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LOGISTICS

▸ HW4 due today 

▸ HW5 due on 4/28
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PROGRAMMING STYLE
▸ A set of constraints on how code is written which help 

achieve specific requirements or quality attributes 

▸ Describe alternative ways in which code might be written 

▸ make it object-oriented 

▸ make it functional 

▸ lazily load data from input source 

▸ give each element a separate thread 

▸ Like architectural styles and design patterns, has 
consequences that adopting programming style help 
achieve 

▸ But not always as well-defined and enumerated
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EXERCISES IN PROGRAMMING STYLE
▸ Presentation is centered around an example problem 

▸ Each program offers the same baseline behavior (sometimes adding an additional 
feature) 

▸ Can directly compare and contrast how the same problem is solved each style 

▸ Directly illustrates the diversity of ways of programming 

▸ Many different ways to solve the same problem 

▸ Some are related to programming language features (e.g., OO, functional, reflection) 

▸ But many modern languages support a range of language features that support a 
diversity of styles 

▸ Can write something in a procedural style (i.e., ignoring OO features) even in Java 

▸ Examples written in Python
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EXAMPLE PROBLEM: TERM FREQUENCY

▸ Given a text file, print 
the 25 most frequent 
words and 
corresponding 
frequencies 

▸ Sort from most frequent 
to least frequent 

▸ Normalize for 
capitalization and ignore 
"stop" words (e.g., the, 
for, ...)
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Input

Output

Tigers live mostly in India 

Wild lions live mostly in Africa

live - 2 
mostly - 2 
africa - 1 
india - 1 
lions - 1 
tigers - 1 
wild - 1
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SOME TYPES OF PROGRAMMING STYLES

▸ Basic styles 

▸ Functional styles 

▸ Reflection styles 

▸ Data-centric styles 

▸ Concurrency styles
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EXAMPLES OF PROGRAMMING STYLES
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https://github.com/crista/exercises-in-programming-style 

• 5-cookbook/procedural        https://github.com/crista/exercises-in-programming-style/tree/master/05-cookbook 
• 6-pipeline        https://github.com/crista/exercises-in-programming-style/tree/master/06-pipeline 
• 7-code golf         https://github.com/crista/exercises-in-programming-style/blob/master/07-code-golf/tf-07.py 
• 8-infinite mirror / recursive   https://github.com/crista/exercises-in-programming-style/tree/master/08-infinite-mirror 
• 10-things/OO    https://github.com/crista/exercises-in-programming-style/tree/master/11-things 
• 15-hollywood/inversion of control https://github.com/crista/exercises-in-programming-style/tree/master/15-hollywood 
• 16-b board /publish subscribe  https://github.com/crista/exercises-in-programming-style/tree/master/16-bulletin-board 
• 19-aspects   https://github.com/crista/exercises-in-programming-style/tree/master/19-aspects 
• 20-plugins https://github.com/crista/exercises-in-programming-style/tree/master/20-plugins 
• 26-persistent tables/relational https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-tables 
• 28-lazy rivers/streams  https://github.com/crista/exercises-in-programming-style/blob/master/28-lazy-rivers/tf-28.py 
• 31-map reduce    https://github.com/crista/exercises-in-programming-style/tree/master/31-map-reduce

https://github.com/crista/exercises-in-programming-style
https://github.com/crista/exercises-in-programming-style/tree/master/05-cookbook
https://github.com/crista/exercises-in-programming-style/tree/master/06-pipeline
https://github.com/crista/exercises-in-programming-style/blob/master/07-code-golf/tf-07.py
https://github.com/crista/exercises-in-programming-style/tree/master/08-infinite-mirror
https://github.com/crista/exercises-in-programming-style/tree/master/11-things
https://github.com/crista/exercises-in-programming-style/tree/master/15-hollywood
https://github.com/crista/exercises-in-programming-style/tree/master/16-bulletin-board
https://github.com/crista/exercises-in-programming-style/tree/master/19-aspects
https://github.com/crista/exercises-in-programming-style/tree/master/20-plugins
https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-tables
https://github.com/crista/exercises-in-programming-style/blob/master/28-lazy-rivers/tf-28.py
https://github.com/crista/exercises-in-programming-style/tree/master/31-map-reduce
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COOKBOOK / PROCEDURAL

▸ Complexity tamed by dividing problem into procedures 

▸ Procedures take input, but don't necessarily produce output relevant to 
problem (e.g., output status codes) 

▸ Procedures instead often share state through global variables 

▸ Problem is solved by repeatedly applying procedures to update shared 
state 

▸ Consequences 

▸ Not idempotent - repeatedly calling procedure generates new output 

▸ Global variables can be hard to debug and reason about
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PIPELINE

▸ Problem decomposed into functions, which take input and 
produce output 

▸ No shared state between functions 

▸ Problem solved by composing functions (f(g(x))) 

▸ Consequences 

▸ Easy to test, easy to parallelize (e..g, MapReduce)
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CODE GOLF

▸ As few lines as possible 

▸ Consequences 

▸ Sometimes: hard to understand, bugs 

▸ But also sometimes: easy to understand, elegant 

▸ Helpful when used appropriately
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INFINITE MIRROR / RECURSIVE

▸ Problem is solved using induction, specifying a base case 
(n0) and inductive step (n + 1) 

▸ Consequences 

▸ Can lead to stack overflow for languages that don't support 
tail recursion optimization

11



LaToza GMU SWE 621 Spring 2025

THINGS / OO

▸ Problem decomposed into things that make sense for 
problem domain 

▸ Thing exposes operations and has state 

▸ State is hidden and accessed only through operations
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HOLLYWOOD / INVERSION OF CONTROL

▸ Elements are never called on directly 

▸ Provide interfaces to register for callbacks (i.e., use Observer) 

▸ Consequences 

▸ Inverts dependency relationship 

▸ Promotes extensibility
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B BOARD / PUBLISH SUBSCRIBE

▸ Elements never called directly 

▸ Central infrastructure for publishing and subscribing to 
events (bulletin board)
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ASPECTS 

▸ Aspects are added to functions / procedures without any 
edits to code 

▸ External binding mechanism binds abstractions to aspects 

▸ Consequences 

▸ Can reify scattered concerns in many methods into one 
place (e.g., tracing, logging, security) 

▸ Can inject dependencies 
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PLUGINS

▸ Main program and plugins separately compiled 

▸ Plugins loaded dynamically by main program, using external 
config 

▸ Main program uses plugins without knowing implementation 

▸ Consequences 

▸ Enables adding 3rd party behavior to a program
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PERSISTENT TABLES

▸ Data exists before and after execution of program and 
shared between programs 

▸ Data is stored in way that makes it easier and faster to 
explore 

▸ Problem is solved through queries against data
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LAZY RIVERS / PIPES & FILTERS

▸ Data is available on streams 

▸ Functions are filters / transformers from one kind of data 
stream to another
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MAP / REDUCE

▸ Input data divided into blocks 

▸ Map function applies a given worker function to each block 
of data, potentially in parallel 

▸ Reduce function takes the results of many workers functions 
and recombines them into coherent output
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SUMMARY

▸ Many choices about how to implement a solution 

▸ Programming styles offer a vocabulary for talking about 
alternative implementations 

▸ Makes explicit the constraints which lead to a specific style of 
programming 

▸ Can consider explicitly the consequences of following 
these constraints
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IN CLASS ACTIVITY
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SKETCH IMPLEMENTATION IN TWO PROGRAMMING STYLES

▸ Work in groups of 2 or 3, pick an OO language (e.g., Java, Python, C#) 

▸ Sketch two implementations of the following, using the lazy river and the 
relational tables programming styles 

▸ Given a text file, output all words alphabetically, along with the page 
numbers on which they occur. Ignore all words that occur more than 100 
times. Assume a page is a sequence of 45 lines. 

▸ abatement - 89 
abhorrence - 101, 145, 152, 241, 274, 281 
abhorrent - 253 
abide - 158, 292 

▸ Does not need to compile and run, just looking for a sketch that illustrates 
following the programming style for this problem
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