
DESIGN ECOSYSTEMS
SWE 621

SPRING 2021

© THOMAS LATOZA



LaToza GMU SWE 621 Spring 2021

LOGISTICS

▸ HW5 due today


▸ Project presentation on 4/27


▸ Should discuss two different design decisions in each of 
your 3 systems


▸ Review for final on 4/27


▸ Final Exam on 5/4

2



LaToza GMU SWE 621 Spring 2021

EXAMPLE: NPM

3

https://twitter.com/garybernhardt/status/1067111872225136640 

https://twitter.com/garybernhardt/status/1067111872225136640


LaToza GMU SWE 621 Spring 2021

ECOSYSTEMS
▸ Networks of systems with complex dependencies


▸ Each system may have a separate organization / 
individual responsible for its creation and maintenance


▸ Key characteristic: no single point of control


▸ Multiple individuals / organizations with separate 
goals, needs


▸ But have deep interdependencies, where 
organizations depend on others in order to exist


▸ Fundamentally differs from traditional design process, 
where is no single organization that makes design 
decisions that impact final system


▸ Dependencies both social and technical


▸ Technical: our code uses your code


▸ Social: we'd really like to have some input on what 
your code does and output on how it does it


▸ Driven by quest for scale

4



LaToza GMU SWE 621 Spring 2021

SOFTWARE ECOSYSTEMS EXAMPLE: NPM PACKAGES

5



LaToza GMU SWE 621 Spring 2021

SOFTWARE ECOSYSTEMS: FACEBOOK

6



LaToza GMU SWE 621 Spring 2021

ACTIVITY

▸ What are other examples of software ecosystems?

7



LaToza GMU SWE 621 Spring 2021

SOME CHARACTERISTICS OF SOFTWARE ECOSYSTEMS

▸ Increase value of the core offering to existing users 


▸ Increase attractiveness for new users 


▸ Increase “stickiness” of the application platform


▸ Accelerate innovation through open innovation in the ecosystem 


▸ Collaborate with partners in the ecosystems to share cost of 
innovation 


▸ Platformize functionality developed by partners in the ecosystem 
(once success has been proven) 

8



LaToza GMU SWE 621 Spring 2021

FIRST CHARACTERIZED IN CONTEXT OF MILITARY SYSTEMS

▸ "Ultra large scale systems"


▸ Book published by Software Engineering Institute in 
2006


▸ Large scale in terms of number of people, amount of data, 
number of interdependencies


▸ Decentralized in a variety of ways


▸ Developed and used by a wide variety of stakeholders 
with conflicting needs


▸ Constructed from heterogeneous parts. 


▸ Software and hardware failures will be the norm rather 
than the exception.


▸ More like a city than a building

9

https://resources.sei.cmu.edu/asset_files/Book/2006_014_001_30542.pdf 

https://resources.sei.cmu.edu/asset_files/Book/2006_014_001_30542.pdf


LaToza GMU SWE 621 Spring 2021

TYPES OF ECOSYSTEMS

▸ Can describe ecosystems by the key player in the 
ecosystem


▸ Usually the organization that owns the key API


▸ Power accrues to organization by controlling what the API 
can and cannot do


▸ But organization needs API users to be successful


▸ In some cases, may be no key player (e.g., NPM package 
ecosystem)

10



LaToza GMU SWE 621 Spring 2021

OS-CENTRIC ECOSYSTEMS

▸ Linux vs. Windows vs. OS X


▸ node.js vs. Java servlets vs. PHP


▸ Platform which offers an API which others build on top of


▸ Platform abstracts over complexity of underlying hardware


▸ Key player goal: increase value of platform by getting 
more users

11



LaToza GMU SWE 621 Spring 2021

APPLICATION-CENTRIC ECOSYSTEMS

▸ Facebook vs. Twitter vs. LinkedIn


▸ Word vs. Google Docs


▸ User facing application which exposes points where 3rd 
party developers can extend application


▸ Key player goal: increase value of application by getting 
more developers to build more functionality

12



LaToza GMU SWE 621 Spring 2021

END-USER PROGRAMMING ECOSYSTEMS

▸ Microsoft Excel vs. Yahoo Pipes vs. 
Scratch


▸ Domain specific language (DSL) offers a 
simpler way to program for those who 
are not professional software 
developers (e.g., kids, scientists, 
financial analysts)


▸ Platform offers language, programming 
environment, and (sometimes) 
repository of programs which can be 
remixed

13



LaToza GMU SWE 621 Spring 2021

PACKAGE-CENTRIC ECOSYSTEMS

▸ NPM vs. R vs. Ruby


▸ Individual publish packages in central repository


▸ Packages may depend on other packages


▸ Automated build process automatically fetches package 
from repository, enabling automatic updating to latest 
version


▸ Popular packages gain recognition, encourage reuse by 
others

14



LaToza GMU SWE 621 Spring 2021

EXAMPLE: NODE PACKAGE MANAGER 
(NPM) ECOSYSTEM

▸ Node.js is runtime environment for 
server-side JavaScript applications


▸ Node package manager is an 
online repository of packages 
containing over 700,000 packages


▸ Core value: make it easy to 
publish, use, and rapidly change 
packages


▸ Resulted in large repository of 
packages that are very widely 
used in web applications

15



LaToza GMU SWE 621 Spring 2021

DEVELOPERS, DEVELOPERS, DEVELOPERS

16

https://www.youtube.com/watch?v=Vhh_GeBPOhs 

https://www.youtube.com/watch?v=Vhh_GeBPOhs


LaToza GMU SWE 621 Spring 2021

DEVELOPERS

▸ Key goal: increase value of ecosystem for owner by 
encouraging more people to use it


▸ Key player benefits from scale, which increases value of 
their platform


▸ Others may benefits as well


▸ More scale --> more StackOverflow posts, tutorials, 
knowledgable developers --> easier to use

17



LaToza GMU SWE 621 Spring 2021

DEPENDENCIES

▸ Central to ecosystem is a 
dependency, where downstream 
system depends on upstream 
system


▸ Can think about individual 
dependencies (e.g., we depend on 
this method in this element) or just 
that there is a dependency (e.g., 
there exists some dependency 
from our project on project x)

18



LaToza GMU SWE 621 Spring 2021

CHANGE

▸ What happens when an upstream system introduces a change?


▸ Backwards compatible change: upstream system provides everything they did 
before and more


▸ Nothing needs to change on downstream system


▸ Just have new functionality to be used


▸ Breaking change: upstream system no longer fulfills contract it did before


▸ Method might be deprecated, renamed, or changed in its behavior


▸ Burden of change


▸ Downstream system will not work until is updated to work with new version 

19



LaToza GMU SWE 621 Spring 2021

IN-CLASS ACTIVITY

▸ Have you needed to respond to a breaking change?


▸ Have you introduced a breaking change?

20



LaToza GMU SWE 621 Spring 2021

WHY DO BREAKING CHANGES HAPPEN?
▸ Imposes burden on downstream projects, so why would anyone do this?


▸ Technical debt: current version has poorly chosen object models or method names, 
lack of extensibility, little used methods


▸ Determine better way of exposing functionality, introducing through backwards 
compatible change


▸ Introduces cost to maintain old API


▸ Old API adds confusion, where there's multiple ways of doing things that confuses 
new developers 


▸ Efficiency: faster implementation requires new API


▸ Fixing defects: implementation incorrect, but downstream project relies on incorrect 
behavior


▸ Downstream projects may have workaround for defect, which may break when 
defect is fixed

21



LaToza GMU SWE 621 Spring 2021

TECHNIQUES TO MITIGATE OR DELAY COSTS
▸ Maintain old interfaces


▸ Deprecate interfaces but still keep supporting them


▸ Maintain multiple parallel releases


▸ Multiple major versions with breaking changes


▸ Keep incorporating minor changes (e.g,. security patches) for older versions


▸ Expose different APIs for different users


▸ Detailed and frequently updated API for sophisticated users, higher level and 
more stable API for casual users


▸ Reduce number of releases with breaking changes


▸ Communicate breaking changes in advance


▸ Include documentation and/or tool support for migrating clients to new versions

22



LaToza GMU SWE 621 Spring 2021

EXAMPLE: BREAKING CHANGES IN ECLIPSE ECOSYSTEM

▸ Eclipse IDE has ecosystem of plugins that extend Eclipse to 
offer additional functionality (e.g., support for additional 
programming language)


▸ Eclipse Ecosystem values backwards compatibility


▸ Has tooling to identify unexpected subtle breaking changes


▸ Maintains backwards compatible interfaces


▸ Large effort put into release planning to ensure smooth 
transitions and infrequent releases

23



LaToza GMU SWE 621 Spring 2021

EXAMPLE: BREAKING CHANGES IN NPM ECOSYSTEM

▸ Demands little of developers making breaking change


▸ Ok to make any breaking change, just need to increment version 
correctly


▸ Enables exploration of different API design to achieve better 
usability


▸ Downstream projects can specify which version of package to use


▸ No central release planning, individual package authors can 
make any changes they desire

24



LaToza GMU SWE 621 Spring 2021

EXAMPLE: LEFT-PAD IN NPM

▸ Developer removed 250 modules from 
NPM


▸ One of these was left-pad


▸ Had 2,486,696 downloads in one 
month


▸ Downstream users now depended on 
module that no longer existed


▸ So disruptive that NPM violated 
community norms by bringing module 
back against wishes of author

25

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/ 

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/


LaToza GMU SWE 621 Spring 2021

RESPONDING TO UPSTREAM CHANGE

▸ When an upstream system changes, downstream system 
may have options about whether, when, how to respond


▸ Ignore? Upgrade immediately? Upgrade later?

26



LaToza GMU SWE 621 Spring 2021

MONITORING CHANGE

▸ How do you know when an upstream system introduced change?


▸ Strategies


▸ Actively monitor GitHub projects for systems (high effort)


▸ Participate in upstream project: offers voice into features and 
functionality of project


▸ Social awareness: follow twitter, mailing lists to learn about changes


▸ Reactive monitoring: wait to hear about problems others experience


▸ Testing: ensure that system works correctly

27



LaToza GMU SWE 621 Spring 2021

REDUCING EXPOSURE TO CHANGE

▸ Can reduce effort to monitor and react to change by reducing dependencies


▸ Only depend on things that are really important


▸ Copy or recreate functionality internally


▸ Selecting appropriate dependencies with signals that indicated high quality


▸ Reputation from large organization or past success


▸ Activity level of project


▸ Size and identify of user base


▸ Past history of dealing with changes


▸ Quality of project artifacts: coding style, documentation, code size

28



LaToza GMU SWE 621 Spring 2021

POLICIES AND COMMUNITIES

▸ Within ecosystem, not everyone may act consistently with 
practices


▸ Need to make a breaking change quickly, don't want to 
indicate through a major version change, which might 
be more work to adopt

29



LaToza GMU SWE 621 Spring 2021

MAINTAINER BURNOUT

▸ Growing problem in OSS community 
for packages which gain popularity 
which are not accusing value for key 
ecosystem player (e.g., Facebook, 
Twitter, Google)


▸ Someone built something which 
everyone uses and published it as OSS


▸ How are maintainer compensated?


▸ Who pays?

30

https://twitter.com/ryanchenkie/status/1067801413974032385 

https://twitter.com/ryanchenkie/status/1067801413974032385


LaToza GMU SWE 621 Spring 2021

MAINTAINER BURNOUT

▸ In principle, can publish something once and have an infinite 
number of users at no additional cost


▸ Does not work in practice


▸ Maintainers may abandon project


▸ Open question: who should maintain abandoned projects?

31



LaToza GMU SWE 621 Spring 2021

SUMMARY

▸ Software systems exists in context of ecosystem of upstream 
and downstream systems connected by dependencies


▸ Ecosystems may be centered around OS, application, or end-
user programming or distributed into individual packages


▸ Breaking changes incur costs, which can be distributed 
between upstream or downstream systems


▸ Different ecosystems have different values and policies for 
dealing with breaking changes

32



LaToza GMU SWE 621 Spring 2021

IN CLASS ACTIVITY

33



LaToza GMU SWE 621 Spring 2021

PART 1: CHARACTERIZE A SOFTWARE ECOSYSTEM

▸ Pick a software ecosystem which we did not discuss in 
class


▸ Pick one that you or your group has used before


▸ Deliverables


▸ Describe the software ecosystem: is it OS, application, or 
end-user programming centric; or is it distributed and 
package centric?


▸ How does ecosystem handle breaking changes? How is 
this policy related to ecosystem's values?

34



LaToza GMU SWE 621 Spring 2021

INTRODUCE A BREAKING CHANGE

▸ Now imagine that you are a developer inside the 
organization at the center of your ecosystem


▸ You need to make a breaking change.


▸ How will you do this?


▸ Deliverables


▸ Describe a (fictional) breaking change. What changed?


▸ How will you mitigate the impact of this change?

35


