
FOLLOWING A DESIGN
SWE 621
FALL 2018

© THOMAS LATOZA

LaToza GMU SWE 621 Fall 2018

LOGISTICS

▸ HW4 due next week

▸ No class meeting next week

▸ Lecture will be recorded and posted online

�2

LaToza GMU SWE 621 Fall 2018

IN CLASS EXERCISE: INVERSION OF CONTROL

▸ Problem: imagine a layered architecture,
where the low level A layer should not
depend on higher-level B. But when
some event in A happens (e.g, network
packet arrives), B should find out.

▸ Propose a design to achieve this.

�3

A

B

LaToza GMU SWE 621 Fall 2018

FOLLOWING A DESIGN
▸ So far we've considered how design choices can help system achieve

quality attributes

▸ abstractions, architectural styles, design patterns

▸ by minimizing risk, by following domain model, hiding decisions likely
to change

▸ What happens when a developer makes a code change that fails to
follow the constraints imposed by the design decision?

▸ How do you prevent developers from not following design decisions?

▸ What happens when the design decision should change?

▸ Requirement changes may lead to decisions no longer being effective.

▸ May find better design choices as better understand problem.

�4

LaToza GMU SWE 621 Fall 2018

EXAMPLE: HOW SOFTWARE EVOLVES OVER TIME

▸ ATM Simulator

▸ Describes
behavior of
ATM machine
as user
interacts with
machine

�5

LaToza GMU SWE 621 Fall 2018

V1: STATE PATTERN

▸ Decisions

▸ Use the state
pattern

▸ Put data in
context class

▸ Make context a
property of
ATMState

▸ Use command
line for UI

�6

LaToza GMU SWE 621 Fall 2018

V1: STATE PATTERN

▸ ATMContext stores variables used by ATMState subclasses

▸ Need to be shared between subclasses

▸ Everything needs references to context class

▸ ATMContext contains many methods that only forward the call
to the current state

▸ ATMContext does not check whether a particular event is
supported by the current state

▸ Potential for defects

�7

LaToza GMU SWE 621 Fall 2018

V2: FLYWEIGHT

▸ Goals

▸ Memory
usage:
instantiate
each state
class only
once

▸ Performance:
reduce
startup time
for simulator

�8

LaToza GMU SWE 621 Fall 2018

V2: FLYWEIGHT

▸ Each state class is only created once

▸ Removed the context property from ATMState, added
context parameter in each event method

�9

LaToza GMU SWE 621 Fall 2018

V3: MULTIPLE INSTANCES

▸ Goals

▸ Parallelism:
enable each
simulator to
run in a
separate
thread

▸ UI: support
multiple
simulators

�10

LaToza GMU SWE 621 Fall 2018

V3: MULTIPLE INSTANCES

▸ Replaced command line with GUI, each containing
multiple windows

▸ Each window associated with ATMContext

▸ GUI connected to ATMContext with pipes and filters

▸ Whenever a user enters data, can read from IOStream
from GUI just as if it were the command line

�11

LaToza GMU SWE 621 Fall 2018

V4: DELEGATION-BASED APPROACH

▸ Goals

▸ Configurability: allow for adding new states and
transitions at runtime (e.g., machine runs out of paper)

▸ Separation of concerns: decouple state machine further

�12

LaToza GMU SWE 621 Fall 2018

V4: DELEGATION-BASED APPROACH

�13

LaToza GMU SWE 621 Fall 2018

V4: DELEGATION BASED APPROACH

▸ User delegation rather than inheritance

▸ States no longer subclass FSMState

▸ Transitions are now first class

▸ Transitions delegate behavior to Action

�14

LaToza GMU SWE 621 Fall 2018

V5: DECOUPLING

▸ Goals

▸ Reduce use of
static

�15

▸ Introduce FSM, which separate responsibility of storing FSM
from dispatching events

LaToza GMU SWE 621 Fall 2018

SUMMARY OF EVOLUTION

�16

▸ Later decisions revised earlier

LaToza GMU SWE 621 Fall 2018

SUMMARY OF EVOLUTION

▸ Design decisions changed over time

▸ Driven by making a particular usage or scenario easier

▸ Reasons may not be apparent without knowing these scenarios

▸ Easy to lose track of decisions

▸ Constant change makes it harder to stay up to date with the current
version of each design decision

▸ Risk that might make change inconsistent with design

▸ Risk that when changing a decision might not update everything
required

�17

LaToza GMU SWE 621 Fall 2018

SOFTWARE EVOLUTION

▸ As requirements are added and change, code must
implement these changes.

▸ This requires making changes to system that are either

▸ consistent with the existing design

▸ changing decisions to better accommodate these new
requirements, updating the relevant implementation

�18

LaToza GMU SWE 621 Fall 2018

ARCHITECTURAL EROSION

▸ Software architectural erosion (or decay): the gap between
the architecture as designed as an as built

▸ e.g., intended to be a pipes and filters architecture, but isn't
entirely

▸ Consequences of design decision are no longer achieved

▸ if decision helped enable maintainability, it does not longer

▸ May lead to behaviorally observable defects, but not
necessarily

�19

LaToza GMU SWE 621 Fall 2018

CODEBASES TEND TO DECAY OVER TIME

▸ Study of large software system, as observed through commit
data

▸ Over time

▸ Increase in # of files touched per commit

▸ Increase in # of modules touched per commit

▸ These increases lead to increased effort to make change

▸ Relationship between edits and defects introduced

�20

S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus. Does code decay? Assessing the evidence from change
management data. IEEE Trans. Softw. Eng. (TSE), 27(1):1–12, Jan 2001.

LaToza GMU SWE 621 Fall 2018

AN EXAMPLE

▸ You've built a system following the publish / subscribe
architectural style.

▸ Wanted to enable adding and removing components without
impacting existing code

▸ Constraints

▸ Components do not know why an event is published

▸ Subscribing components do not know who published event,
depending on event type rather than specific publisher

�21

LaToza GMU SWE 621 Fall 2018

IN CLASS ACTIVITY

▸ Imagine a publish subscribe system which contains the
following events

▸ UserInput, ScreenResize, AppStart, AppClosing

▸ Imagine a developer who implements functionality which
should execute whenever the screen resizes.

▸ To do this, they look for a message from the RenderLoop
class rather than looking for a ScreenResize event.

▸ What are potential consequences of this?

�22

LaToza GMU SWE 621 Fall 2018

TECHNICAL DEBT

▸ Sometime you know that you've broken the design, but
still decide to do it anyway.

▸ Why? Schedule pressure.

▸ But.... then have to live with the consequences

▸ Changes get more expensive

�23

LaToza GMU SWE 621 Fall 2018

MANAGING TECHNICAL DEBT

▸ Debt metaphor: deferred some of the work necessary to
complete changes to the future

▸ It passes these tests, but violates design principles that
enable extensibility and maintainability.

▸ Need to have a plan to pay down debt.

▸ Plan work to improve design to make it again consistent
with design.

�24

LaToza GMU SWE 621 Fall 2018

WHAT TO DO ABOUT CODE DECAY?

▸ Prevent code decay

▸ Better communicate design to developers

▸ Check that changes are consistent with design

▸ Fix code decay after it occurs

▸ Refactor code to be consistent with design

▸ Change code to be consistent with design changes

�25

LaToza GMU SWE 621 Fall 2018

BETTER COMMUNICATE DESIGN TO DEVELOPERS

▸ How does a developer know that there's a design decision
they should follow?

▸ Ask a teammate

▸ Read a comment

▸ Read documentation

▸ e.g., in our codebase, we only create element x by
doing y.

�26

LaToza GMU SWE 621 Fall 2018

CHECK THAT CHANGES ARE CONSISTENT WITH DESIGN

▸ Code reviews offer important quality gate

▸ Before any change is committed, another developer must
review the a delta of the code change

▸ That developer looks for potential defects in the code as
well as violations of design decisions.

▸ Gives comments, which original developer must then fix
before code is committed

�27

LaToza GMU SWE 621 Fall 2018

FIX CODE DECAY AFTER IT OCCURS

▸ Make changes that improve the design of the code without changing the
behavior: refactoring

▸ Goal: before and after change, code should behave exactly the same

▸ Involves moving and renaming functionality

▸ Modern IDEs support automatic low-level refactorings

▸ e.g., move method.

▸ Finds references to functionality and updates

▸ Tries to guarantee that defects are not inserted.

▸ Often need to make many low-level changes to achieve higher-level goal

▸ Many may not be supported directly through automated refactoring
�28

LaToza GMU SWE 621 Fall 2018

EXAMPLE: REFACTORING SUPPORT

�29

LaToza GMU SWE 621 Fall 2018

SOME EXAMPLES OF REFACTORINGS

▸ Encapsulate field – force code to access the field with getter and setter methods

▸ Generalize type – create more general types to allow for more code sharing

▸ Replace conditional with polymorphism

▸ Extract class: moves part of the code from an existing class into a new class.

▸ Extract method: turn part of a larger method into a new method.

▸ Move method or move field: move to a more appropriate class or source file

▸ Rename method or rename field: changing the name into a new one that better
reveals its purpose

▸ Pull up: move to a superclass

▸ Push down: move to a subclass

�30

LaToza GMU SWE 621 Fall 2018

SUMMARY

▸ As software evolves, its requirements may change, necessiting
changes to implementation

▸ Code that is inconsistent with design introduces code decay,
where expected consequences of design decisions are no
longer realized

▸ Code decay makes code harder to change and can lead to
defects

▸ To reduce code decay, important to prevent code decay and fix
it when it occurs

�31

LaToza GMU SWE 621 Fall 2018

IN CLASS ACTIVITY

�32

LaToza GMU SWE 621 Fall 2018

IMPLEMENT COMPOSITE

▸ Form group of 2 or 3, pick an OO language (e.g., Java, C++, Python)

▸ Start with V5 ATM implementation

▸ Goal: make it possible to have multiple ATM implementations for
separate ATM machines.

▸ Clients should be able to request an ATM be created without
having to depend on which ATM implementation is created

▸ Code should focus only on portion of implementation relevant to
ATM creation and ATM state management

▸ Deliverables:

▸ Sketch of V6 ATM implementation

�33

LaToza GMU SWE 621 Fall 2018

DESIGN ACTIVITY: STEP 2: DISCUSSION

�34

