
PROGRAMMING STYLES
SWE 621
SPRING 2025

© THOMAS LATOZA

LaToza GMU SWE 621 Spring 2025

LOGISTICS

▸ HW4 due today

▸ HW5 due on 4/28

2

LaToza GMU SWE 621 Spring 2025

PROGRAMMING STYLE
▸ A set of constraints on how code is written which help

achieve specific requirements or quality attributes

▸ Describe alternative ways in which code might be written

▸ make it object-oriented

▸ make it functional

▸ lazily load data from input source

▸ give each element a separate thread

▸ Like architectural styles and design patterns, has
consequences that adopting programming style help
achieve

▸ But not always as well-defined and enumerated

3

LaToza GMU SWE 621 Spring 2025

EXERCISES IN PROGRAMMING STYLE
▸ Presentation is centered around an example problem

▸ Each program offers the same baseline behavior (sometimes adding an additional
feature)

▸ Can directly compare and contrast how the same problem is solved each style

▸ Directly illustrates the diversity of ways of programming

▸ Many different ways to solve the same problem

▸ Some are related to programming language features (e.g., OO, functional, reflection)

▸ But many modern languages support a range of language features that support a
diversity of styles

▸ Can write something in a procedural style (i.e., ignoring OO features) even in Java

▸ Examples written in Python

4

LaToza GMU SWE 621 Spring 2025

EXAMPLE PROBLEM: TERM FREQUENCY

▸ Given a text file, print
the 25 most frequent
words and
corresponding
frequencies

▸ Sort from most frequent
to least frequent

▸ Normalize for
capitalization and ignore
"stop" words (e.g., the,
for, ...)

5

Input

Output

Tigers live mostly in India

Wild lions live mostly in Africa

live - 2
mostly - 2
africa - 1
india - 1
lions - 1
tigers - 1
wild - 1

LaToza GMU SWE 621 Spring 2025

SOME TYPES OF PROGRAMMING STYLES

▸ Basic styles

▸ Functional styles

▸ Reflection styles

▸ Data-centric styles

▸ Concurrency styles

6

LaToza GMU SWE 621 Spring 2025

EXAMPLES OF PROGRAMMING STYLES

7

https://github.com/crista/exercises-in-programming-style

• 5-cookbook/procedural https://github.com/crista/exercises-in-programming-style/tree/master/05-cookbook
• 6-pipeline https://github.com/crista/exercises-in-programming-style/tree/master/06-pipeline
• 7-code golf https://github.com/crista/exercises-in-programming-style/blob/master/07-code-golf/tf-07.py
• 8-infinite mirror / recursive https://github.com/crista/exercises-in-programming-style/tree/master/08-infinite-mirror
• 10-things/OO https://github.com/crista/exercises-in-programming-style/tree/master/11-things
• 15-hollywood/inversion of control https://github.com/crista/exercises-in-programming-style/tree/master/15-hollywood
• 16-b board /publish subscribe https://github.com/crista/exercises-in-programming-style/tree/master/16-bulletin-board
• 19-aspects https://github.com/crista/exercises-in-programming-style/tree/master/19-aspects
• 20-plugins https://github.com/crista/exercises-in-programming-style/tree/master/20-plugins
• 26-persistent tables/relational https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-tables
• 28-lazy rivers/streams https://github.com/crista/exercises-in-programming-style/blob/master/28-lazy-rivers/tf-28.py
• 31-map reduce https://github.com/crista/exercises-in-programming-style/tree/master/31-map-reduce

https://github.com/crista/exercises-in-programming-style
https://github.com/crista/exercises-in-programming-style/tree/master/05-cookbook
https://github.com/crista/exercises-in-programming-style/tree/master/06-pipeline
https://github.com/crista/exercises-in-programming-style/blob/master/07-code-golf/tf-07.py
https://github.com/crista/exercises-in-programming-style/tree/master/08-infinite-mirror
https://github.com/crista/exercises-in-programming-style/tree/master/11-things
https://github.com/crista/exercises-in-programming-style/tree/master/15-hollywood
https://github.com/crista/exercises-in-programming-style/tree/master/16-bulletin-board
https://github.com/crista/exercises-in-programming-style/tree/master/19-aspects
https://github.com/crista/exercises-in-programming-style/tree/master/20-plugins
https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-tables
https://github.com/crista/exercises-in-programming-style/blob/master/28-lazy-rivers/tf-28.py
https://github.com/crista/exercises-in-programming-style/tree/master/31-map-reduce

LaToza GMU SWE 621 Spring 2025

COOKBOOK / PROCEDURAL

▸ Complexity tamed by dividing problem into procedures

▸ Procedures take input, but don't necessarily produce output relevant to
problem (e.g., output status codes)

▸ Procedures instead often share state through global variables

▸ Problem is solved by repeatedly applying procedures to update shared
state

▸ Consequences

▸ Not idempotent - repeatedly calling procedure generates new output

▸ Global variables can be hard to debug and reason about

8

LaToza GMU SWE 621 Spring 2025

PIPELINE

▸ Problem decomposed into functions, which take input and
produce output

▸ No shared state between functions

▸ Problem solved by composing functions (f(g(x)))

▸ Consequences

▸ Easy to test, easy to parallelize (e..g, MapReduce)

9

LaToza GMU SWE 621 Spring 2025

CODE GOLF

▸ As few lines as possible

▸ Consequences

▸ Sometimes: hard to understand, bugs

▸ But also sometimes: easy to understand, elegant

▸ Helpful when used appropriately

10

LaToza GMU SWE 621 Spring 2025

INFINITE MIRROR / RECURSIVE

▸ Problem is solved using induction, specifying a base case
(n0) and inductive step (n + 1)

▸ Consequences

▸ Can lead to stack overflow for languages that don't support
tail recursion optimization

11

LaToza GMU SWE 621 Spring 2025

THINGS / OO

▸ Problem decomposed into things that make sense for
problem domain

▸ Thing exposes operations and has state

▸ State is hidden and accessed only through operations

12

LaToza GMU SWE 621 Spring 2025

HOLLYWOOD / INVERSION OF CONTROL

▸ Elements are never called on directly

▸ Provide interfaces to register for callbacks (i.e., use Observer)

▸ Consequences

▸ Inverts dependency relationship

▸ Promotes extensibility

13

LaToza GMU SWE 621 Spring 2025

B BOARD / PUBLISH SUBSCRIBE

▸ Elements never called directly

▸ Central infrastructure for publishing and subscribing to
events (bulletin board)

14

LaToza GMU SWE 621 Spring 2025

ASPECTS

▸ Aspects are added to functions / procedures without any
edits to code

▸ External binding mechanism binds abstractions to aspects

▸ Consequences

▸ Can reify scattered concerns in many methods into one
place (e.g., tracing, logging, security)

▸ Can inject dependencies

15

LaToza GMU SWE 621 Spring 2025

PLUGINS

▸ Main program and plugins separately compiled

▸ Plugins loaded dynamically by main program, using external
config

▸ Main program uses plugins without knowing implementation

▸ Consequences

▸ Enables adding 3rd party behavior to a program

16

LaToza GMU SWE 621 Spring 2025

PERSISTENT TABLES

▸ Data exists before and after execution of program and
shared between programs

▸ Data is stored in way that makes it easier and faster to
explore

▸ Problem is solved through queries against data

17

LaToza GMU SWE 621 Spring 2025

LAZY RIVERS / PIPES & FILTERS

▸ Data is available on streams

▸ Functions are filters / transformers from one kind of data
stream to another

18

LaToza GMU SWE 621 Spring 2025

MAP / REDUCE

▸ Input data divided into blocks

▸ Map function applies a given worker function to each block
of data, potentially in parallel

▸ Reduce function takes the results of many workers functions
and recombines them into coherent output

19

LaToza GMU SWE 621 Spring 2025

SUMMARY

▸ Many choices about how to implement a solution

▸ Programming styles offer a vocabulary for talking about
alternative implementations

▸ Makes explicit the constraints which lead to a specific style of
programming

▸ Can consider explicitly the consequences of following
these constraints

20

LaToza GMU SWE 621 Spring 2025

IN CLASS ACTIVITY

21

LaToza GMU SWE 621 Spring 2025

SKETCH IMPLEMENTATION IN TWO PROGRAMMING STYLES

▸ Work in groups of 2 or 3, pick an OO language (e.g., Java, Python, C#)

▸ Sketch two implementations of the following, using the lazy river and the
relational tables programming styles

▸ Given a text file, output all words alphabetically, along with the page
numbers on which they occur. Ignore all words that occur more than 100
times. Assume a page is a sequence of 45 lines.

▸ abatement - 89
abhorrence - 101, 145, 152, 241, 274, 281
abhorrent - 253
abide - 158, 292

▸ Does not need to compile and run, just looking for a sketch that illustrates
following the programming style for this problem

22

