
ARCHITECTURAL STYLES
SWE 621

SPRING 2021

© THOMAS LATOZA

LaToza GMU SWE 621 Spring 2021

LOGISTICS

▸ HW2 due today

▸ Midterm in class next week during normal class period

▸ HW3 due in 3 weeks (3/23)

▸ Will be released after midterm

2

LaToza GMU SWE 621 Spring 2021

MIDTERM

▸ 200 points / 20% of course grade

▸ ~80% based on lecture (including ideas covered in lecture and textbook)

▸ ~20% based on readings

▸ Open book / open Internet

▸ However, all of your work must be your own, and all of your answers MUST BE
IN YOUR OWN WORDS!

▸ 2 hours 40 minutes, during class time (4:30 - 7:10pm)

▸ Will be released at 4:30pm 3/9 via Piazza. Submit as Word doc or pdf through
Blackboard.

▸ No need to use a drawing program to create any diagrams.

3

LaToza GMU SWE 621 Spring 2021

MIDTERM REVIEW

▸ Examples of questions

▸ Questions on concepts, definitions, and process advice

▸ e.g., What are the characteristics of a good abstraction?

▸ Questions applying concepts to real world examples

▸ e.g., critique this code snippet as an abstraction, based on
this code scenario.

▸ e.g., for these requirements, design a solution and
describe through a component and connector model

4

LaToza GMU SWE 621 Spring 2021

IN CLASS EXERCISE

▸ Why might one build a software system organized into
layers?

5

LaToza GMU SWE 621 Spring 2021

SOFTWARE ARCHITECTURE

▸ Software architecture = { Elements, Constraints,
Consequences }

▸ Elements: the set of structures needed to reason
about the system

▸ Constraints: the ways in which functionality is
assigned to elements and elements can be composed

▸ Consequences: the resulting properties of systems
which conform to the constraints

6

LaToza GMU SWE 621 Spring 2021

FREQUENT ARCHITECTURAL REQUIREMENTS

▸ Performance: how fast is the system

▸ Reliability: how likely is the system to be available

▸ Scalability: how well does adding more computing resources translate to better
performance

▸ Maintainability: how hard is system to change

▸ Extensibility: in what ways can new components be added without changing
existing components

▸ Configurability: how easily can the system behavior be changed by end-users

▸ Portability: in what environments can the system be used

▸ Testability: how easy is it to write tests of the system's behavior

7

LaToza GMU SWE 621 Spring 2021

EXAMPLE OF ALTERNATIVE ARCHITECTURES: THE WEB

▸ Evolving competing architectures for organizing content
and computation between browser (client) and web server

▸ 1990s: static web pages

▸ 1990s: server-side scripting (CGI, PHP, ASP, ColdFusion,
JSP, …)

▸ 2000s: single page apps (JQuery)

▸ 2010s: front-end frameworks (Angular, Aurelia, React, …),
microservices

8

LaToza GMU SWE 621 Spring 2021

STATIC WEB PAGES

▸ URL corresponds to directory location on server

▸ e.g. http://domainName.com/img/image5.jpg maps to img/
image5.jpg file on server

▸ Server responds to HTTP request by returning requested files

▸ Advantages

▸ Simple, easily cacheable, easily searchable

▸ Disadvantages

▸ No interactivity

9

LaToza GMU SWE 621 Spring 2021

DYNAMIC WEB PAGES

10

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1

Host:	cs.gmu.edu

Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK

Content-Type:	text/html;	charset=UTF-8

<html><head>...

Reads file from diskRuns a program

LaToza GMU SWE 621 Spring 2021

DYNAMIC WEB PAGES

11

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1

Host:	cs.gmu.edu

Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK

Content-Type:	text/html;	charset=UTF-8

<html><head>...

Runs a program

Web Server
Application

Syllabus
Generator

Application

Give	me	/syllabus/syllabi-fall16/SWE432BellJ.html

Here’s	some	text	to	send	back

Does whatever it wants

There’s a standard mechanism to talk to these
auxiliary applications, called CGI (Common

Gateway Interface)

LaToza GMU SWE 621 Spring 2021

SERVER SIDE SCRIPTING

▸ Generate HTML on the server through scripts

▸ Early approaches emphasized embedding server code
inside html pages

▸ Examples: CGI

12

LaToza GMU SWE 621 Spring 2021

SERVER SIDE SCRIPTING SITE

13

Browser
HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

HTML templates, server logic, load / store state to database

LaToza GMU SWE 621 Spring 2021

LIMITATIONS

▸ Poor modularity

▸ Code representing logic, database interactions,
generating HTML presentation all tangled

▸ Hard to understand, difficult to maintain

▸ Still a step up over static pages!

14

LaToza GMU SWE 621 Spring 2021

SERVER SIDE FRAMEWORKS

▸ Framework that structures server into tiers, organizes logic
into classes

▸ Create separate tiers for presentation, logic, persistence
layer

▸ Can understand and reason about domain logic without
looking at presentation (and vice versa)

▸ Examples: ASP.NET, JSP

15

LaToza GMU SWE 621 Spring 2021

SERVER SIDE FRAMEWORK SITE

16

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

Presentation tier

Domain logic tier

Persistence tier

LaToza GMU SWE 621 Spring 2021

LIMITATIONS

▸ Need to load a whole new web page to get new data

▸ Users must wait while new web page loads, decreasing
responsiveness & interactivity

▸ If server is slow or temporarily non-responsive, whole
user interface hangs!

▸ Page has a discernible refresh, where old content is
replaced and new content appears rather than seamless
transition

17

LaToza GMU SWE 621 Spring 2021

SINGLE PAGE APPLICATION (SPA)

▸ Client-side logic sends messages to server, receives response

▸ Logic is associated with a single HTML pages, written in Javascript

▸ HTML elements dynamically added and removed through DOM manipulation

▸ Processing that does not require server may occur entirely client side,
dramatically increasing responsiveness & reducing needed server resources

▸ Classic example: Gmail

18

LaToza GMU SWE 621 Spring 2021

SINGLE PAGE APPLICATION SITE

19

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Javascript

events

HTML elements

LaToza GMU SWE 621 Spring 2021

LIMITATIONS

▸ Poor modularity client-side

▸ As logic in client grows increasingly large and complex, becomes
Big Ball of Mud

▸ Hard to understand & maintain

▸ DOM manipulation is brittle & tightly coupled, where small
changes in HTML may cause unintended changes (e.g., two HTML
elements with the same id)

▸ Poor reuse: logic tightly coupled to individual HTML elements,
leading to code duplication of similar functionality in many places

20

LaToza GMU SWE 621 Spring 2021

FRONT END FRAMEWORKS

▸ Client is organized into separate components, capturing model of web
application data

▸ Components are reusable, have encapsulation boundary (e.g., class)

▸ Components separate logic from presentation

▸ Components dynamically generate corresponding code based on
component state

▸ In contrast to HTML element manipulation, framework generates
HTML, not user code, decreasing coupling

▸ Examples: Meteor, Ember, Angular, Aurelia, React

21

LaToza GMU SWE 621 Spring 2021

FRONT END FRAMEWORK SITE

22

Browser

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

LaToza GMU SWE 621 Spring 2021

LIMITATIONS

▸ Duplication of logic in client & server

▸ As clients grow increasingly complex, must have logic in both
client & server

▸ May even need to be written twice in different languages! (e.g.,
Javascript, Java)

▸ Server logic closely coupled to corresponding client logic.
Changes to server logic require corresponding client logic
change.

▸ Difficult to reuse server logic

23

LaToza GMU SWE 621 Spring 2021

MICROSERVICES

▸ Small, focused web server that communicates through
data requests & responses

▸ Focused only on logic, not presentation

▸ Organized around capabilities that can be reused in
multiple context across multiple applications

▸ Rather than horizontally scale identical web servers,
vertically scale server infrastructure into many, small
focused servers

24

LaToza GMU SWE 621 Spring 2021

MICROSERVICE SITE

25

Browser

Web Servers

Database

HTTP  
Request

HTTP  
Response

(JSON)

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

HTTP  
Request

HTTP  
Response

(JSON)

HTTP  
Request

HTTP  
Response

(JSON)

Microservice Microservice

HTTP  
Request

HTTP  
Response

(JSON)

LaToza GMU SWE 621 Spring 2021

CAN WE DRAW MORE GENERAL LESSONS?

▸ Lots of different ways to organize a web app

▸ Keep inventing new ones that are better by having some
new properties

▸ But may sometimes sacrifice others

▸ Can we draw any more general lessons about how to
organize software?

26

LaToza GMU SWE 621 Spring 2021

ARCHITECTURAL STYLES

▸ Architectural style specifies

▸ how to partition a system

▸ how components identify and communicate with each
other

▸ how information is communicated

▸ how elements of a system can evolve independently

27

LaToza GMU SWE 621 Spring 2021

ARCHITECTURAL STYLES

▸ Can also be characterized by one or more architectural decisions

▸ e.g., elements in component A can send messages to elements
in component B but not vice versa (i.e., layers)

▸ Making this decision(s) immediately has one or more
consequences on architectural requirements

▸ Often binary

▸ Either code conforms to the constraints and gains the
consequences or has at least one violation and does not get the
consequences

28

LaToza GMU SWE 621 Spring 2021

SOME COMMON ARCHITECTURAL STYLES

▸ Big ball of mud

▸ Layered

▸ Model-centered

▸ Publish/subscribe

▸ Pipe and filter

▸ REST

▸ Functional reactive programming

29

LaToza GMU SWE 621 Spring 2021

BIG BALL OF MUD
▸ Forces

▸ Insufficient time to build the "right" way, with consideration of
how design decisions impact maintainability

▸ Constraints: none

▸ Anything can go anywhere.

▸ Anything can be written in any way.

▸ Consequences

▸ Leads to system that is disorganized.

▸ Makes it hard to find where to make change, understand
implications of change.

▸ Decreases maintainability

30
http://www.laputan.org/mud/

http://www.laputan.org/mud/

LaToza GMU SWE 621 Spring 2021

LAYERED ARCHITECTURE

▸ Elements: layers

▸ Constraints: can only use lower layers

▸ Strictly layered: can only use adjacent lower layer

▸ Consequences

▸ Supports maintability by making it easier to find functionality

▸ Supports portability and reusability by enabling layers to be
swapped out

31

LaToza GMU SWE 621 Spring 2021

MODEL-CENTERED

▸ Elements: model, view (optional), controller (optional), view-controller (optional)

▸ Constraints

▸ Components interact with a central model rather than each other

▸ Changes originates outside of model, propagate to model, trigger notifications to
elements depending on model

▸ Synonyms: repository, shared-data, data-centered

▸ Consequences

▸ Maintainable: can write data processing in terms of model rather than in terms of UI
abstractions

▸ Extensible: easy to add views, controllers, view/models without changing model

▸ Scalability: can run each element in a separate thread

32

LaToza GMU SWE 621 Spring 2021

EXAMPLE: ANGULAR 1.0 -- MVVM

▸ Model: domain-specific data, doesn't
matter how much it's interact with

▸ View

▸ Visual representation of current state of
model

▸ View does not communicate with model
directly Models are much more dumb:
no formatting, etc

▸ ViewModel: processes user input,
translates into format which work for model

33

LaToza GMU SWE 621 Spring 2021

PUBLISH/SUBSCRIBE

▸ Elements: component, event bus

▸ Components broadcast events to listeners on event bus

▸ Constraints

▸ Components do not know why an event is published

▸ Subscribing components do not know who published event, depending on event
type rather than specific publisher

▸ Synonyms: event-based, pub/sub

▸ Consequences

▸ Maintainability: can make changes to components without impacting others

▸ Performance: can (sometimes) reduce performance due to indirection

34

LaToza GMU SWE 621 Spring 2021

REST (REPRESENTATIONAL STATE TRANSFER)
▸ Elements: HTTP server, request / response connector

▸ Constraints:

▸ Stateless: each client request contains all information necessary to service request

▸ Cacheable: clients and intermediaries may cache responses.

▸ Layered: client cannot determine if it is connected to end server or intermediary
along the way

▸ Uniform interface for resources: a single uniform interface (URIs) simplifies and
decouples architecture

▸ Consequences

▸ Scalability and reliability: enables servers to be added and removed at will at runtime

▸ Performance: enables caching

▸ Modifiability: hides changes behind URIs

35

LaToza GMU SWE 621 Spring 2021

PIPE AND FILTER

▸ Elements: pipes, filters, read ports, write ports

▸ Constraints

▸ Filters may only interact through pipes

▸ Filters may not share any global state

▸ Filters may not make any assumptions about what happens upstream or downstream

▸ Filter should incrementally read input and generate output

▸ Consequences:

▸ Configurability, extensibility: can swap and compose networks of filters together, even at
runtime

▸ Scalability: can do computation in different filters in parallel

▸ Modifiability: can more easily make independent changes

36

LaToza GMU SWE 621 Spring 2021

FUNCTIONAL REACTIVE PROGRAMMING

▸ Elements: component, stream of events

▸ Constraints:

▸ Component only gets input from rest of system through stream of events;
cannot access or mutate data elsewhere

▸ When event arrives, changes state (resulting in new output) and may emit
event to other components

▸ Consequences

▸ Maintainability: much easier to make changes to individual element
without having to think about consequences of that change to rest of
system

37

LaToza GMU SWE 621 Spring 2021

SUMMARY

▸ Architectural style offer specific ways to achieve
architectural requirements

▸ Often offer ways to separate functionality into separate
elements and constraints on how these elements can
interact

▸ Violating constraints of an architectural style often means
that the consequences of the architectural style will no
longer be realized

38

LaToza GMU SWE 621 Spring 2021

IN CLASS ACTIVITY

39

LaToza GMU SWE 621 Spring 2021

DESIGN ACTIVITY: TODO APPLICATION

▸ Form group of 3 or 4

▸ Your goal: design an architecture for a todo application by applying an architectural style (see next
slide)

▸ Todo application requirements

▸ User interactions with todos: add, delete, rename, complete, copy

▸ Display todos to user

▸ Persist todos

▸ Deliverables:

▸ component and connector model showing elements in your system

▸ explanation of architectural style, including discussion of constraints imposed on elements

▸ text explaining how 3 different scenarios (e.g., add todo, copy todo, persist todos) are handled
by the system, describing each scenario with details of what each component does

40

LaToza GMU SWE 621 Spring 2021

LIST OF ARCHITECTURAL STYLES

▸ Each group should select one of the following architectural styles.

▸ Architectural styles

▸ Big ball of mud

▸ Layered

▸ Model-centered

▸ Publish/subscribe

▸ Pipes and filters

▸ REST

▸ Functional reactive programming

41

LaToza GMU SWE 621 Spring 2021

DESIGN ACTIVITY: STEP 2: DISCUSSION

▸ Compare and contrast designs based on each architectural
style

42

