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LOGISTICS

» HW2 due next week
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DESIGN NOTATIONS

» Previously looked at
domain modeling

» Goal: understand the
structure of problem
domain

» This time: design modeling

» Goal: understand the
structure of solutions
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NOTATIONS SUPPORTING DESIGN VS NOTATIONS FOR COMMUNICATION

» Design notations sometimes used a specification mechanism
(e.g., model driven software engineering)

» Goal is completeness.
» Want notation to rigorously model system.
» Might use model to generate code
» Also used as notation for exploring design space (this class)

» Goal is examine alternative designs, interrogate design
against specific scenarios, iterate design
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HISTORY OF DESIGN NOTATIONS

» As focus changed between different design problems,
notations changed with focus

» 1970s: function level design: flow charts, data flow
diagrams

» 1990s: OO design: UML class diagrams, sequence
diagrams

» 2000s: architecture: component and connectors
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DESIGN NOTATIONS

» Offer views that show some aspects of your system and
hide other

» Some important notation choices

» Show one configuration of the system or all possible
configurations

» Show steps in a sequence of a process or snapshot

» Show element as a black box or white box with internal
visible
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CHOOSING A DESIGN NOTATION

» Use notation that helps understand some aspect of design

LaToza

4

What types of elements exist and how are they related to each
other: class diagram

How data is passed between different elements in the system:
data flow diagram

How objects interact to implement a scenario: sequence
diagram

How a system transitions state as a result of interactions with
environment: state chart

GMU SWE 621 Fall 2020



NOTATIONS FOR DESIGN

» Class diagrams

» Data flow diagram
» Sequence diagram
» Statecharts

» Component and connectors
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CLASS DIAGRAMS
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CLASS DIAGRAMS

» Class: a class is n the
system

» Inheritance (lines
between): class A inherits
from class B

» Containment: class A has
a collection of instances
of class B
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DATA FLOW DIAGRAMS

Ordees

LaToza
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DATA FLOW DIAGRAMS

» Store or processing element (nodes): some system
element that performs some computation

» Flow (edge): data that is sent from one element to another
element
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SEQUENCE DIAGRAMS: VALIDATE PIN

Figure 11.2 Sequence Diagram for Validate PIN use case — Valid Pin
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SEQUENCE DIAGRAMS

» Each object has a lifeline (vertical dashed line)
» Time flows from top to bottom
» Objects send messages to each other

» Can describe alternative sequences with labels on
messages and boxes to group related behavior
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STATECHART

LaToza
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STATECHARTS

» State: a recognizable situation that exists over an interval
of time

» Event: input to state machine that causes transition

» Action (optional): output generated by system when state
transition occurs

LaToza GMU SWE 621 Fall 2020

16



LIFE CYCLES

» Elements may change over time, with different operations
and state available depending on which step an element s in

“Render Phase”

Pure and has no side effects.
May be paused, aborted or
restarted by React.

“Pre-Commit Phase”

Can read the DOM.

“Commit Phase”
Can work with DOM,

run side effects,
schedule updates.

LaToza
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Starting Point

LIFECYCLES I et ;
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COMPONENTS AND CONNECTORS
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COMPONENTS AND CONNECTORS

» Components: the principle computation elements and data
stores that execute in a system; instance, not type

» Connector: a runtime pathway of interaction between two
Oor more components

» Port: communication that occurs into or out of a component
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CONNECTORS

» Simplest example: method call

» But also any other way components interact

Notes

Connector type

Local procedure call

. \
Most common connector when components are all in the same

memory space.
b e

Remote procedure call

Concrete examples include SOAP and HTTP requests. Both
local and remote procedure call connectors are kinds of

request-reply connectors.

SQL or other datastore

Declarative language used to load/store data.

Pipe

Simple producer-consumer relationships between components.

Shared memory

Fast but complex communication.

| Event broadcast

Consumers depend only on events, not on producers.

\«;,ﬁEnterprise bus

Standardizes intra-application communication for assembly of
large systems.

-l
i, A SR

| *ﬂ‘@a!a drop

Distribution mechanism for shared data from single source.

Incremental replication

Handles state synchronization.

LaToza
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PORTS

» Could be a group of related public methods

» e.d., aJava Element implements IRunnable interface,
which becomes a port

» Could be a communication modality

» e.g., interaction that HTTP requests, database, event
system
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INTERROGATING A DESIGN MODEL

» Just like domain model, want to understand if a design
supports a scenario

» As you simulate each step in the scenario, does your
design still work?

» Are there additional elements or relationships you

should add?

» Is there a way to your design can support the scenario
more simply?

LaToza GMU SWE 621 Fall 2020 23



USING DESIGN NOTATIONS

» Notation offers a view with which to see design

» Key choice is what part of design do you want to focus on
» Modeling activities can be driven by risk

» What are you worried about not working

» What do you need to model to reduce this risk

» Might be possible to reduce by building a model; or by
building an implementation
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CHOICE OF ABSTRACTION LEVEL

» Systems are hierarchic, where elements
contains elements which contain elements

» How deep you choose to go should depend
on what you are trying to model and
understand it

» If you don't need some detail, don't
include it!

» May end up with very different models of
the same thing depending on what you
are trying to understand about it
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NOTATIONS AS STARTING POINTS

» If you need to express something that's not in your modeling
notations, it's ok to create new notation

» Can change visual variables of marks to communicate information

» e.g., color, shape, dashing

» Black edges are method call connectors and green edges are HTTP
request connectors

» Can add annotations (i.e., text) to elements or relations to explain
constraints or decisions

» e.g., this port is only available after system initialization
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SUMMARY

» Design notations help to think through a design
» Many choices about what to show

» One config of the system or all

» Steps in a sequence of a process or snapshot

» Element as a black box or with internals visible

» Often start with a scenario or risk, want to understand how
to support the scenario or reduce the risk through a design
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IN CLASS ACTIVITY
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IN CLASS ACTIVITY: COMMAND PATTERNS

» Encapsulate a request as an object

» Enables queue or logging requests, and supports
undoable operations

» Build a UML class diagram and sequence diagram
describing command pattern
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DESIGN ACTIVITY: PLUGIN ARCHITECTURE

» Your goal: design a plugin architecture for a drawing application

» In a plugin architecture, plugins are

» written by third parties (i.e., not you)
» dynamically loaded at runtime into your application

» invoked through an interface, without knowing anything about
implementation

» Deliverables:

» component and connector model showing elements in your system and
where plugins can connect

» state chart describing the lifecycle of a plugin
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