
DESIGN FOR REUSE
SWE 621

SPRING 2021

© THOMAS LATOZA

LaToza GMU SWE 621 Spring 2021

LOGISTICS

▸ HW5 due on 4/20

▸ Project presentation on 4/27

▸ Will focus on a single design decision common to your reference
system and two additional systems

▸ For each of the three systems, describe the alternative design choices
each of these systems made. What are the consequences of these
design choices?

▸ Presentation should be 10 minutes. To ensure we have enough time
for all presentations, we will stop you and you will lose points if go
over 11 mins. Please practice to ensure your talk is the correct length.

2

LaToza GMU SWE 621 Spring 2021

FINAL EXAM

▸ Open book

▸ Comprehensive (covers all lectures and readings)

▸ Take place during scheduled final exam time slot

▸ Entirely short answer and essay questions

3

LaToza GMU SWE 621 Spring 2021

OVERVIEW

▸ What is reuse?

▸ What can make it hard?

▸ How can you design for reuse to make it easier?

4

LaToza GMU SWE 621 Spring 2021

IN-CLASS ACTIVITY

▸ You're using a framework you've never used before (e.g.,
React, Enterprise Java Beans, ASP.NET)

▸ You're writing some code, but it just doesn't seem to work.

▸ What do you do next?

5

LaToza GMU SWE 621 Spring 2021

WHAT IS REUSE?

▸ Making use of previously written code rather than writing new code

▸ Often, reuse takes form of reusing a library or a framework

▸ Once made choice to reuse a library or framework, need to
understand how to achieve specific behavior with library or
framework

▸ Often finding code snippets that achieve desired behavior

6

LaToza GMU SWE 621 Spring 2021

APPLICATION PROGRAMMING INTERFACE (API)

▸ Boundary between code to be reused (library
or framework) and client which reuses code

▸ We've looked previously at abstractions

▸ Design goal: chose operations which make
key reuse scenarios short

▸ Choice of what operations to support one
of the most important choices in API
design

▸ Today we'll look more broadly at
considerations in designing code for reuse

7

LaToza GMU SWE 621 Spring 2021

API QUALITY ATTRIBUTES
▸ Largely similar to normal system design, but for

client code

▸ Usability

▸ Learnability

▸ Error prevention

▸ Consistency

▸ Matching user mental models

▸ Power

▸ Extensibility: ability for users to create new
elements

▸ Evolvability: ability for designers to change API

▸ Performance: speed, memory consumption

▸ Security

8

LaToza GMU SWE 621 Spring 2021

SOME EXAMPLES OF API DESIGN DECISIONS

9

LaToza GMU SWE 621 Spring 2021

MORE API DESIGN DECISIONS

▸ Documentation

▸ What to cover

▸ How to communicate: descriptions of methods?
examples?

▸ Audience: experts? novices? users of competing APIs?

10

LaToza GMU SWE 621 Spring 2021

WHAT CAN MAKE REUSE HARD?

▸ Software engineering researchers run user studies to
identify general strategies and challenges developers
experience

▸ User experience researchers at companies with large API
ecosystems (e.g., Google, Facebook, Microsoft) run user
studies to evaluate and improve specific API designs

11

LaToza GMU SWE 621 Spring 2021

SOME CHALLENGES WITH REUSE
▸ Design barriers—inherent cognitive difficulties of the programming problem, separate from

notation used

▸ I don’t know what I want the computer to do

▸ Selection barriers—finding programming interfaces available to achieve a particular behavior

▸ I don’t know what to use

▸ Coordination barriers—constraints governing how languages & libraries can be combined

▸ I don’t know how to make them work together

▸ Use barriers—determining how API how to use API

▸ I don’t know how to use it

▸ Understanding barriers—environment properties such as compile & runtime errors that prevent
seeing behavior

▸ It didn’t do what I expected

▸ Information barriers—environment properties that prevent understanding runtime execution state

▸ I think I know why didn’t behave as expected, but don’t know how to check

12

LaToza GMU SWE 621 Spring 2021

CHALLENGES WITH REUSE
▸ Mapping an abstract conceptual solution into the appropriate elements

▸ “How do I create a rectangle? Why is there no Rectangle tool?”

▸ Understanding control & data flow, hidden dependencies due to run-time binding or
inheritance, between classes in the API

▸ “I’m over-riding SelectionTool, and in particular mouseDown() so that when the figure
is clicked the box is drawn. This bit works, however when trying to drag the figure, if I
do something similar the rectangle flickers like mad.”

▸ Understanding how functionality works

▸ “How does ... work?”, “What does ... do?” or, “Where is ... defined/created/called?”

▸ Making changes consistent w/ architectural constrains of API

▸ Violating constraints of MVC architecture by passing references in prohibited ways

13

Douglas Kirk, Marc Roper, and Murray Wood. 2007. Identifying and addressing problems in object-oriented framework
reuse. Empirical Softw. Eng. 12, 3 (June 2007), 243-274.

LaToza GMU SWE 621 Spring 2021

VOCABULARY PROBLEM

▸ API users are familiar with concepts using one set of
terminology.

▸ API, tutorials, or other resources use different terminology

▸ Domain driven design suggests that all terminology should
be the same. But what happens when it isn't?

▸ How do API users find the right concepts with alternative
terms?

14

LaToza GMU SWE 621 Spring 2021

CHALLENGES MAY VARY BY CONTEXT

▸ Size of desired snippet

▸ Reusing a line of code? A whole algorithm?

▸ Alternatives

▸ How many alternatives are there? How important is it to find the best
alternative?

▸ Integration

▸ What libraries or frameworks does a snippet require? How can they be
integrated?

15

LaToza GMU SWE 621 Spring 2021

SOME EXAMPLES OF REUSE TECHNIQUES

▸ You'd like to reuse method x in framework f. How do you figure out
how to do this?

▸ Example reuse techniques

▸ Read the documentation

▸ Read tutorials

▸ Find StackOverflow snippets

▸ Find similar code in your own codebase that also reuses x

▸ Try out API functions, see what they do

16

LaToza GMU SWE 621 Spring 2021

OPPORTUNISTIC VS. SYSTEMATIC DEVELOPERS

▸ Developers vary in which sorts of strategies they prefer

▸ Key choice: how completely do you need to understand API before deciding
your understanding is "good enough"

▸ Systematic: as much as possible

▸ Opportunistic: as little as possible

▸ This leads to different developers preferring different types of strategies

▸ Opportunistic developers more likely to start with example code

▸ Systematic developers more likely to read the documentation first

▸ ---> API documentation should support both types of strategies

17

LaToza GMU SWE 621 Spring 2021

STRATEGIES VARY WITH DEGREE OF PRIOR KNOWLEDGE OF API

18

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code. Conference on Human Factors
in Computing Systems (CHI ’09), 1589-1598.

LaToza GMU SWE 621 Spring 2021

TYPES OF REUSE

▸ Learning—relies on selecting highest quality tutorials tutorials

▸ e.g., “update web page without reloading php”

▸ Clarification—learning syntax based on exiting understanding of the domain concepts

▸ e.g., reminding use of syntax of HTML forms

▸ Often search by analogy to domain concepts in other languages / frameworks

▸ e.g., Perl has a function to format dates as strings, what’s the one for PHP?

▸ Reminder—using web as external memory aid

▸ e.g., forgot a word in a long function name

▸ e.g., 6 lines of code necessary to connect and disconnect from MySQL database
copied hundreds of times by individual

19

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code. Conference on Human Factors
in Computing Systems (CHI ’09), 1589-1598.

LaToza GMU SWE 621 Spring 2021

EFFECTS OF API DESIGN CHOICES: METHOD PLACEMENT
▸ Where to put functions when doing

object-oriented design of APIs

▸ mail_Server.send(mail_Message)

▸ vs.

▸ mail_Message.send(mail_Server)

▸ When desired method is on the class
that they start with, users were
between 2.4 and 11.2 times faster

20

[Stylos FSE, 2008]

Time to Find a Method

0

5

10

15

20

Email Task Web Task Thingies Task

Ti
m

e
(m

in
)

Methods on
Expected Objects
Methods on
Helper Objects

LaToza GMU SWE 621 Spring 2021

EFFECTS OF API DESIGN CHOICES: REQUIRED PARAMETERS IN CONSTRUCTORS

▸ Compared default constructor (create-set-call)

▸ var foo = new FooClass();

▸ foo.Bar = barValue;

▸ foo.Use();

▸ Results

▸ All developers assumed there would be a
default constructor

▸ Required constructors imposed premature
commitment: had to figure out how to
construct object before could decide if it
was the right object for task

▸ Did not insure valid objects – passed in
null

21

[Stylos & Clarke, ICSE’07]

▸ vs. required constructor

▸ var foo = new FooClass(barValue);

▸ foo.Use();

LaToza GMU SWE 621 Spring 2021

EFFECTS OF API DESIGN CHOICES: FACTORIES
▸ Compared “normal” creation: Widget w = new Widget();

▸ vs. creation using factory pattern

▸ AbstractFactory f = AbstractFactory.getDefault();

▸ Widget w = f.createWidget();

▸ Factory pattern frequently in Java (>61) and .Net (>13) and SAP

▸ Results

▸ Time to develop using factories took 2.1 to 5.3 times longer compared to
regular constructors (20:05 vs 9:31, 7:10 vs 1:20)

▸ All developers had difficulties using factories in APIs

▸ --> Very important if using factory to document how to create objects

▸ Particularly in class developers might start with

22

[Ellis 2007]

LaToza GMU SWE 621 Spring 2021

HOW CAN YOU DESIGN FOR REUSE TO MAKE IT EASIER?

▸ Given these (and other) findings, how can an API be
designed for reuse?

▸ Some recommendations

▸ Create effective documentation

▸ Apply natural programming method

▸ Make API design choices which optimize for usability
and power quality attributes

23

LaToza GMU SWE 621 Spring 2021

CREATE EFFECTIVE DOCUMENTATION

▸ Include short code snippets that document API usage patterns of how multiple
methods work together and capture best way to use API

▸ Focus on documenting higher level usage, not boilerplate documentation that
adds little beyond method signatures

▸ Match scenarios capturing common use cases to how to do that in API

▸ Include discussion of performance consequences of specific API usage

▸ Examples:

▸ https://reactjs.org/docs/getting-started.html 

▸ https://github.com/d3/d3-brush/blob/v1.1.5/README.md#brush_clear 

▸ https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Working_with_Objects

24

https://reactjs.org/docs/getting-started.html
https://github.com/d3/d3-brush/blob/v1.1.5/README.md#brush_clear
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects

LaToza GMU SWE 621 Spring 2021

ACTIVITY

▸ In groups of 2 or 3,

▸ Pick a library or framework of your choice

▸ Critique the documentation: what works, what could be
improved

▸ Deliverables: be prepared to present back to class

25

LaToza GMU SWE 621 Spring 2021

NATURAL PROGRAMMING METHOD

▸ Give developers a task, ask them imagine that there's a
framework that does this task, ask them to write code on a
blank screen to complete task

▸ It definitely won't compile

▸ Examine code they wrote to understand what elements
and methods they expect to see

▸ Elicits their mental model of how they expect API to
work

26

Stylos, J. and Myers., B.A. (2008) The implications of method placement on API learnability. FSE, 105–112.

http://www.cs.cmu.edu/~NatProg/papers/p62-myers-CACM-API_Usability.pdf

LaToza GMU SWE 621 Spring 2021

MAKE EFFECTIVE DESIGN CHOICES FOR USABILITY

▸ Design problem similar to designing for software for users
more generally

▸ Can apply Nielsen's Heuristic evaluation heuristics to API
design (see SWE 632 for more!)

27

LaToza GMU SWE 621 Spring 2021

VISIBILITY OF SYSTEM STATUS

▸ Should be easy for API user to check state of framework

▸ e.g., whether file is open or closed

▸ Using wrong operation for the current state should
generate appropriate feedback

▸ e.g., writing to closed file should generate meaningful
error message

28

LaToza GMU SWE 621 Spring 2021

MATCH BETWEEN SYSTEM AND REAL WORLD

▸ Names given to methods and organization of methods
into classes should match API users' expectations

▸ e.g., user wanting to write to File most likely to look for
File class first, not FileOutputStream

▸ Users often interact with class first by creating an instance

29

LaToza GMU SWE 621 Spring 2021

USER CONTROL AND FREEDOM

▸ API users should be able to abort or reset operations and
return the API back to previous state

30

LaToza GMU SWE 621 Spring 2021

CONSISTENCY AND STANDARDS

▸ All design choices should be consistent across API

▸ e.g., naming of classes and methods, naming of arguments,
order of arguments, placement of methods into classes

▸ Example violation: order of arguments in opposite order

▸ void writeStartElement(String namespaceURI, String localName)

▸ void writeStartElement(String prefix, String localName, String
namespaceURI)

31

LaToza GMU SWE 621 Spring 2021

ERROR PREVENTION

▸ API should guide user into doing the right thing

▸ Have defaults that match users' expectations

▸ Avoid using String parameters, particularly long sequences
of String parameters

▸ Compiler cannot check if arguments in correct order

▸ e.g., void setShippingAddress (String firstName, String
lastName, String street, String city, String state, String
country, String zipCode, String email, String phone)

32

LaToza GMU SWE 621 Spring 2021

RECOGNITION RATHER THAN RECALL

▸ API users often try to find the right method through
autocomplete

▸ Make names clear and understandable, so users can
recognize what they want

33

LaToza GMU SWE 621 Spring 2021

FLEXIBILITY AND EFFICIENCY OF USE

▸ API users should be able to accomplish their tasks
efficiently

34

LaToza GMU SWE 621 Spring 2021

HELP USERS RECOGNIZE, DIAGNOSE, RECOVER FROM ERRORS

▸ When a developer uses API incorrectly, API should offer
error messages that explain the problem and offer
suggestions on how to resolve issue

35

LaToza GMU SWE 621 Spring 2021

SUMMARY

▸ Developers spend much of their time interacting with libraries and
frameworks through APIs

▸ Developers differ in use of opportunistic and systematic strategies for
reuse, requiring different considerations in API and documentation
design

▸ Documentation that focuses on scenarios and best practice usages,
rather than boilerplate, can make big impact in usability

▸ Many design choices such as naming, organization of functionality into
classes, and error messages can have a profound choice on usability

▸ Can apply usability heuristics to API design

36

LaToza GMU SWE 621 Spring 2021

IN CLASS ACTIVITY

37

LaToza GMU SWE 621 Spring 2021

APPLY API DESIGN HEURISTICS

▸ Pick a framework (e.g., .NET framework, Java standard library, React, ...)

▸ Critique the framework using API design heuristics (Slides 28-35)

▸ Identify one example for each heuristic (8 total) where the framework
either follows or violates the heuristic

▸ For example of the 8 examples, list the name of the heuristic, give an
element within the framework (e.g., method, class), and describe
how element either follows or violates the heuristic

▸ Deliverables

▸ Names of group members, choice of framework, description of 8
examples

38

