IIIIIIIIII

SWE 621
FALL 2020

DESIGN ECOSYSTEMS

LOGISTICS

» HW5 due today

» Project presentation on 5/5

» Review for final on 5/5

LaToza GMU SWE 621 Fall 2020

EXAMPLE: NPM

5 R -
An NPM package with 2,000,000 weekly
downloads had malicious code injected

into it. No one knows what the malicious
code does yet.

| don't know what to say. - Issue #116 - dominictarr...

@dominictarr Why was @right9ctrl given access to this
repo? He added flatmap-stream which is entirely (1
commit to the repo but has 3 versions, the latest one...

github.com

12:44 PM - 26 Nov 2018

2,789 Retweets 3,136 Likes

te06eaNaI

QO 10 11 28K ¢ 381K M

. Tweet your reply

Gary Bernhardt @garybernhardt - Nov 26 v
There are basically two camps in that thread.

1) This is the original maintainer's fault for transferring ownership to someone
they didn't know and trust.
2) Ownership transfer was fine; it's your job to vet all of the code you run.

Q 9 11 29 O 179 8

Gary Bernhardt @garybernhardt - Nov 26 v
Option 2 (vet all dependencies) is obviously impossible. Last | looked, a new
create-react-app had around a thousand dependencies, all moving fast and
breaking things.

Q 12 11 33 Q 37 B

Gary Bernhardt @garybernhardt - Nov 26 v
Option 1 (a chain of trust between package authors) seems culturally untenable
given the reactions in that thread, including from well-known package authors.

Q 6 1 1) 131 M

Gary Bernhardt @garybernhardt - Nov 26 v
There was an option 3: don't decompose your application's dependency graph
into thousands of packages. People who argued that position were dismissed
as (to paraphrase heavily) old and slow. That ship has sailed, and now we're
here.

https://twitter.com/garybernhardt/status/1067111872225136640

LaToza

GMU SWE 621 Fall 2020

https://twitter.com/garybernhardt/status/1067111872225136640

ECOSYSTEMS

» Networks of systems with complex dependencies

» Each system may have a separate organization / WOODLAND ECOSYSTEM
individual responsible for its creation and maintenan

» Key characteristic: no single point of control

» Multiple individuals / organizations with separate
goals, needs

» But have deep interdependencies, where
organizations depend on others in order to exist

» Fundamentally differs from traditional design proces: Grass
where is no single organization that makes design
decisions that impact final system

» Dependencies both social and technical
» Technical: our code uses your code

» Social: we'd really like to have some input on what
your code does and output on how it does it

» Driven by quest for scale

LaToza GMU SWE 621 Fall 2020

SOFTWARE ECOSYSTEMS EXAMPLE: NPM PACKAGES

browserify

of nodes

show

graph info

of links

138 268

MEINENES

Bl e¥y
& whitTM
ﬁ-ﬂ- 2 Y
- Y m’::“
f?é .‘ -2 -,J
Fd 3al
E‘.j,\q ‘-" “.\‘]
VAL 6 D
IBeRE 3.
= A Wl
3 ¢ Bl
E 1Rl 16 |

licenses

MIT

ISC

Apache-2.0
BSD-3-Clause

Public Domain

(MIT AND BSD-3-Clause)
(MIT OR Apache-2.0)
(MIT AND Zlib)

names
util
inherits
punycode

puy S an oo oo ol o

For® B

B FEn -8
.:'_h'

U,)

Rl PR
o (@ W

3

r oo

)
e

32
¥ B

r
-

I= to‘-ft
i ce

117
11

e e]

>N NN

o]
wrappy@1.0.2
0\

o ~ dnceié’i‘j_.il,o.——--" ® (o]

\,

inflight@1.0.6

o
R

3
o
glob@7.1®

Ca

H

i

SOFTWARE ECOSYSTEMS: FACEBOOK

facebook for developers Products Docs More ¥ Get Started Q

We are making important changes to the App Review process. Learn more. X

New products

Al Tools Spark AR Studio Instant Games

Deep learning frameworks and tools Create interactive augmented reality HTMLS gaming experiences on

for research and production. experiences with or without code. Messenger and Facebook News Feed.
Overview (& Overview 3 Docs Overview Docs

Artificial Intelligence

+ Augmented Reality

Business Tools

Gaming

Open Source

Publishing

Social Integrations

Social Presence

Virtual Reality

LaToza A A= A~~~ E e~y =~

ACTIVITY

» What are other examples of software ecosystems?

LaToza GMU SWE 621 Fall 2020

SOME CHARACTERISTICS OF SOFTWARE ECOSYSTEMS

» Increase value of the core offering to existing users

» Increase attractiveness for new users

» Increase “stickiness” of the application platform

» Accelerate innovation through open innovation in the ecosystem

» Collaborate with partners in the ecosystems to share cost of
Innovation

» Platformize functionality developed by partners in the ecosystem
(once success has been proven)

LaToza GMU SWE 621 Fall 2020

FIRST CHARACTERIZED IN CONTEXT OF MILITARY SYSTEMS

LaToza

e

Ultra-Large-Scale
Systems

The Software Challenge
of the Future

"Ultra large scale systems"

» Book published by Software Engineering Institute in
2006

Large scale in terms of number of people, amount of data,
number of interdependencies

Software Engineering Institute
(

arnegie Mellon

Decentralized in a variety of ways

Developed and used by a wide variety of stakeholders
with conflicting needs

Constructed from heterogeneous parts.

Software and hardware failures will be the norm rather
than the exception.

More like a city than a building

https://resources.sei.cmu.edu/asset_files/Book/2006_014_001_30542.pdf

GMU SWE 621 Fall 2020

https://resources.sei.cmu.edu/asset_files/Book/2006_014_001_30542.pdf

TYPES OF ECOSYSTEMS

» Can describe ecosystems by the key player in the
ecosystem

» Usually the organization that owns the key API

» Power accrues to organization by controlling what the API
can and cannot do

» But organization needs API users to be successful

» In some cases, may be no key player (e.g., NPM package
ecosystem)

LaToza GMU SWE 621 Fall 2020

10

0S-CENTRIC ECOSYSTEMS

» Linux vs. Windows vs. OS X

» node.js vs. Java servlets vs. PHP

» Platform which offers an APl which others build on top of

» Platform abstracts over complexity of underlying hardware

» Key player goal: increase value of platform by getting
more users

LaToza GMU SWE 621 Fall 2020

11

APPLICATION-CENTRIC ECOSYSTEMS

» Facebook vs. Twitter vs. LinkedIn

» Word vs. Google Docs

» User facing application which exposes points where 3rd
party developers can extend application

» Key player goal: increase value of application by getting
more developers to build more functionality

LaToza GMU SWE 621 Fall 2020

12

END-USER PROGRAMMING ECOSYSTEMS

» Microsoft Excel vs. Yahoo Pipes vs.
Scratch

» Domain specific language (DSL) offers a
simpler way to program for those who
are not professional software
developers (e.g., kids, scientists,
financial analysts)

» Platform offers language, programming
environment, and (sometimes)
repository of programs which can be
remixed

LaToza GMU SWE 621 Fall 2020 13

PACKAGE-CENTRIC ECOSYSTEMS

» NPM vs. R vs. Ruby
» Individual publish packages in central repository
» Packages may depend on other packages

» Automated build process automatically fetches package
from repository, enabling automatic updating to latest
version

» Popular packages gain recognition, encourage reuse by
others

LaToza GMU SWE 621 Fall 2020

14

EXAMPLE: NODE PACKAGE MANAGER
(NPM) ECOSYSTEM

» Node.js is runtime environment for
server-side JavaScript applications

» Node package manageris an
online repository of packages
containing over 700,000 packages

» Core value: make it easy to
publish, use, and rapidly change
packages

» Resulted in large repository of
packages that are very widely
used in web applications

What is npm?

What can you make with 700,000 building blocks?

The npm registry hosts the world's largest collection of free, reusable code.

@ O ¢

Find Discover Build
Libraries like jQuery, Bootstrap, Packages for mobile, 10T, front Assemble packages like building
React, and Angular, and end, back end, robotics... blocks to quickly develop
components from frameworks everything you need to start awesome new projects.
such as Ember. building amazing things.

LaToza GMU SWE 621 Fall 2020 15

LaToza

DEVELOPERS, DEVELOPERS, DEVELOPERS

https://www.youtube.com/watch?v=Vhh_GeBPOhs

GMU SWE 621 Fall 2020

16

https://www.youtube.com/watch?v=Vhh_GeBPOhs

DEVELOPERS

» Key goal: increase value of ecosystem for owner by
encouraging more people to use it

» Key player benefits from scale, which increases value of
their platform

» Others may benefits as well

» More scale --> more StackOverflow posts, tutorials,
knowledgable developers --> easier to use

LaToza GMU SWE 621 Fall 2020

17

DEPENDENCIES

» Central to ecosystem is a N
dependency, where downstream : :)
system depends on upstream c X
system
Can think about individual " | o= [e
dependencies (e.g., we depend on TE| oo canges |} electdependencies

% E — l Ibug reports, pull requests
= 3

LaToza

policies notifications

this method in this element) or just

monitoring

1

practices
— Downstream

that there is a dependency (e.g.,

there exists some dependency
from our project on project x)

GMU SWE 621 Fall 2020 18

CHANGE

» What happens when an upstream system introduces a change?

» Backwards compatible change: upstream system provides everything they did
before and more

» Nothing needs to change on downstream system
» Just have new functionality to be used

» Breaking change: upstream system no longer fulfills contract it did before
» Method might be deprecated, renamed, or changed in its behavior

» Burden of change

» Downstream system will not work until is updated to work with new version

LaToza GMU SWE 621 Fall 2020 19

IN-CLASS ACTIVITY

» Have you needed to respond to a breaking change?

» Have you introduced a breaking change?

LaToza GMU SWE 621 Fall 2020

20

WHY DO BREAKING CHANGES HAPPEN?

» Imposes burden on downstream projects, so why would anyone do this?

» Technical debt: current version has poorly chosen object models or method names,
lack of extensibility, little used methods

» Determine better way of exposing functionality, introducing through backwards
compatible change

» Introduces cost to maintain old API

» Old APl adds confusion, where there's multiple ways of doing things that confuses
new developers

» Efficiency: faster implementation requires new API

» Fixing defects: implementation incorrect, but downstream project relies on incorrect
behavior

» Downstream projects may have workaround for defect, which may break when
defect is fixed

LaToza GMU SWE 621 Fall 2020 21

TECHNIQUES TO MITIGATE OR DELAY COSTS

» Maintain old interfaces

» Deprecate interfaces but still keep supporting them
» Maintain multiple parallel releases

» Multiple major versions with breaking changes

» Keep incorporating minor changes (e.g,. security patches) for older versions
» Expose different APIs for different users

» Detailed and frequently updated API for sophisticated users, higher level and
more stable API for casual users

» Reduce number of releases with breaking changes
» Communicate breaking changes in advance

» Include documentation and/or tool support for migrating clients to new versions

LaToza GMU SWE 621 Fall 2020

22

EXAMPLE: BREAKING CHANGES IN ECLIPSE ECOSYSTEM

» Eclipse IDE has ecosystem of plugins that extend Eclipse to
offer additional functionality (e.g., support for additional
programming language)

» Eclipse Ecosystem values backwards compatibility
» Has tooling to identify unexpected subtle breaking changes
» Maintains backwards compatible interfaces

» Large effort put into release planning to ensure smooth
transitions and infrequent releases

LaToza GMU SWE 621 Fall 2020 23

EXAMPLE: BREAKING CHANGES IN NPM ECOSYSTEM

LaToza

Demands little of developers making breaking change

Ok to make any breaking change, just need to increment version
correctly

» Enables exploration of different APl design to achieve better
usability

Downstream projects can specify which version of package to use

No central release planning, individual package authors can
make any changes they desire

GMU SWE 621 Fall 2020

24

EXAMPLE: LEFT-PAD IN NPM

LaToza

Developer removed 250 modules from
NPM

One of these was left-pad

» Had 2,486,696 downloads in one
month

Downstream users now depended on
module that no longer existed

So disruptive that NPM violated
community norms by bringing module
back against wishes of author

GMU SWE 621 Fall 2020

How one developer just broke Node,
Babel and thousands of projects in 11
lines of JavaScript

Code pulled from NPM — which everyone was using

By Chris Williams, Editor in Chief 23 Mar 2016 at 01:24 167) SHARE Y

Careful, careful ... Don't fumble this like the JS world (Credit: Claus Rebler)

Updated Programmers were left staring at broken builds and failed
installations on Tuesday after someone toppled the Jenga tower of
JavaScript.

A couple of hours ago, Azer Kogulu unpublished more than 250 of his
modules from NPM, which is a popular package manager used by
JavaScript projects to install dependencies.

Kogulu yanked his source code because, we're told, one of the modules
was called Kik and that apparently attracted the attention of lawyers
representing the instant-messaging app of the same name.

According to Kogulu, Kik's briefs told him to rename the module, he
refused, so the lawyers went to NPM's admins claiming brand
infringement. When NPM took Kik away from the developer, he was
furious and unpublished all of his NPM-managed modules. "This situation
made me realize that NPM is someone’s private land where corporate is
more powerful than the people, and | do open source because Power To
The People," Koculu blogged.

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

25

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

LaToza

RESPONDING TO UPSTREAM CHANGE

» When an upstream system changes, downstream system
may have options about whether, when, how to respond

» Ignore? Upgrade immediately? Upgrade later?

GMU SWE 621 Fall 2020

26

MONITORING CHANGE

» How do you know when an upstream system introduced change?
» Strategies
» Actively monitor GitHub projects for systems (high effort)

» Participate in upstream project: offers voice into features and
functionality of project

» Social awareness: follow twitter, mailing lists to learn about changes

» Reactive monitoring: wait to hear about problems others experience

» Testing: ensure that system works correctly

LaToza GMU SWE 621 Fall 2020 27

REDUCING EXPOSURE TO CHANGE

» Can reduce effort to monitor and react to change by reducing dependencies
» Only depend on things that are really important
» Copy or recreate functionality internally
» Selecting appropriate dependencies with signals that indicated high quality
» Reputation from large organization or past success
» Activity level of project
» Size and identify of user base
» Past history of dealing with changes

» Quality of project artifacts: coding style, documentation, code size

LaToza GMU SWE 621 Fall 2020

28

POLICIES AND COMMUNITIES

» Within ecosystem, not everyone may act consistently with
practices

» Need to make a breaking change quickly, don't want to
indicate through a major version change, which might
be more work to adopt

LaToza GMU SWE 621 Fall 2020

29

MAINTAINER BURNOUT

LaToza

Growing problem in OSS community
for packages which gain popularity
which are not accusing value for key
ecosystem player (e.g., Facebook,
Twitter, Google)

Someone built something which
everyone uses and published it as OSS

How are maintainer compensated?

Who pays?

GMU SWE 621 Fall 2020

Ryan Chenkie @ryanchenkie - Nov 28
Wanted!

10x rockstar developer ¥

Responsibilities include:

* Merging PRs immediately

* Making new features on demand
* Fixing bugs right now

Compensation:

* Stars

"+1's

* Threats, general and specific
* Public shaming

Apply at OSS Inc today
QO 55 11 740) 36K &

https://twitter.com/ryanchenkie/status/1067801413974032385

30

https://twitter.com/ryanchenkie/status/1067801413974032385

MAINTAINER BURNOUT

4

4

4

4

LaToza

If you have a billion users, and a mere 0. 7% of them have an issue that requires support
ona given day (an average of one support issue per person every three years), and each
issue takes 10 minutes on average for a human to personally resolve, then youd spend

19 person-years handling support issues every day. If each support person works an
ejght-hour shift each day then you'd need 20,833 support people on permanent staff

Just to keep up. That, folks, is intermnet scale.
In principle, can publish something once and have an infinite
number of users at no additional cost
Does not work in practice
Maintainers may abandon project

Open question: who should maintain abandoned projects?

GMU SWE 621 Fall 2020

31

SUMMARY

LaToza

Software systems exists in context of ecosystem of upstream
and downstream systems connected by dependencies

Ecosystems may be centered around OS, application, or end-
user programming or distributed into individual packages

Breaking changes incur costs, which can be distributed
between upstream or downstream systems

Different ecosystems have different values and policies for
dealing with breaking changes

GMU SWE 621 Fall 2020 32

IN CLASS ACTIVITY

22222222222222222

33

PART 1: CHARACTERIZE A SOFTWARE ECOSYSTEM

» Form groups of 2 or 3

» Pick a software ecosystem which we did not discuss in class
» Pick one that you or your group has used before

» Deliverables

» Describe the software ecosystem: is it OS, application, or
end-user programming centric; or is it distributed and
package centric?

» How does ecosystem handle breaking changes? How is
this policy related to ecosystem's values?

LaToza GMU SWE 621 Fall 2020 34

INTRODUCE A BREAKING CHANGE

» Now imagine that you are a developer inside the
organization at the center of your ecosystem

» You need to make a breaking change.
» How will you do this?
» Deliverables
» Describe a (fictional) breaking change. What changed?

» How will you mitigate the impact of this change?

LaToza GMU SWE 621 Fall 2020

35

