SWE 621
SPRING 2025

PROGRAMMING STYLES




LOGISTICS

» HW4 due today

» HW5 due on 4/28

LaToza GMU SWE 621 Spring 2025



PROGRAMMING STYLE [xercises 1In

Programming Stylc

» A set of constraints on how code is written which help
achieve specific requirements or quality attributes

» Describe alternative ways in which code might be written
» make it object-oriented
» make it functional

» lazily load data from input source .

Cristina Viderira [lLopes

» give each element a separate thread nC) CRC Press

» Like architectural styles and design patterns, has
consequences that adopting programming style help
achieve

» But not always as well-defined and enumerated

LaToza GMU SWE 621 Spring 2025 3



EXERCISES IN PROGRAMMING STYLE

» Presentation is centered around an example problem

» Each program offers the same baseline behavior (sometimes adding an additional
feature)

» Can directly compare and contrast how the same problem is solved each style
» Directly illustrates the diversity of ways of programming
» Many different ways to solve the same problem
» Some are related to programming language features (e.g., OO, functional, reflection)

» But many modern languages support a range of language features that support a
diversity of styles

» Can write something in a procedural style (i.e., ignoring OO features) even in Java

» Examples written in Python

LaToza GMU SWE 621 Spring 2025



EXAMPLE PROBLEM: TERM FREQUENCY

» Given a text file, print Input
the 25 most frequent Tigers live mostly in India
words and
: Wild lions live mostly in Africa
corresponding
frequencies Output
» Sort from most frequent live - 2
to least frequent mostly - 2
africa - 1
» Normalize for india - 1
capitalization and ignore lions - 1
'stop" words (e.g., the, tigers - 1
for, ...) wild - 1

LaToza GMU SWE 621 Spring 2025



SOME TYPES OF PROGRAMMING STYLES

» Basic styles

» Functional styles

» Reflection styles

» Data-centric styles

» Concurrency styles

LaToza GMU SWE 621 Spring 2025



EXAMPLES OF PROGRAMMING STYLES

https://github.com/crista/exercises-in-programming-style

® 5-cookbook/procedural https://github.com/crista/exercises-in-programming-style/tree/master/05-cookbook
e 6-pipeline https://github.com/crista/exercises-in-programming-style/tree/master/06-pipeline
e 7-code golf https://github.com/crista/exercises-in-programming-style/blob/master/07-code-golf/tf-07.py

e 8-infinite mirror / recursive https://github.com/crista/exercises-in-programming-style/tree/master/08-infinite-mirror

® 10-things/O0O https://github.com/crista/exercises-in-programming-style/tree/master/11-things

e 15-hollywood/inversion of control https://github.com/crista/exercises-in-programming-style/tree/master/15-hollywood

* 16-b board /publish subscribe https://github.com/crista/exercises-in-programming-style/tree/master/16-bulletin-board

* 19-aspects https://github.com/crista/exercises-in-programming-style/tree/master/19-aspects

® 20-plugins https://github.com/crista/exercises-in-programming-style/tree/master/20-plugins

o 26-persistent tables/relational https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-tables

o 28-lazy rivers/streams https://github.com/crista/exercises-in-programming-style/blob/master/28-lazy-rivers/tf-28.py

* 31-map reduce https://github.com/crista/exercises-in-programming-style/tree/master/31-map-reduce

LaToza GMU SWE 621 Spring 2025 7


https://github.com/crista/exercises-in-programming-style
https://github.com/crista/exercises-in-programming-style/tree/master/05-cookbook
https://github.com/crista/exercises-in-programming-style/tree/master/06-pipeline
https://github.com/crista/exercises-in-programming-style/blob/master/07-code-golf/tf-07.py
https://github.com/crista/exercises-in-programming-style/tree/master/08-infinite-mirror
https://github.com/crista/exercises-in-programming-style/tree/master/11-things
https://github.com/crista/exercises-in-programming-style/tree/master/15-hollywood
https://github.com/crista/exercises-in-programming-style/tree/master/16-bulletin-board
https://github.com/crista/exercises-in-programming-style/tree/master/19-aspects
https://github.com/crista/exercises-in-programming-style/tree/master/20-plugins
https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-tables
https://github.com/crista/exercises-in-programming-style/blob/master/28-lazy-rivers/tf-28.py
https://github.com/crista/exercises-in-programming-style/tree/master/31-map-reduce

COOKBOOK / PROCEDURAL

» Complexity tamed by dividing problem into procedures

» Procedures take input, but don't necessarily produce output relevant to
problem (e.g., output status codes)

» Procedures instead often share state through global variables

» Problem is solved by repeatedly applying procedures to update shared
state

» Consequences
» Not idempotent - repeatedly calling procedure generates new output

» Global variables can be hard to debug and reason about

LaToza GMU SWE 621 Spring 2025



PIPELINE

» Problem decomposed into functions, which take input and
produce output

» No shared state between functions
» Problem solved by composing functions (f(g(x)))
» Consequences

» Easy to test, easy to parallelize (e..g, MapReduce)

LaToza GMU SWE 621 Spring 2025



CODE GOLF

» As few lines as possible
» Consequences
» Sometimes: hard to understand, bugs
» But also sometimes: easy to understand, elegant

» Helptul when used appropriately

LaToza GMU SWE 621 Spring 2025

10



INFINITE MIRROR / RECURSIVE

» Problem is solved using induction, specifying a base case
(n0) and inductive step (n + 1)

» Consequences

» Can lead to stack overflow for languages that don't support
tail recursion optimization

LaToza GMU SWE 621 Spring 2025

11



THINGS /00

» Problem decomposed into things that make sense for
problem domain

» Thing exposes operations and has state

» State is hidden and accessed only through operations

LaToza GMU SWE 621 Spring 2025

12



HOLLYWOOD / INVERSION OF CONTROL

» Elements are never called on directly
» Provide interfaces to register for callbacks (i.e., use Observer)
» Consequences

» Inverts dependency relationship

» Promotes extensibility

LaToza GMU SWE 621 Spring 2025

13



LaToza

B BOARD / PUBLISH SUBSCRIBE

» Elements never called directly

» Central infrastructure for publishing and subscribing to
events (bulletin board)

GMU SWE 621 Spring 2025

14



ASPECTS

» Aspects are added to functions / procedures without any
edits to code

» External binding mechanism binds abstractions to aspects

» Consequences

» Can reify scattered concerns in many methods into one
place (e.g., tracing, logging, security)

» Can inject dependencies

LaToza GMU SWE 621 Spring 2025

15



PLUGINS

» Main program and plugins separately compiled

» Plugins loaded dynamically by main program, using external
config

» Main program uses plugins without knowing implementation

» Consequences

» Enables adding 3rd party behavior to a program

LaToza GMU SWE 621 Spring 2025

16



PERSISTENT TABLES

» Data exists before and after execution of program and
shared between programs

» Data is stored in way that makes it easier and faster to
explore

» Problem is solved through queries against data

LaToza GMU SWE 621 Spring 2025

17



LAZY RIVERS / PIPES & FILTERS

» Data is available on streams

» Functions are filters / transformers from one kind of data
stream to another

LaToza GMU SWE 621 Spring 2025

18



MAP / REDUCE

» Input data divided into blocks

» Map function applies a given worker function to each block
of data, potentially in parallel

» Reduce function takes the results of many workers functions
and recombines them into coherent output

LaToza GMU SWE 621 Spring 2025

19



SUMMARY

» Many choices about how to implement a solution

» Programming styles offer a vocabulary for talking about
alternative implementations

» Makes explicit the constraints which lead to a specific style of
programming

» Can consider explicitly the consequences of following
these constraints

LaToza GMU SWE 621 Spring 2025

20



IN CLASS ACTIVITY

aaaaaa

GMU SWE 621 Spring 2025

21



SKETCH IMPLEMENTATION IN TWO PROGRAMMING STYLES

» Work in groups of 2 or 3, pick an OO language (e.g., Java, Python, C#)

» Sketch two implementations of the following, using the lazy river and the

relational tables programming styles

» Given a text file, output all words alphabetically, along with the page
numbers on which they occur. Ignore all words that occur more than 100
times. Assume a page is a sequence of 45 lines.

» abatement - 89
abhorrence - 101, 145, 152, 241, 274, 281
abhorrent - 253
abide - 158, 292

» Does not need to compile and run, just looking for a sketch that illustrates

LaToza

following the programming style for this problem

GMU SWE 621 Spring 2025

22



