SWE 621
SPRING 2025

PROGRAMMING STYLES




LOGISTICS

» HW4 due today

» HW5 due on 4/28
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PROGRAMMING STYLE [xercises 1In

Programming Stylc

» A set of constraints on how code is written which help
achieve specific requirements or quality attributes

» Describe alternative ways in which code might be written
» make it object-oriented
» make it functional

» lazily load data from input source .

Cristina Viderira [lLopes

» give each element a separate thread nC) CRC Press

» Like architectural styles and design patterns, has
consequences that adopting programming style help
achieve

» But not always as well-defined and enumerated
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EXERCISES IN PROGRAMMING STYLE

» Presentation is centered around an example problem

» Each program offers the same baseline behavior (sometimes adding an additional
feature)

» Can directly compare and contrast how the same problem is solved each style
» Directly illustrates the diversity of ways of programming
» Many different ways to solve the same problem
» Some are related to programming language features (e.g., OO, functional, reflection)

» But many modern languages support a range of language features that support a
diversity of styles

» Can write something in a procedural style (i.e., ignoring OO features) even in Java

» Examples written in Python
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EXAMPLE PROBLEM: TERM FREQUENCY

» Given a text file, print Input
the 25 most frequent Tigers live mostly in India
words and
: Wild lions live mostly in Africa
corresponding
frequencies Output
» Sort from most frequent live - 2
to least frequent mostly - 2
africa - 1
» Normalize for india - 1
capitalization and ignore lions - 1
'stop" words (e.g., the, tigers - 1
for, ...) wild - 1
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SOME TYPES OF PROGRAMMING STYLES

» Basic styles

» Functional styles

» Reflection styles

» Data-centric styles

» Concurrency styles
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EXAMPLES OF PROGRAMMING STYLES

https://github.com/crista/exercises-in-programming-style

® 5-cookbook/procedural https://github.com/crista/exercises-in-programming-style/tree/master/05-cookbook
e 6-pipeline https://github.com/crista/exercises-in-programming-style/tree/master/06-pipeline
e 7-code golf https://github.com/crista/exercises-in-programming-style/blob/master/07-code-golf/tf-07.py

e 8-infinite mirror / recursive https://github.com/crista/exercises-in-programming-style/tree/master/08-infinite-mirror

® 10-things/O0O https://github.com/crista/exercises-in-programming-style/tree/master/11-things

e 15-hollywood/inversion of control https://github.com/crista/exercises-in-programming-style/tree/master/15-hollywood

* 16-b board /publish subscribe https://github.com/crista/exercises-in-programming-style/tree/master/16-bulletin-board

* 19-aspects https://github.com/crista/exercises-in-programming-style/tree/master/19-aspects

® 20-plugins https://github.com/crista/exercises-in-programming-style/tree/master/20-plugins

o 26-persistent tables/relational https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-tables

o 28-lazy rivers/streams https://github.com/crista/exercises-in-programming-style/blob/master/28-lazy-rivers/tf-28.py

* 31-map reduce https://github.com/crista/exercises-in-programming-style/tree/master/31-map-reduce
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COOKBOOK / PROCEDURAL

» Complexity tamed by dividing problem into procedures

» Procedures take input, but don't necessarily produce output relevant to
problem (e.g., output status codes)

» Procedures instead often share state through global variables

» Problem is solved by repeatedly applying procedures to update shared
state

» Consequences
» Not idempotent - repeatedly calling procedure generates new output

» Global variables can be hard to debug and reason about
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PIPELINE

» Problem decomposed into functions, which take input and
produce output

» No shared state between functions
» Problem solved by composing functions (f(g(x)))
» Consequences

» Easy to test, easy to parallelize (e..g, MapReduce)
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CODE GOLF

» As few lines as possible
» Consequences
» Sometimes: hard to understand, bugs
» But also sometimes: easy to understand, elegant

» Helptul when used appropriately
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INFINITE MIRROR / RECURSIVE

» Problem is solved using induction, specifying a base case
(n0) and inductive step (n + 1)

» Consequences

» Can lead to stack overflow for languages that don't support
tail recursion optimization
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THINGS /00

» Problem decomposed into things that make sense for
problem domain

» Thing exposes operations and has state

» State is hidden and accessed only through operations
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HOLLYWOOD / INVERSION OF CONTROL

» Elements are never called on directly
» Provide interfaces to register for callbacks (i.e., use Observer)
» Consequences

» Inverts dependency relationship

» Promotes extensibility
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LaToza

B BOARD / PUBLISH SUBSCRIBE

» Elements never called directly

» Central infrastructure for publishing and subscribing to
events (bulletin board)
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ASPECTS

» Aspects are added to functions / procedures without any
edits to code

» External binding mechanism binds abstractions to aspects

» Consequences

» Can reify scattered concerns in many methods into one
place (e.g., tracing, logging, security)

» Can inject dependencies
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PLUGINS

» Main program and plugins separately compiled

» Plugins loaded dynamically by main program, using external
config

» Main program uses plugins without knowing implementation

» Consequences

» Enables adding 3rd party behavior to a program
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PERSISTENT TABLES

» Data exists before and after execution of program and
shared between programs

» Data is stored in way that makes it easier and faster to
explore

» Problem is solved through queries against data

LaToza GMU SWE 621 Spring 2025

17



LAZY RIVERS / PIPES & FILTERS

» Data is available on streams

» Functions are filters / transformers from one kind of data
stream to another
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MAP / REDUCE

» Input data divided into blocks

» Map function applies a given worker function to each block
of data, potentially in parallel

» Reduce function takes the results of many workers functions
and recombines them into coherent output
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SUMMARY

» Many choices about how to implement a solution

» Programming styles offer a vocabulary for talking about
alternative implementations

» Makes explicit the constraints which lead to a specific style of
programming

» Can consider explicitly the consequences of following
these constraints
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IN CLASS ACTIVITY

aaaaaa
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SKETCH IMPLEMENTATION IN TWO PROGRAMMING STYLES

» Work in groups of 2 or 3, pick an OO language (e.g., Java, Python, C#)

» Sketch two implementations of the following, using the lazy river and the

relational tables programming styles

» Given a text file, output all words alphabetically, along with the page
numbers on which they occur. Ignore all words that occur more than 100
times. Assume a page is a sequence of 45 lines.

» abatement - 89
abhorrence - 101, 145, 152, 241, 274, 281
abhorrent - 253
abide - 158, 292

» Does not need to compile and run, just looking for a sketch that illustrates

LaToza

following the programming style for this problem
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