SWE 621
FALL 2020

DESIGN AS
ABSTRACTION




IN CLASS EXERCISE

» What is an abstraction?

LaToza

GMU SWE 621 Fall 2020



WHAT IS AN ABSTRACTION?

» The ability to interact with an idea while safely ignoring some of its details.
» A set of operations on shared state that make solving problems easier.
» Examples

» Data: String

» Collections: array, list, stack, queue, map, set, ...

» Big data: MapReduce, BigTable, Spanner

» Al: TensorFlow

» Web: HTTP request, HTTP response

» Business: Person, Party, Organization

LaToza GMU SWE 621 Fall 2020



LOGISTICS

» HW1 due today

» HW2 due in two weeks

LaToza GMU SWE 621 Fall 2020



ABSTRACTION AS MECHANISM FOR REUSE

» Abstractions serve as a mechanism for reuse of functionality
» Stakeholders in reuse
» Author: developer implementing the abstraction
» User: developer that is using the abstraction in their own code
» Often, a developer may be both an author and a user
» May have multiple authors, who may change over time

» For important abstractions, usually many more users than authors

LaToza GMU SWE 621 Fall 2020



CRAFTING ABSTRACTIONS

» Where do elements come from?
» Last time: from the domain model

» But... sometimes there are technical implementation
considerations that lead to better ways of grouping
functionality into elements

» Goal: choose elements that make solving the underlying
problem easier

LaToza GMU SWE 621 Fall 2020



IN-CLASS ACTIVITY

» Write a function to reverse a List
» Available operations on elements in linked list

» Class ListElem

> {
» public ListElem getNext()

» public void setNext(ListElem e)

>

LaToza GMU SWE 621 Fall 2020



IN CLASS ACTIVITY

» Write a function to reverse a list
» Available operations on a list
» class List{

» get(i)

» set(i)

» remove(i)

LaToza GMU SWE 621 Fall 2020



IN-CLASS ACTIVITY

» Write a function to reverse a List

» Available operations on elements in linked list
» getNext
» setNext
» getPrev

» setPrev

LaToza GMU SWE 621 Fall 2020



EXAMPLE: LIST

» State: an ordered set of
elements

» Key operations , ,
List<Integer> 11 = new ArraylList<Integer>();

l1.add(@, 1); // adds 1 at © index
» add 11.add(1, 2); // adds 2 at 1 index

System.out.println(11); // [1, 2]
» set

» get
» contains
» remove
) size

LaToza GMU SWE 621 Fall 2020



EXAMPLE: LIST

» User can be oblivious about how state is stored

» Could be linked list, could be array, could be stored
locally, could be stored on another computer

» Supports a wide range of typical interactions with a list

» Abstraction author has wide range of implementation
options

LaToza GMU SWE 621 Fall 2020

11



EXAMPLE: MAPREDUCE

» Organize computation into a map function that generates
a new list from an old list and a reduce function that
generates one (or a few) elements from a whole list

» Operations
» Map(k1,v1) = list(k2,v2)

» Reduce(k2, list (v2)) — list(v3)

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

LaToza GMU SWE 621 Fall 2020

12


https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

EXAMPLE: MAPREDUCE

» Can distribute computation down to elements in the list to separate servers,
which can work in parallel.

» Infrastructure
» marshals distributed servers
» runs tasks in parallel
» manages communication
» provides redundancy and fault tolerance

» Lets abstraction users focus on the computation to be done and let
infrastructure worry about how to parallelize it

» Applicable for parallelizing a wide variety of typical computations

LaToza GMU SWE 621 Fall 2020

13



class Timer extends React.Component {
constructor(props) {
super(props);
this.state = { seconds: 0 };

tick() {
this.setState(state => ({
seconds: state.seconds + 1
1))
¥

componentDidMount () {
this.interval = setInterval(() =>
this.tick(), 1000);
}

componentWillUnmount() {
clearInterval(this.interval);

}

render() {
return (
<div>
Seconds: {this.state.seconds}
</div>

ReactDOM. render(<Timer />, mountNode);

LaToza GMU SWE 621 Fall 2020


https://reactjs.org/

EXAMPLE: REACT COMPONENT

» React components do not need to worry about incrementally
changing output in response to every event

» Would be complicated to figure out for every possible state
change how to update output

» Instead, simply generate all new output whenever state no longer
consistent with output

» Components focus on state and output for single element of interface

» Can be reused in many contexts because loosely coupled to
parent and other ancestors

LaToza GMU SWE 621 Fall 2020 15



IN CLASS ACTIVITY

» Form a group of 2

» What's an abstraction you use frequently?
» What state does it have?

» What are the key operations?

» How does the abstraction simplify typical scenarios that
occur?

LaToza GMU SWE 621 Fall 2020

16



BENEFITS OF GOOD ABSTRACTIONS

» Interoperability - can pass common data structures around
» Really important for library interop

» Can think about the problem without having to think about some low
level details

» How is your data stored
» How computation is distributed to different servers in cluster
» Can predict behavior of operations, without reading implementation

» If common abstraction, that users are likely to be familiar with already

LaToza GMU SWE 621 Fall 2020 17



CHARACTERISTICS OF A GOOD ABSTRACTION

» Should do one thing and do it well

» If hard to name, that's a bad sign
» Implementation should not leak into abstraction

» If there's details that do not need to be exposed, do not
» Names matter

» Be self-explanatory, consistent, regular

LaToza GMU SWE 621 Fall 2020

18



CHALLENGES

» What operations to include? (a.ka., interface)
» Choices of operations has many consequences

» Not supporting necessary operations with state may make it
impossible to use it in desired way, or lead to inefficient client code

» Supporting fewer operations may cause client code to be repetitive
» Operation choices may constrain design space of implementations

» If different users have slightly different needs, how do you balance
conflicts?

LaToza GMU SWE 621 Fall 2020

19



IN CLASS ACTIVITY

» What's the most annoying abstraction you've ever used?

» What made it so hard to use?

LaToza GMU SWE 621 Fall 2020

20



HOW TO DESIGN A GOOD ABSTRACTION

Adapted from How to Design a Good APl and Why it Matters, Joshua Bloch

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf

LaToza GMU SWE 621 Fall 2020

21


https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf

GATHER REQUIREMENTS

» Often get proposed solutions instead
» Your job is to extract true requirements

» Should exist as scenarios where you abstraction will be
used

» What does user want to accomplish in this scenario?

LaToza GMU SWE 621 Fall 2020

22



START WITH SHORT 1 PAGE DRAFT

» Focus on key ideas rather than completeness

» Bounce draft off as many people as possible

» What additional scenarios do they suggest?

» How well does your abstraction support these scenarios?

» How can it support these better?

LaToza GMU SWE 621 Fall 2020

23



RULE OF THREES

» Should try out abstraction with at least three scenarios

» lterate design based on scenarios, ideally before publicly
releasing

» How can you make these typical scenarios easier for users?

» How can you enable more efficient implementations?

LaToza GMU SWE 621 Fall 2020 24



SUMMARY

LaToza

Abstractions shape how you write code and think about a problem

Design abstractions that cleanly capture typical operations on element
at the right level of detail

Good abstractions reduce boilerplate and let you focus on core
problems.

May require refactoring, as you have deeper insight into how to
represent key ideas more clearly

Important to keep abstractions consistent across team. Having similar
but competing abstractions leads to confusion and conversion
boilerplate.

GMU SWE 621 Fall 2020

25



IN CLASS ACTIVITY, STEP 1: BUILD ABSTRACTION

» Form groups of 2 or 3

» Build a abstraction(s) for a company org chart.

4

4
4
4

Each employee has a 0 or 1 bosses and 0 to n
subordinates

Employee may direct one or more operating units,
divisions, groups, or teams

Operating units contain divisions
Divisions contain groups

Groups contain teams

» Deliverable: for each element you create, describe member
elements in a class implementing this abstraction including

4
4

LaToza

State: what member variables does it contain

Operations: what methods does it define and what is their
signature

GMU SWE 621 Fall 2020

26



STEP 2: USE ABSTRACTION

» Switch abstractions with another group

» Using the other group's abstractions, sketch an algorithm
to promote a division to an operating unit. Each group
inside division remains a group.

LaToza GMU SWE 621 Fall 2020

27



LaToza

DESIGN ACTIVITY: DISCUSSION

» What did you learn about the practice of design from this
activity?

GMU SWE 621 Fall 2020

28



