SWE 621
SPRING 2020

FOLLOWING A DESIGN

© THOMAS LATOZA

LOGISTICS

» HW4 due next week

LaToza GMU SWE 621 Spring 2020

IN CLASS EXERCISE: INVERSION OF CONTROL

» Problem: imagine a layered architecture,
where the lowest level (Layer A) should
not depend on a higher layer (Layer B).
When an event occurs in layer A happens
(e.g, network packet arrives), B should
find out.

» Propose a design to achieve this.

LaToza GMU SWE 621 Spring 2020

FOLLOWING A DESIGN

» So far we've considered how design choices can help system achieve
quality attributes

» abstractions, architectural styles, design patterns

» by minimizing risk, by following domain model, hiding decisions likely
to change

» What happens when a developer makes a code change that fails to
follow the constraints imposed by the design decision?

» How do you prevent developers from not following design decisions?
» What happens when the design decision should change?
» Requirement changes may lead to decisions no longer being effective.

» May find better design choices as better understand problem.

LaToza GMU SWE 621 Spring 2020

EXAMPLE: HOW SOFTWARE EVOLVES OVER TIME

» ATM Simulator

g.?< done
i imes

» Describes

behavior of
ATM machine

invalidcard

CardInvalid

as user dofe abortdnsaction,y . yrancakion VAP
interacts with done (‘s
machine poyamout
pey
e

PrintReceipt

LaToza GMU SWE 621 Spring 2020

V1: STATE PATTERN

» Decisions

» Use the state
pattern

» Put data in
context class

» Make context a
property of
ATMState

» Use command
line for Ul

LaToza

ATMMain

Note that:

- get/set methods have been omitted
- we don't include all states and events in the mode

+main(in Args[] : String)
I

N
ATMContext

-state : ATMState ATMState

-card : String -context : ATMContex{

-pincodesentered :intf _ _ _ __ _____ __ _ Sf+abortTransaction()

+abortTransaction() +proceed()

+proceed() +payAmount()

+payAmount() +invalidPIN()

+invalidPIN() /\

EjectCard Pay PinCodelnvalid

+abortTransaction() +payAmount() +invalidPIN()
+proceed()

GMU SWE 621 Spring 2020

V1: STATE PATTERN

» ATMContext stores variables used by ATMState subclasses
» Need to be shared between subclasses
» Everything needs references to context class

» ATMContext contains many methods that only forward the call
to the current state

» ATMContext does not check whether a particular event is
supported by the current state

» Potential for defects

LaToza GMU SWE 621 Spring 2020

V2: FLYWEIGHT

» Goals

LaToza

» Memory

usage:
Instantiate
each state
class only
once

Performance:
reduce
startup time
for simulator

ATMMain

+main(in Args(] : String)
1

I
~

ATMContext

-state : ATMState
-card : String
-pincodesentered : int

Note that:

- we don't include all states and events in the mode

- get/set methods have been omitted ll]

ATMState

+abortTransaction(in ¢ : ATMContext
+proceed(in ¢ : ATMContext)
+payAmount(in ¢ : ATMContext)
+invalidPIN(in ¢ : ATMContext)

>{+abortTransaction(in ¢ : ATMContext

+proceed(in ¢ : ATMContext)
+payAmount(in ¢ : ATMContext)
+invalidPIN(in c : ATMContext)

yAN

EjectCard

+abortTransaction(in ¢ : ATMContext)
+proceed(in ¢ : ATMContext)

Pay

+payAmount(in ¢ : ATMContext)

GMU SWE 621 Spring 2020

PinCodelnvalid

+invalidPIN(in ¢ : ATMContext

V2: FLYWEIGHT

» Each state class is only created once

» Removed the context property from ATMState, added
context parameter in each event method

LaToza GMU SWE 621 Spring 2020

V3: MULTIPLE INSTANCES

» Goals

LaToza

» Parallelism:

enable each
simulator to
run in a
separate
thread

Ul: support
multiple
simulators

Note that:

- get/set methods have been omitted
- we don't include all states and events in the mode!

«datatype» ATMMain
JFrame
+main(in Args(] : String)
1
N
ATMContext
-state : ATMState
InpOutFrame -card : String

-outField : JTextArea
-inField : JTextField f--------

-pincodesentered : int
-br : BufferedReader
-myGUI : InpOutFrame

ATMState

-pw : PipedWriter
+abortTransaction(in ¢ : ATMContext
+pr°ceed(in c: ATMContext) e - - >+ab°nTransacu°n(in ¢ : ATMContext
+payAmount(in ¢ : ATMContext) +proceed(in ¢ : ATMContext)
+invalidPIN(in ¢ : ATMContext) +payAmount(in ¢ : ATMContext)
+invalidPIN(in ¢ : ATMContext)
EjectCard Pay

+abortTransaction(in ¢ : ATMContext
+proceed(in ¢ : ATMContext)

+payAmount(in ¢ : ATMContext)

GMU SWE 6

21 Spring 2020

PinCodelnvalid

+invalidPIN(in c : ATMContext

10

V3: MULTIPLE INSTANCES

» Replaced command line with GUI, each containing
multiple windows

» Each window associated with ATMContext
» GUI connected to ATMContext with pipes and filters

» Whenever a user enters data, can read from |IOStream
from GUI just as if it were the command line

LaToza GMU SWE 621 Spring 2020

11

V4: DELEGATION-BASED APPROACH

» Goals

» Configurability: allow for adding new states and
transitions at runtime (e.g., machine runs out of paper)

» Separation of concerns: decouple state machine further

LaToza GMU SWE 621 Spring 2020

12

V4: DELEGATION-BASED APPROACH

LaToza

public class ATMSimulator extends FSMContext {
static FSMState ejectcard = new FSMState(“ejectcard”);
static FSMState pay = new FSMState (“pay’);
static FSMState pincodeinvalid = new FSMState(“pincodeinvalid™);
static FSMState cardvalid = new FSMState(“cardvalid”);
...// more state definitions
static { // static -> it’s executed only once
pincodeinvalid. setInitAction(
new AbstractFSMAction() { // Inner class definition
public void execute(FSMContext fsmc) {
...// desired behavior

}
f)s

pincodeinvalid. addTransition(cardvalid, new DummyAction(), “validcard”);
...// more transition and action definitons

h

...//rest of the class

b

FSMState
FSMContext -name : String
- "FSMState b ------- -initAction : FSMAction
;u.rrents;‘tafte S NState. St >-exitAction : FSMAction
lspatchiin eventName : String) +dispatch(in eventName : String, in context : FSMContext)

+addTransition(in transition : FSMTransition, in eventName : String)

\/
FSMAction FSMTransition
i — -targetState : FSMState
- -myAction : FSMAction
+exacute(in context : FSMContext) +execute(in context : FSMContext)

GMU SWE 621 Spring 2020

13

V4: DELEGATION BASED APPROACH

» User delegation rather than inheritance
» States no longer subclass FSMState
» Transitions are now first class

» Transitions delegate behavior to Action

LaToza GMU SWE 621 Spring 2020

14

Va: DECOUPLING

FSM

startState : FSMState

} G O a IS states : Hashtable

addState(in init : FSMAction, in name : String, in exit : FSMAction)
addTransition(in source : String, in target : String, in action : FSMAction, in event : String)

/N
|
fmmmmmmmmmmmm—m—mmm 4
|
» Reduce use of |
L FSMState
. FSMContext name : String
static currentState - FSMState | ________ sfinitAction : FSMAction
fsm : FSM exitAction : FSMAction
dispatch(in eventName : String) dispatch(in eventName : String, in context : FSMContext)
addTransition(in transition : FSMTransition, in eventName : String)
I
|
|
|
|
|
|
A/
FSMAction FSMTransition
A —— targetState : FSMState
: |myAction : FSMAction
execute(in context : FSMContext) execute(in context : FSMContext)

» Introduce FSM, which separate responsibility of storing FSM
from dispatching events

LaToza GMU SWE 621 Spring 2020

SUMMARY OF EVOLUTION

» Later decisions revised earlier

Version Decision Effect on system
vl 1.1 Use the State pattern For each state in a FSM, a subclass of State has
to be created
1.2 Put data in context class Each event method in the State subclasses refers
to the Context class to access data
1.3 Make context a property of ATMState The context is available to all State instances
1.4 Use command line for Ul The code is littered with calls to System.in and
System.out
v2 2.1 Make instances of State static The keyword static needs to be put before
instantiations of State subclasses
2.2 Remove context property from ATM- All event methods need to be edited
State and use parameter in event
method instead
v3 3.1 Create a GUI A class 1s added to the system
3.2 Replace System.in and System.out All event methods need to be revised
calls with calls to the GUI
33 Apply the pipes and filters for commu- The changes needed in the event methods are
nication between GUI and simulator relatively small
v4 4.1 Refactor the system to use delegation New classes are created that model the behaviour
(Van Gurp and Bosch, 1999). of states and transitions. All existing State sub-
classes are removed from the system.
4.2 Use the command pattern to separate For each event method in the State subclasses, an
behaviour from structure inner class needs to be created that implements
the FSMAction interface. An instance of such
classes needs to be associated with the appropri-
ate transition(s)
4.3 Introduce state exit and entry events to The event dispatching mechanism needs to be
the FSM model changed to support this type of events
vS 5.1 Introduce factory classes for states and A new class is created. The initialisation code for
transitions FSMs can be made non static and becomes much
simpler
LaToza GMU SWE 621 Spring 2020

16

SUMMARY OF EVOLUTION

» Design decisions changed over time
» Driven by making a particular usage or scenario easier
» Reasons may not be apparent without knowing these scenarios

» Easy to lose track of decisions

» Constant change makes it harder to stay up to date with the current
version of each design decision

» Risk that might make change inconsistent with design
» Risk that when changing a decision might not update everything

required

LaToza GMU SWE 621 Spring 2020

17

SOFTWARE EVOLUTION

» As requirements are added and change, code must
implement these changes.

» This requires making changes to system that are either
» consistent with the existing design

» changing decisions to better accommodate these new
requirements, updating the relevant implementation

LaToza GMU SWE 621 Spring 2020 18

ARCHITECTURAL EROSION

» Software architectural erosion (or decay): the gap between
the architecture as designed as an as built

» e.g., intended to be a pipes and filters architecture, but
isn't entirely

» Consequences of design decision are no longer achieved
» if decision helped enable maintainability, it does no longer

» May sometimes lead to behaviorally observable defects, but
not always

LaToza GMU SWE 621 Spring 2020 19

CODEBASES TEND TO DECAY OVER TIME

» Study of large software system, as observed through commit
data

» Over time
» Increase in # of files touched per commit
» Increase in # of modules touched per commit
» These increases lead to increased effort to make change

» Relationship between edits and defects introduced

S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus. Does code decay? Assessing the evidence from change
management data. IEEE Trans. Softw. Eng. (TSE), 27(1):1-12, Jan 2001.

LaToza GMU SWE 621 Spring 2020

20

Component instance

Publish port instance

B Subscribe port instance

Pub-sub connector instance

AN EXAMPLE e

» You've built a system following the publish / subscribe
architectural style.

» Wanted to enable adding and removing components without
impacting existing code

» Constraints
» Components do not know why an event is published

» Subscribing components do not know who published event,
depending on event type rather than specific publisher

LaToza GMU SWE 621 Spring 2020

21

IN CLASS ACTIVITY

» Imagine a publish subscribe system which contains the
following events

» Userlnput, ScreenResize, AppStart, AppClosing

» Imagine a developer who implements functionality which
should execute whenever the screen resizes.

» To do this, they look for a message from the RenderLoop
class rather than looking for a ScreenResize event.

» What are potential consequences of this?

LaToza GMU SWE 621 Spring 2020

22

TECHNICAL DEBT

» Sometime you know that you've broken the design, but
still decide to do it anyway.

» Why? Schedule pressure.
» But.... then have to live with the consequences

» Changes get more expensive

LaToza GMU SWE 621 Spring 2020

23

MANAGING TECHNICAL DEBT

» Debt metaphor: deferred some of the work necessary to
complete changes to the future

» It passes these tests, but violates design principles that
enable extensibility and maintainability.

» Need to have a plan to pay down debt.

» Plan work to improve design to make it again consistent
with design.

LaToza GMU SWE 621 Spring 2020

24

WHAT T0 DO ABOUT CODE DECAY?

» Prevent code decay

» Better communicate design to developers

» Check that changes are consistent with design
» Fix code decay after it occurs

» Refactor code to be consistent with design

» Change code to be consistent with design changes

LaToza GMU SWE 621 Spring 2020

25

BETTER COMMUNICATE DESIGN TO DEVELOPERS

» How does a developer know
that there's a design decision
they should follow?

» Ask a teammate
» Read a comment
» Read documentation

» e.g., in our codebase, we
only create element x by
doingy.

LaToza GMU SWE 621 Spring 2020

26

CHECK THAT CHANGES ARE CONSISTENT WITH DESIGN

» Code reviews offer important
quality gate

» Before any change is committed,
another developer must review the
a delta of the code change

» That developer looks for
potential defects in the code as
well as violations of design
decisions.

» Gives comments, which original
developer must then fix before
code is committed

client/src/lua/mod.rs

97 - 1

84 4+ pub(crate) struct OutputHandler;
85 4

86 4 impl OutputHandler {

‘ Timidger on May 6, 2019 Member

Why is this output handling code in 1lua/mod.rs to begin with? Shouldn't it be in
wayland_obj/output.rs ?

client/src/lua/mod.rs

112 } else {

113 4 // TODO We may not always want to add a new screen
114 & // see how awesome does it and fix this.

115 4 trace!("Allocating screen for new output");

‘ Timidger on May 6, 2019 Member

Either remove or give more information (e.g. resolution, positioning, etc.). The more
information the easier it is to debug potential problems later.

(Side note: I'm ok with adding debug information that is not present in AwesomeWM. It
should just make sense of course to add it, as we don't want to fill up user's harddrives with
needless debug prints)

LaToza GMU SWE 621 Spring 2020

LaToza

BETTER SOLUTION: TOOL SUPPORT FOR SYNCHRONIZING DECISIONS AND CODE

package com.crowdcoding.commands;

import com.crowdcoding.entities.artifacts.DesignDoc;
import com.crowdcoding.servlets.ThreadContext;

public abstract class DesignDocCommand extends Command {
protected long DesignDocId;

// This function is called when a new DesignDoc must be created.
@ public static DesignDocCommand create(String title, String description, boolean i
return null;
}

private DesignDocCommand(Long DesignDocId) {
this.DesignDocId = DesignDocId;
queueCommand(this) ;

}

// All constructors for DesignDocCommand MUST call queueCommand and the end of
// the constructor to add the
// command to the queue.
private static void queueCommand(Command command) {
ThreadContext threadContext = ThreadContext.get();
threadContext.addCommand (command) ;

}

of public void execute(final String projectId) {
if (DesignDocId != @) {

DesignDoc designDoc = DesignDoc.find(DesignDocId);

if (designDoc null)
System.out
.println("error Cannot execute DesignDocCommand. Could not fi
+ DesignDocld);
else {

execute(designDoc, projectId);
}

} else
execute(DesignDoc: null, projectld);

}

public abstract void execute(DesignDoc DesignDoc, String projectld);

Rules applicable for File:
CrowdCode-master/CrowdCoding/src/com/crowdcoding/comm

ands/DesignDocCommand.java

All Microtask commands must be handled by Command subclasses (view the rule and all snippets) a »

IF a method is a static method on Command THEN it should implement its behavior by constructing a new
Command subclass instance. The Command class contains a number of static methods. Each method creates a
specific type of Command by invoking the constructor of the corresponding subclass.

wicrotask | Command-
Examples@fout o) Violated@out of)
Violated snippet for this file

public static (’ ’

') {
return null;
Violated snippet for other files
No snippet

Commands must implement execute (view the rule and all snippets) a w

IF a class is a subclass of Command THEN it must implement execute. Commands represent an action that will
be taken on an Artifact. In order for this action to be invoked, each subclass of Command must implement an
execute method. This method should not be directly invoked by clients, but should be used by the Command
execution engine.

Examplesout o) Violatedout o)

Sahar Mehrpour, Thomas D. LaToza, and Rahul K. Kindi. (2020). Active Documentation: Helping Developers Follow Design Decisions. Symposium on Visual Languages and Human-Centric Computing.

GMU SWE 621 Spring 2020

28

FIX CODE DECAY AFTER IT OCCURS

» Make changes that improve the design of the code without changing the
behavior: refactoring

» Goal: before and after change, code should behave exactly the same
» Involves moving and renaming functionality
» Modern IDEs support automatic low-level refactorings

» e.g., move method.

» Finds references to functionality and updates

» Tries to guarantee that defects are not inserted.
» Often need to make many low-level changes to achieve higher-level goal

» Many may not be supported directly through automated refactoring

LaToza GMU SWE 621 Spring 2020 29

EXAMPLE:

REFACTORING SUPPORT

8 CodeRetractoring Microssh Vil S M T T

File Edit View

@ - " 5

NERR SN

LMl Program.cs >

,;@(—edeRefra
[=)

Refactor[Project Build Debug Team Data Tools Architecture Test ReSharper Analyze W

atZ Rename...) ‘Wlndows Phone 7 Emulator ~| | Debug v
¢ Extract Method... Ctrl+R, Ctr+M) :[Q)| ¢ ¢ ab 528 :
@l Encapsulate Field...

=¥ BExtract Interface... Ctrl+R, Ctrl+I

ah Remove Parameters... Ctrl+R, Ctrl+V -
3b Reorder Parameters...

U
f
~
— >,
y -
2
!

LaToza

string firstName = "Jalpesh”;

AN

string lastName = "Vadgama”;

NN

PrintMyName(firstName, lastName);

¥

private static void PrintMyName(string firstName, string lastName)

{

Console.Writeline(string.Format("FirstName:{0}", firstName));
Console.lWriteline(string.Format("LastName:{0}", lastName));

GMU SWE 621 Spring 2020 30

SOME EXAMPLES OF REFACTORINGS

LaToza

Encapsulate field - force code to access the field with getter and setter methods
Generalize type - create more general types to allow for more code sharing
Replace conditional with polymorphism

Extract class: moves part of the code from an existing class into a new class.
Extract method: turn part of a larger method into a new method.

Move method or move field: move to a more appropriate class or source file

Rename method or rename field: changing the name into a new one that better
reveals its purpose

Pull up: move to a superclass

Push down: move to a subclass

GMU SWE 621 Spring 2020

31

SUMMARY

LaToza

As software evolves, its requirements may change, necessitating
changes to the implementation

Code that is inconsistent with the design introduces code decay,
where expected consequences of design decisions are no
longer realized

Code decay makes code harder to change and can lead to
defects

To reduce code decay, important to prevent code decay and fix
it when it occurs

GMU SWE 621 Spring 2020 32

IN CLASS ACTIVITY

GMU SWE 621 Spring 2020

33

SKETCH V6 ATM IMPLEMENTATION

» Form group of 2 or 3, pick an OO language (e.g., Java, C++, Python)
» Start with V5 ATM implementation
» FSM = Finite State Machine
» Goal: make it possible to have multiple ATM implementations for separate ATM machines.

» Clients should be able to request an ATM be created without having to depend on
which ATM implementation is created

» Client ATM atm = getNewATM(); // Implementation could decide to return
different FSM without breaking client

» Code should focus only on portion of implementation relevant to ATM creation and ATM
state management

» Deliverables:

» Sketch of V6 ATM implementation

LaToza GMU SWE 621 Spring 2020 34

DESIGN ACTIVITY: STEP 2: DISCUSSION

GMU SWE 621 Spring 2020

35

