, important to prevent code decay and fix
it when it occurs

LaToza GMU SWE 621 Fall 2018 31

IN CLASS ACTIVITY

aaaaaa

22222222222222222

32

IMPLEMENT COMPOSITE

» Form group of 2 or 3, pick an OO language (e.g., Java, C++, Python)
» Start with V5 ATM implementation

» Goal: make it possible to have multiple ATM implementations for
separate ATM machines.

» Clients should be able to request an ATM be created without
having to depend on which ATM implementation is created

» Code should focus only on portion of implementation relevant to
ATM creation and ATM state management

» Deliverables:

» Sketch of V6 ATM implementation

LaToza GMU SWE 621 Fall 2018 33

DESIGN ACTIVITY: STEP 2: DISCUSSION

aaaaaaaaaaaaaaaaaaaaaaa

34

