
DESIGN PATTERNS 
SWE 621

SPRING 2021

© THOMAS LATOZA



LaToza GMU SWE 621 Spring 2021

LOGISTICS

▸ HW3 due today


▸ HW4 due in two weeks

2



LaToza GMU SWE 621 Spring 2021

IN CLASS EXERCISE

▸ What's a software design problem you've solved from an 
idea you learned from someone else?

3



LaToza GMU SWE 621 Spring 2021

DESIGN PATTERN
▸ Solution to a problem in a context


▸ Rather than solving problems from scratch, borrow existing solution to a 
common design problems


▸ Arrangement of elements that achieves particular quality attribute, often (but not 
always) extensibility


▸ Similar to architectural style or abstraction


▸ Description of elements and their properties that is not tied to a specific 
implementation


▸ Offers a name for a concept that makes concept easy to refer to


▸ But also different


▸ Unlike architectural styles, implications are localized to a few elements


▸ Design, not architectural; does NOT constraint how most elements in the system 
interact

4



LaToza GMU SWE 621 Spring 2021

DESIGN PATTERNS
▸ Idea popularized by "Gang of Four" (GOF) in the 

1990s with their book Design Patterns


▸ Sometimes abbreviated as "GOF patterns"


▸ Today's first reading was immediate 
precursor of book


▸ Helped explain to developers how to take 
advantage of indirection facilities in OO to build 
systems that were more modular and 
maintainable by introducing indirection


▸ But... idea of design patterns is more general 
than GOF patterns


▸ Popular book that inspired many follow ons 
(e.g., Node.js design patterns)

5



LaToza GMU SWE 621 Spring 2021 6



LaToza GMU SWE 621 Spring 2021

BENEFITS OF DESIGN PATTERNS

▸ Patterns enable reuse of design solutions


▸ Capture knowledge of expert developers learned 
through trial and error


▸ Patterns improve communication, by offering a name and 
higher-level concept for something that commonly recurs


▸ Rather than trying to describe how set of classes should 
be interacting, can simply reference concept

7



LaToza GMU SWE 621 Spring 2021

DESIGN FOR CHANGE

▸ Many GOF patterns designed make specific types of 
change easier


▸ How do you take some decision, hide it in a class, and 
enable that decision to change with minimal impact on 
rest of system?


▸ Enables many types of decisions to vary through 
extension, where alternative implementations can be 
written as planned extensions to system

8



LaToza GMU SWE 621 Spring 2021

EXAMPLES OF DECISIONS 

▸ The identity of a class


▸ Want to commit only to an interface of class, not an implementation


▸ Specific operations


▸ Want to commit to interface of an operation, not an implementation


▸ Specific algorithms


▸ Want to enable alternative algorithms


▸ Data representation


▸ Reduce client dependencies on how data is represented and stored

9



LaToza GMU SWE 621 Spring 2021

FORMS OF GOF PATTERNS

▸ Creational: how objects are instantiated


▸ How can details about the type of element being created be 
hidden from clients?


▸ Structural: how objects are composed


▸ How can objects be connected in way that reduce 
dependencies?


▸ Behavioral: how objects behave


▸ How can objects encapsulate behaviors that may vary at runtime?

10



LaToza GMU SWE 621 Spring 2021

CREATIONAL PATTERNS

11



LaToza GMU SWE 621 Spring 2021

ABSTRACT FACTORY

▸ Provide an interface for 
creating families of 
related objects without 
specifying their concrete 
classes


▸ Client knows they get a 
GenericProductA or B 
without knowing the 
particular 
implementation, which 
provider may vary 
without breaking clients

12

Participants



LaToza GMU SWE 621 Spring 2021

BUILDER

▸ Separates the construction 
of a complex object from its 
representation so that the 
same construction process 
can be used to create 
different representations.

13

▸ Builder


▸ Specifies an abstract interface for creating parts of a 
product object


▸ ConcreteBuilder


▸ constructs and assemble parts of the product by 
implementing the Builder interface


▸ defines and keeps track of the representation it creates


▸ provides an interface for retrieving the product


▸ Director


▸ constructs an object using the builder interface


▸ Product


▸ represents the complex object under construction

Participants



LaToza GMU SWE 621 Spring 2021

SINGLETON

▸ Ensure a class only 
has one instance, and 
provide a global 
point of access to it.

14

▸ Singleton


▸ defines an Instance operation that lets clients access its 
unique instance. Instance is a static operation defined on 
the class rather than the instance


▸ may be responsible for creating its own unique instance


Participants



LaToza GMU SWE 621 Spring 2021

STRUCTURAL PATTERNS

15



LaToza GMU SWE 621 Spring 2021

WRAPPER

▸ Attach additional 
properties or services to 
an object without having 
to subclass object


▸ Implements common 
interface 
(VisualComponent) rather 
than subclassing 
implementation (Button) 
which may not be hidden.


▸ Enables nesting wrappers, 
easily adding and 
removing at runtime

16

Participants



LaToza GMU SWE 621 Spring 2021

COMPOSITE

▸ Compose objects 
into tree structures 
to represent part-
whole hierarchies.


▸ Lets clients treat 
individual objects 
and compositions 
uniformly

17

▸ Component


▸ declares the interface for objects in the composition


▸ implements default behavior for the interface common to all classes


▸ declares interface for accessing and managing children


▸ Leaf (no children)


▸ defines behavior for primitive objects in the composition


▸ Composite


▸ defines behavior for components having children


▸ stores children


▸ implements child-related operations


▸ Client


▸ manipulates objects in composition through Component interface

Participants



LaToza GMU SWE 621 Spring 2021

PROXY

▸ Provide a surrogate or 
placeholder for an object to 
control access to it


▸ Can be used to


▸ avoid creating expensive 
objects unless really 
needed


▸ check access rights


▸ garbage collection

18

▸ Proxy


▸ maintains reference that lets proxy access real subject


▸ controls access to real subject, which may include creating 
and destroying it


▸ Subject


▸ defines common interface


▸ RealSubject


▸ defines the real object that proxy represents

Participants



LaToza GMU SWE 621 Spring 2021

FLYWEIGHT
▸ Use sharing to support 

large numbers of fine-
grained object efficiently


▸ Requires clients to 
interact with objects only 
by value rather than 
identity

19

▸ Flyweight (common interface)


▸ ConcreteFlyweight 


▸ Implements interface, stores state


▸ MUST be shareable


▸ FlyweightFactory


▸ creates and mangoes flyweight objects


▸ lazily creates instances, as necessary


▸ Client (uses flyweights)

Participants



LaToza GMU SWE 621 Spring 2021

FACADE

▸ Provide a higher-
level, unified 
interface to a set 
of interfaces in a 
subsystem

20

▸ Facade


▸ knows which subsystem classes are responsible for a 
request


▸ delegates client request to appropriate subsystem 
objects


▸ subsystem classes


▸ implement subsystem functionality


▸ handle work assigned by the Facade object


▸ have no references to facade

Participants



LaToza GMU SWE 621 Spring 2021

BEHAVIORAL PATTERNS

21



LaToza GMU SWE 621 Spring 2021

OBSERVER

▸ Defines a one way 
one-to-many 
dependency, so that 
one object changes 
state all 
dependencies are 
notified automatically


▸ Lets subject emit 
events to observers 
without depending 
on observers

22

▸ Subject


▸ stores and manages its observers, which may be any number


▸ Observer


▸ defines an interface for updates


▸ ConcreteSubject


▸ stores state of interest to Observers


▸ sends notification to observers when state changes


▸ ConcreteObserver


▸ maintains reference to ConcreteSubject object


▸ stores state that is synchronized with subject

Participants



LaToza GMU SWE 621 Spring 2021

IN CLASS ACTIVITY: IMPLEMENT OBSERVER

▸ Pick an OO language (e.g., Java, C++, Python)


▸ Write an implementation of Observer


▸ Make sure your implementation lets subject emit events to 
observers without subjects depending on observers (e.g., 
can add and remove new types of observers without 
changing subject)

23



LaToza GMU SWE 621 Spring 2021

COMMAND

▸ Encapsulate a 
request as an object


▸ Enables 
parameterizing 
clients with requests, 
queuing and 
logging requests, 
undoable operations

24

▸ Command


▸ declares interface for executing an operation


▸ ConcreteCommand


▸ implements execute by invoking corresponding operation on 
Receiver


▸ Client


▸ creates ConcreteCommand object and sets its receiver


▸ Invoker


▸ asks the command to carry out request


▸ Receiver


▸ knows how to perform the operation associated with request

Participants



LaToza GMU SWE 621 Spring 2021

STRATEGY

▸ Transform an algorithm 
or behavior into an 
object, allowing it to 
vary independently


▸ Make it easy to change 
algorithm by swapping 
out an object

25

▸ Strategy


▸ declares an interface common to all 
supported algorithms


▸ ConcreteStrategy


▸ implements the algorithm


▸ Context


▸ configured with a ConcreteStrategy object


▸ maintains reference to strategy object


▸ may define interface that lets Strategy access 
its data

Participants



LaToza GMU SWE 621 Spring 2021

VISITOR

▸ Represents an operation to 
be performed on elements 
of an object structure


▸ Enables defining new 
operations without changing 
implementation of elements 
on which it operates

26

▸ Visitor


▸ declares a Visit operation for each class of ConcreteElement


▸ ConcreteVisitor


▸ implements each operation for corresponding object


▸ accumulates state from visiting objets


▸ Element


▸ defines Accept operation that takes visitor as argument


▸ ConcreteElement


▸ implements an Accept operation

Participants



LaToza GMU SWE 621 Spring 2021

STATE

▸ Allows an object to 
alter its behavior 
when its internal 
state changes


▸ Object appears to 
change its class at 
runtime.

27

▸ Context


▸ defines an interface of interest to clients


▸ maintains an interface of a ConcreteState 
subclass that defines the current state


▸ State


▸ defines an interface for encapsulating the 
behavior associated with a particular state


▸ ConcreteState subclasses


▸ implements behavior associated with its state

Participants



LaToza GMU SWE 621 Spring 2021

WORKING WITH DESIGN PATTERNS

28



LaToza GMU SWE 621 Spring 2021

WORKING WITH DESIGN PATTERNS

▸ Useful patterns arise from practical experience


▸ If you commonly see the same problem, pattern can describe a solution


▸ Validating pattern comes from experience with it


▸ Teams can create a process to author and disseminate their own 
patterns


▸ Patterns capture tradeoffs


▸ Using a pattern brings both pros and cons, which can be captured in 
pattern


▸ Important to understand context in which pattern can be useful

29



LaToza GMU SWE 621 Spring 2021

SUMMARY

▸ Design patterns offer a solution to a problem in a context


▸ GOF patterns offer solutions to how to design for change by enabling 
extensibility


▸ Ways to encapsulate decisions that may change into classes decoupled 
from client code


▸ Design patterns broader than GOF patterns


▸ Can have design patterns which describe technical solutions to variety of 
design problems that recur


▸ Sometimes used to document how to teach how to use a new technology 
effectively (e.g., node.js design patterns)

30



LaToza GMU SWE 621 Spring 2021

IN CLASS ACTIVITY

31



LaToza GMU SWE 621 Spring 2021

IMPLEMENT COMPOSITE

▸ Pick an OO language (e.g., Java, C++, Python)


▸ Write an implementation of composite for a Drawing application


▸ Implement common interface of Graphic


▸ Primitive drawing elements: Line, Rectangle, Text.


▸ Picture consists of one or more Graphic elements


▸ Code should focus only on portion of implementation relevant to Composite 
Pattern


▸ e.g., do not need to write render function


▸ Deliverables: 


▸ Code implementing Composite for a drawing application

32


