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LOGISTICS

▸ HW3 due today


▸ HW4 due in two weeks
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IN CLASS EXERCISE

▸ What's a software design problem you've solved from an 
idea you learned from someone else?
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DESIGN PATTERN
▸ Solution to a problem in a context


▸ Rather than solving problems from scratch, borrow existing solution to a 
common design problems


▸ Arrangement of elements that achieves particular quality attribute, often (but not 
always) extensibility


▸ Similar to architectural style or abstraction


▸ Description of elements and their properties that is not tied to a specific 
implementation


▸ Offers a name for a concept that makes concept easy to refer to


▸ But also different


▸ Unlike architectural styles, implications are localized to a few elements


▸ Design, not architectural; does NOT constraint how most elements in the system 
interact
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DESIGN PATTERNS
▸ Idea popularized by "Gang of Four" (GOF) in the 

1990s with their book Design Patterns


▸ Sometimes abbreviated as "GOF patterns"


▸ Today's first reading was immediate 
precursor of book


▸ Helped explain to developers how to take 
advantage of indirection facilities in OO to build 
systems that were more modular and 
maintainable by introducing indirection


▸ But... idea of design patterns is more general 
than GOF patterns


▸ Popular book that inspired many follow ons 
(e.g., Node.js design patterns)
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BENEFITS OF DESIGN PATTERNS

▸ Patterns enable reuse of design solutions


▸ Capture knowledge of expert developers learned 
through trial and error


▸ Patterns improve communication, by offering a name and 
higher-level concept for something that commonly recurs


▸ Rather than trying to describe how set of classes should 
be interacting, can simply reference concept
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DESIGN FOR CHANGE

▸ Many GOF patterns designed make specific types of 
change easier


▸ How do you take some decision, hide it in a class, and 
enable that decision to change with minimal impact on 
rest of system?


▸ Enables many types of decisions to vary through 
extension, where alternative implementations can be 
written as planned extensions to system
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EXAMPLES OF DECISIONS 

▸ The identity of a class


▸ Want to commit only to an interface of class, not an implementation


▸ Specific operations


▸ Want to commit to interface of an operation, not an implementation


▸ Specific algorithms


▸ Want to enable alternative algorithms


▸ Data representation


▸ Reduce client dependencies on how data is represented and stored
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FORMS OF GOF PATTERNS

▸ Creational: how objects are instantiated


▸ How can details about the type of element being created be 
hidden from clients?


▸ Structural: how objects are composed


▸ How can objects be connected in way that reduce 
dependencies?


▸ Behavioral: how objects behave


▸ How can objects encapsulate behaviors that may vary at runtime?
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CREATIONAL PATTERNS
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ABSTRACT FACTORY

▸ Provide an interface for 
creating families of 
related objects without 
specifying their concrete 
classes


▸ Client knows they get a 
GenericProductA or B 
without knowing the 
particular 
implementation, which 
provider may vary 
without breaking clients

12
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BUILDER

▸ Separates the construction 
of a complex object from its 
representation so that the 
same construction process 
can be used to create 
different representations.
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▸ Builder


▸ Specifies an abstract interface for creating parts of a 
product object


▸ ConcreteBuilder


▸ constructs and assemble parts of the product by 
implementing the Builder interface


▸ defines and keeps track of the representation it creates


▸ provides an interface for retrieving the product


▸ Director


▸ constructs an object using the builder interface


▸ Product


▸ represents the complex object under construction

Participants
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SINGLETON

▸ Ensure a class only 
has one instance, and 
provide a global 
point of access to it.

14

▸ Singleton


▸ defines an Instance operation that lets clients access its 
unique instance. Instance is a static operation defined on 
the class rather than the instance


▸ may be responsible for creating its own unique instance


Participants
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STRUCTURAL PATTERNS
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WRAPPER

▸ Attach additional 
properties or services to 
an object without having 
to subclass object


▸ Implements common 
interface 
(VisualComponent) rather 
than subclassing 
implementation (Button) 
which may not be hidden.


▸ Enables nesting wrappers, 
easily adding and 
removing at runtime

16
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COMPOSITE

▸ Compose objects 
into tree structures 
to represent part-
whole hierarchies.


▸ Lets clients treat 
individual objects 
and compositions 
uniformly
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▸ Component


▸ declares the interface for objects in the composition


▸ implements default behavior for the interface common to all classes


▸ declares interface for accessing and managing children


▸ Leaf (no children)


▸ defines behavior for primitive objects in the composition


▸ Composite


▸ defines behavior for components having children


▸ stores children


▸ implements child-related operations


▸ Client


▸ manipulates objects in composition through Component interface

Participants
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PROXY

▸ Provide a surrogate or 
placeholder for an object to 
control access to it


▸ Can be used to


▸ avoid creating expensive 
objects unless really 
needed


▸ check access rights


▸ garbage collection

18

▸ Proxy


▸ maintains reference that lets proxy access real subject


▸ controls access to real subject, which may include creating 
and destroying it


▸ Subject


▸ defines common interface


▸ RealSubject


▸ defines the real object that proxy represents

Participants
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FLYWEIGHT
▸ Use sharing to support 

large numbers of fine-
grained object efficiently


▸ Requires clients to 
interact with objects only 
by value rather than 
identity
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▸ Flyweight (common interface)


▸ ConcreteFlyweight 


▸ Implements interface, stores state


▸ MUST be shareable


▸ FlyweightFactory


▸ creates and mangoes flyweight objects


▸ lazily creates instances, as necessary


▸ Client (uses flyweights)

Participants
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FACADE

▸ Provide a higher-
level, unified 
interface to a set 
of interfaces in a 
subsystem
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▸ Facade


▸ knows which subsystem classes are responsible for a 
request


▸ delegates client request to appropriate subsystem 
objects


▸ subsystem classes


▸ implement subsystem functionality


▸ handle work assigned by the Facade object


▸ have no references to facade

Participants
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BEHAVIORAL PATTERNS
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OBSERVER

▸ Defines a one way 
one-to-many 
dependency, so that 
one object changes 
state all 
dependencies are 
notified automatically


▸ Lets subject emit 
events to observers 
without depending 
on observers
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▸ Subject


▸ stores and manages its observers, which may be any number


▸ Observer


▸ defines an interface for updates


▸ ConcreteSubject


▸ stores state of interest to Observers


▸ sends notification to observers when state changes


▸ ConcreteObserver


▸ maintains reference to ConcreteSubject object


▸ stores state that is synchronized with subject

Participants
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IN CLASS ACTIVITY: IMPLEMENT OBSERVER

▸ Pick an OO language (e.g., Java, C++, Python)


▸ Write an implementation of Observer


▸ Make sure your implementation lets subject emit events to 
observers without subjects depending on observers (e.g., 
can add and remove new types of observers without 
changing subject)
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COMMAND

▸ Encapsulate a 
request as an object


▸ Enables 
parameterizing 
clients with requests, 
queuing and 
logging requests, 
undoable operations

24

▸ Command


▸ declares interface for executing an operation


▸ ConcreteCommand


▸ implements execute by invoking corresponding operation on 
Receiver


▸ Client


▸ creates ConcreteCommand object and sets its receiver


▸ Invoker


▸ asks the command to carry out request


▸ Receiver


▸ knows how to perform the operation associated with request

Participants
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STRATEGY

▸ Transform an algorithm 
or behavior into an 
object, allowing it to 
vary independently


▸ Make it easy to change 
algorithm by swapping 
out an object
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▸ Strategy


▸ declares an interface common to all 
supported algorithms


▸ ConcreteStrategy


▸ implements the algorithm


▸ Context


▸ configured with a ConcreteStrategy object


▸ maintains reference to strategy object


▸ may define interface that lets Strategy access 
its data

Participants



LaToza GMU SWE 621 Spring 2021

VISITOR

▸ Represents an operation to 
be performed on elements 
of an object structure


▸ Enables defining new 
operations without changing 
implementation of elements 
on which it operates
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▸ Visitor


▸ declares a Visit operation for each class of ConcreteElement


▸ ConcreteVisitor


▸ implements each operation for corresponding object


▸ accumulates state from visiting objets


▸ Element


▸ defines Accept operation that takes visitor as argument


▸ ConcreteElement


▸ implements an Accept operation

Participants
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STATE

▸ Allows an object to 
alter its behavior 
when its internal 
state changes


▸ Object appears to 
change its class at 
runtime.
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▸ Context


▸ defines an interface of interest to clients


▸ maintains an interface of a ConcreteState 
subclass that defines the current state


▸ State


▸ defines an interface for encapsulating the 
behavior associated with a particular state


▸ ConcreteState subclasses


▸ implements behavior associated with its state

Participants
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WORKING WITH DESIGN PATTERNS

28
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WORKING WITH DESIGN PATTERNS

▸ Useful patterns arise from practical experience


▸ If you commonly see the same problem, pattern can describe a solution


▸ Validating pattern comes from experience with it


▸ Teams can create a process to author and disseminate their own 
patterns


▸ Patterns capture tradeoffs


▸ Using a pattern brings both pros and cons, which can be captured in 
pattern


▸ Important to understand context in which pattern can be useful
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SUMMARY

▸ Design patterns offer a solution to a problem in a context


▸ GOF patterns offer solutions to how to design for change by enabling 
extensibility


▸ Ways to encapsulate decisions that may change into classes decoupled 
from client code


▸ Design patterns broader than GOF patterns


▸ Can have design patterns which describe technical solutions to variety of 
design problems that recur


▸ Sometimes used to document how to teach how to use a new technology 
effectively (e.g., node.js design patterns)
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IN CLASS ACTIVITY

31
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IMPLEMENT COMPOSITE

▸ Pick an OO language (e.g., Java, C++, Python)


▸ Write an implementation of composite for a Drawing application


▸ Implement common interface of Graphic


▸ Primitive drawing elements: Line, Rectangle, Text.


▸ Picture consists of one or more Graphic elements


▸ Code should focus only on portion of implementation relevant to Composite 
Pattern


▸ e.g., do not need to write render function


▸ Deliverables: 


▸ Code implementing Composite for a drawing application
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