IIIIIIIIII

SWE 621
FALL 2020

NOTATIONS FOR DESIGN

LOGISTICS

» HW2 due next week

LaToza GMU SWE 621 Fall 2020

DESIGN NOTATIONS

» Previously looked at
domain modeling

» Goal: understand the
structure of problem
domain

» This time: design modeling

» Goal: understand the
structure of solutions

LaToza GMU SWE 621 Fall 2020

NOTATIONS SUPPORTING DESIGN VS NOTATIONS FOR COMMUNICATION

» Design notations sometimes used a specification mechanism
(e.g., model driven software engineering)

» Goal is completeness.
» Want notation to rigorously model system.
» Might use model to generate code
» Also used as notation for exploring design space (this class)

» Goal is examine alternative designs, interrogate design
against specific scenarios, iterate design

LaToza GMU SWE 621 Fall 2020

HISTORY OF DESIGN NOTATIONS

» As focus changed between different design problems,
notations changed with focus

» 1970s: function level design: flow charts, data flow
diagrams

» 1990s: OO design: UML class diagrams, sequence
diagrams

» 2000s: architecture: component and connectors

LaToza GMU SWE 621 Fall 2020

DESIGN NOTATIONS

» Offer views that show some aspects of your system and
hide other

» Some important notation choices

» Show one configuration of the system or all possible
configurations

» Show steps in a sequence of a process or snapshot

» Show element as a black box or white box with internal
visible

LaToza GMU SWE 621 Fall 2020

CHOOSING A DESIGN NOTATION

» Use notation that helps understand some aspect of design

LaToza

4

What types of elements exist and how are they related to each
other: class diagram

How data is passed between different elements in the system:
data flow diagram

How objects interact to implement a scenario: sequence
diagram

How a system transitions state as a result of interactions with
environment: state chart

GMU SWE 621 Fall 2020

NOTATIONS FOR DESIGN

» Class diagrams

» Data flow diagram
» Sequence diagram
» Statecharts

» Component and connectors

LaToza GMU SWE 621 Fall 2020

CLASS DIAGRAMS

LaToza GMU SWE 621 Fall 2020

CLASS DIAGRAMS

» Class: a class is n the
system

» Inheritance (lines
between): class A inherits
from class B

» Containment: class A has
a collection of instances
of class B

LaToza GMU SWE 621 Fall 2020

10

DATA FLOW DIAGRAMS

Ordees

LaToza

GMU SWE 621 Fall 2020

11

DATA FLOW DIAGRAMS

» Store or processing element (nodes): some system
element that performs some computation

» Flow (edge): data that is sent from one element to another
element

LaToza GMU SWE 621 Fall 2020

12

SEQUENCE DIAGRAMS: VALIDATE PIN

Figure 11.2 Sequence Diagram for Validate PIN use case — Valid Pin

LaToza

2.9:

|
‘ I
3 2.7 [Valid]: Valid PIN (Account #s)

|
|
|
|
[
|
I
|
|
3
| |
2.8: Display Menu (Account #s)

—
|

|
|
1
I
Selection Menu |
T
|
|

GMU SWE 621 Fall 2020

|
|
|
|
2.8a: Update Status (PIN Valid, Account #s) i
1
|
|
|
|

«external 1/0 «external «l/Oo» «entity» «state dependent «user interaction» . «subsystem»
device» user» : CardReader : ATMCard control» : Customer) «entity» . : Banking
: CardReader :ATM Interface . ATMControl Interaction : ATMTransaction Service
: Customer ‘ | ‘
} Keypad | } ; | ; }
| Display } } } | | |
| } | | | | | |
sd PIN Validation i | | | i | |
| | |
| : Card Reader Input i i | i | |
[; | | | | | |
| \ | I | [|
| | 1.1: Card Id, Start Date, Expiration Date | | | |
I | f = I | I I
\ \ | \ | \ \
i	1.2: Card Inserted				
		; =~ 1.3:GetPIN			
				>	
		1.4: PIN Prompt			
T } ! !					
‘			‘		
1 i 2: PIN Input	i i				
1 :		7	:		
i } i 2.1: Card Request i i i					
}	T				
i } 2.2: Card Id, Start Date, Expiration Date	i i				
!	‘ ! 1				
	i	2.3: Card Id, PIN, Start Date, Expiration Date i			
I } ! } i A\ }					
i	i	2.4: PIN Validation Transaction !			
: 1 :	=	:			
I .					
	i 2.5: PIN Entered (PIN Validation Transaction)	i			
I }	= ;				
‘	! } !				
i 1 i 2.6: Validate PIN (PIN Validation Transaction) i					
1	‘	~			
I	I				
:	: :				
—					
	T				
! [! !

SEQUENCE DIAGRAMS

» Each object has a lifeline (vertical dashed line)
» Time flows from top to bottom
» Objects send messages to each other

» Can describe alternative sequences with labels on
messages and boxes to group related behavior

LaToza GMU SWE 621 Fall 2020

14

STATECHART

LaToza

(Idle

event 1.2: Card Inserted / ‘
. 1.3: Get PIN
action
2A.1: Cancel /
ﬂ’rocessing \ 2A.2: Eject,
Customer Input 2A.2a: Display Cancel

(

Waiting for PIN

Ejecting

N

/

2.5, 2.7A.10: PIN Entered / 2.7A.2: Invalid PIN /
2.6, 2.7A.11: Validate PIN 2.7A.3: Invalid PIN Prompt
2.7B: Third Invalid PIN /
2.7B.1: Confiscate
\
Validating PIN
J

2.7C: Card Stolen, Card Expired /
2.7C.1: Confiscate,

2.7 [Valid]: Valid PIN / 2.7C.1a: Update Status
2.8: Display Menu,

2.8a: Update Status

Waiting for
Customer
Choice

\ /

GMU SWE 621 Fall 2020

Confiscating

state

15

STATECHARTS

» State: a recognizable situation that exists over an interval
of time

» Event: input to state machine that causes transition

» Action (optional): output generated by system when state
transition occurs

LaToza GMU SWE 621 Fall 2020

16

LIFE CYCLES

» Elements may change over time, with different operations
and state available depending on which step an element s in

“Render Phase”

Pure and has no side effects.
May be paused, aborted or
restarted by React.

“Pre-Commit Phase”

Can read the DOM.

“Commit Phase”
Can work with DOM,

run side effects,
schedule updates.

LaToza

Mounting

v

constructor

v

getDerivedStateFromProps

Updating
New props setState()
v v
shouldComponentUpdate
A

A

forceUpdate()

render

v

l

componentDidMount

\

getSnapshotBeforeUpdate

l
l

React updates DOM and refs

componentDidUpdate

Unmounting

7

componentWillUnmount

GMU SWE 621 Fall 2020

17

Starting Point

LIFECYCLES I et ;

appl: passive open N
send:<nothing> N

N\

aI)pI: active open

|

|

|

|

LISTEN send:SYN |
|

|

|

|

_»' passive open

» State charts o SYNAGK -
Can be /./'r;(.:v: RST '\4

recv: SYN

d ----------- T send:SYNACK ™ T T T TTT ortimeout %
U S e tO : active open i
, recv: ACK recv: SYN,ACK |
. : send: <nothing> send: ACK .
depict the . !
I . f I f appl: close ESTABLISHED :
[ecyC eo ! kol -7 recv: FIN I
| appl: close send:ACK ive ol .
I ! send:FIN passive close ;
I e X
an element ! CLOSE_WAIT |
| v ‘j FIN |] !
recv:
FlN_WAIT_1 * ‘Send:ACK - —p CLOS'NG appl: close |
. N : send:+FIN |
recv: ACK recv: FINACK reey: ACK recv: ACK [
send: <nothing> send:ACi(send:<nothing> | LAST_ACK ' ‘send:<nothing> "|
. |
! '~ | |
v A v X
(recv: FIN

l FIN_WAIT 2 '. " sond:ACK ™" _>| TIME WAIT '_ p!

active close - » normal transitions for client

—p normal transitions for server

appl: state transition taken when appl. issues operation
recv: state transition taken when segment is received
send: what is sent for this transition

LaToza GMU SWE 621 Fall 2020 18

COMPONENTS AND CONNECTORS

L :
pDesk : : .
C—>{] .Library Presentation | rlibrarianQuery . InventoryDB
LibrarianQuery
rCheckoutT rlny entoryT P plnventoryDB
plnventory . rinventoryDB
. Library Core
pCheckout__ rBorrowerDB
—
| DB
b l]-'pBorrowerQuery pEctower
f;{pWQbE__)E . BorrowerPresentation | rBorrowerQuery - BorrowerDB D_)DrPeopIe
—— Connector Instance O Port Instance
i |——_1 ComponentInstance —> Binding

LaToza GMU SWE 621 Fall 2020

COMPONENTS AND CONNECTORS

» Components: the principle computation elements and data
stores that execute in a system; instance, not type

» Connector: a runtime pathway of interaction between two
Oor more components

» Port: communication that occurs into or out of a component

LaToza GMU SWE 621 Fall 2020

20

CONNECTORS

» Simplest example: method call

» But also any other way components interact

Notes

Connector type

Local procedure call

. \
Most common connector when components are all in the same

memory space.
b e

Remote procedure call

Concrete examples include SOAP and HTTP requests. Both
local and remote procedure call connectors are kinds of

request-reply connectors.

SQL or other datastore

Declarative language used to load/store data.

Pipe

Simple producer-consumer relationships between components.

Shared memory

Fast but complex communication.

| Event broadcast

Consumers depend only on events, not on producers.

\«;,ﬁEnterprise bus

Standardizes intra-application communication for assembly of
large systems.

-l
i, A SR

| *ﬂ‘@a!a drop

Distribution mechanism for shared data from single source.

Incremental replication

Handles state synchronization.

LaToza

GMU SWE 621 Fall 2020

21

PORTS

» Could be a group of related public methods

» e.d., aJava Element implements IRunnable interface,
which becomes a port

» Could be a communication modality

» e.g., interaction that HTTP requests, database, event
system

LaToza GMU SWE 621 Fall 2020

22

INTERROGATING A DESIGN MODEL

» Just like domain model, want to understand if a design
supports a scenario

» As you simulate each step in the scenario, does your
design still work?

» Are there additional elements or relationships you

should add?

» Is there a way to your design can support the scenario
more simply?

LaToza GMU SWE 621 Fall 2020 23

USING DESIGN NOTATIONS

» Notation offers a view with which to see design

» Key choice is what part of design do you want to focus on
» Modeling activities can be driven by risk

» What are you worried about not working

» What do you need to model to reduce this risk

» Might be possible to reduce by building a model; or by
building an implementation

LaToza GMU SWE 621 Fall 2020

24

CHOICE OF ABSTRACTION LEVEL

» Systems are hierarchic, where elements
contains elements which contain elements

» How deep you choose to go should depend
on what you are trying to model and
understand it

» If you don't need some detail, don't
include it!

» May end up with very different models of
the same thing depending on what you
are trying to understand about it

LaToza GMU SWE 621 Fall 2020

25

NOTATIONS AS STARTING POINTS

» If you need to express something that's not in your modeling
notations, it's ok to create new notation

» Can change visual variables of marks to communicate information

» e.g., color, shape, dashing

» Black edges are method call connectors and green edges are HTTP
request connectors

» Can add annotations (i.e., text) to elements or relations to explain
constraints or decisions

» e.g., this port is only available after system initialization

LaToza GMU SWE 621 Fall 2020 26

SUMMARY

» Design notations help to think through a design
» Many choices about what to show

» One config of the system or all

» Steps in a sequence of a process or snapshot

» Element as a black box or with internals visible

» Often start with a scenario or risk, want to understand how
to support the scenario or reduce the risk through a design

LaToza GMU SWE 621 Fall 2020

27

IN CLASS ACTIVITY

aaaaaa

22222222222222222

28

IN CLASS ACTIVITY: COMMAND PATTERNS

» Encapsulate a request as an object

» Enables queue or logging requests, and supports
undoable operations

» Build a UML class diagram and sequence diagram
describing command pattern

LaToza GMU SWE 621 Fall 2020

29

DESIGN ACTIVITY: PLUGIN ARCHITECTURE

» Your goal: design a plugin architecture for a drawing application

» In a plugin architecture, plugins are

» written by third parties (i.e., not you)
» dynamically loaded at runtime into your application

» invoked through an interface, without knowing anything about
implementation

» Deliverables:

» component and connector model showing elements in your system and
where plugins can connect

» state chart describing the lifecycle of a plugin

LaToza GMU SWE 621 Fall 2020 30

