((;?M/] GEORGE MASON
AVl UNIVERSITY.

SWE 621
SPRING 2025

DESIGN FOR REUSE

© THOMAS LATOZA

LOGISTICS

» HWS due on 4/28
» No class meeting next Monday
» Will post recorded lecture next Mon w/ link to class activity

» Project presentations on 5/5

» Final exam on 5/12,4:30-7:10pm

LaToza GMU SWE 621 Spring 2025

FINAL EXAM

» Closed book

» Comprehensive (covers all lectures and readings)
» Take place during scheduled final exam time slot

» Mix of multiple choice and essay questions

LaToza GMU SWE 621 Spring 2025

OVERVIEW

» What is reuse?

» What can make it hard?

» How can you design for reuse to make it easier?

LaToza GMU SWE 621 Spring 2025

IN-CLASS ACTIVITY

» You're using a framework you've never used before (e.g.,
React, SQLite, Redis)

» You're writing some code, but it just doesn't seem to work.

» What do you do next?

LaToza GMU SWE 621 Spring 2025

WHAT IS REUSE?

» Making use of previously written code rather than writing new code

» Often, reuse takes form of reusing a library or a framework

» Once made choice to reuse a library or framework, need to
understand how to achieve specific behavior with library or
framework

» Often finding code snippets that achieve desired behavior

LaToza GMU SWE 621 Spring 2025

LaToza

APPLICATION PROGRAMMING INTERFACE (API)

» Boundary between code to be reused (library
or framework) and client which reuses code

» We've looked previously at abstractions

» Design goal: chose operations which make
key reuse scenarios short

» Choice of what operations to support one
of the most important choices in APl design

» Today we'll look more broadly at
considerations in designing code for reuse

GMU SWE 621 Spring 2025

Docs Tutorial

Declarative

React makes it painless to create
interactive Uls. Design simple views for
each state in your application, and
React will efficiently update and render
just the right components when your
data changes.

Declarative views make your code
more predictable and easier to debug.

A Simple Component

Community

Component-Based

Build encapsulated components that
manage their own state, then compose
them to make complex Uls.

Since component logic is written in
JavaScript instead of templates, you
can easily pass rich data through your
app and keep state out of the DOM.

v16.6.3 GitHub

Learn Once, Write Anywhere

We don't make assumptions about the
rest of your technology stack, so you
can develop new features in React
without rewriting existing code.

React can also render on the server
using Node and power mobile apps
using React Native.

React components implement a render() method that takes input data and returns what to
display. This example uses an XML-like syntax called JSX. Input data that is passed into the
component can be accessed by render() via this.props.

JSX is optional and not required to use React. Try the Babel REPL to see the raw
JavaScript code produced by the JSX compilation step.

Hello .props.name

ReactDOM.
M
mountNode

RESULT

Hello Taylor

API QUALITY ATTRIBUTES

4

4

4

LaToza

Largely similar to normal system design, but for
client code

Usability

» Learnability

» Error prevention

» Consistency

» Matching user mental models
Power

» Extensibility: ability for users to create new
elements

» Evolvability: ability for designers to change API
» Performance: speed, memory consumption

» Security

GMU SWE 621 Spring 2025

Key: Stakeholders
API Designers API Users Product Consumers
Usability
Learnability Productivity Error-Prevention

Q 2 2%

| I
Matching

Simplicity Consistency Ve
Power
Expressiveness Extensibility Evolvability Performance,

Robustness

R R

SOME EXAMPLES OF API DESIGN DECISIONS

Structural Design Decisions
(Separating Functionality into Classes and Interfaces)

Design Patterns Package Design »Composition vs inheritance +Class vs struct

eNaming eHierarchy

oFactory Pattern « Maximizing information hiding +Class vs interface

«Size
« Asynchronous Pattern +Matching organization roles sinterfaces vs abstract classes

Class Design Decisions
(Separating a Class’s Functionality into Methods and Fields)

What Methods and Fleids to Provide
«Class name

*Dispose pattern eReturning arrays Individual Method / Field Design

Singleton pattern eFinalzers Exceptions Naming Parameter Design

o CONStrucrors

eNot.instantiatable pattern o Standard types |
Language Modifiers «Types « Naming

»Collections Type:
«Optional feature pattern ‘A’WYS «When to use o Sratic Synchronized +Ordering oEvents

«Static 'M"""IE"' eSealed +Protected eParameter checking

-C:.kj;,"l\i Vi mc.u.-,:l't e Virwal
Naitad U Final

eFloar vs double
o Performance s ADstract

LaToza GMU SWE 621 Spring 2025

MORE API DESIGN DECISIONS

» Documentation
» What to cover
» How to communicate: descriptions of methods? examples?

» Audience: experts? novices? users of competing APIs?

LaToza GMU SWE 621 Spring 2025

10

WHAT CAN MAKE REUSE HARD?

» Software engineering researchers run user studies to identify
general strategies and challenges developers experience

» User experience researchers at companies with large API
ecosystems (e.g., Google, Facebook, Microsoft) run user
studies to evaluate and improve specific APl designs

LaToza GMU SWE 621 Spring 2025

11

SOME CHALLENGES WITH REUSE

4

LaToza

Design barriers—inherent cognitive difficulties of the programming problem, separate from
notation used

» | don't know what | want the computer to do
Selection barriers—finding programming interfaces available to achieve a particular behavior
» | don’t know what to use
Coordination barriers—constraints governing how languages & libraries can be combined
» | don’t know how to make them work together
Use barriers—determining how APl how to use API
» | don't know how to use it

Understanding barriers—environment properties such as compile & runtime errors that prevent
seeing behavior

» It didn't do what | expected
Information barriers—environment properties that prevent understanding runtime execution state

» | think | know why didn’t behave as expected, but don’t know how to check

GMU SWE 621 Spring 2025

12

CHALLENGES WITH REUSE

» Mapping an abstract conceptual solution into the appropriate elements
» “How do I create a rectangle? Why is there no Rectangle tool?”

» Understanding control & data flow, hidden dependencies due to run-time binding or
inheritance, between classes in the API

» “I'm over-riding SelectionTool, and in particular mouseDown() so that when the figure is
clicked the box is drawn. This bit works, however when trying to drag the figure, if | do
something similar the rectangle flickers like mad.”

» Understanding how functionality works
» “How does ... work?”, “What does ... do?” or, “Where is ... defined/created/called?”
» Making changes consistent w/ architectural constrains of API

» Violating constraints of MVC architecture by passing references in prohibited ways

Douglas Kirk, Marc Roper, and Murray Wood. 2007. Identifying and addressing problems in object-oriented framework
reuse. Empirical Softw. Eng. 12, 3 (June 2007), 243-274.

LaToza GMU SWE 621 Spring 2025 13

VOCABULARY PROBLEM

» APl users are familiar with concepts using one set of
terminology.

» API, tutorials, or other resources use different terminology

» Domain driven design suggests that all terminology should
be the same. But what happens when it isn't?

» How do APl users find the right concepts with alternative
terms?

LaToza GMU SWE 621 Spring 2025

14

CHALLENGES MAY VARY BY CONTEXT

» Size of desired snippet

» Reusing a line of code? A whole algorithm?

» Alternatives

» How many alternatives are there? How important is it to find the best alternative?

» Integration

» What libraries or frameworks does a snippet require? How can they be
integrated?

LaToza GMU SWE 621 Spring 2025

15

SOME EXAMPLES OF REUSE TECHNIQUES

» You'd like to reuse method x in framework f. How do you figure out
how to do this?

» Example reuse techniques
» Ask ChatGPT
» Read the documentation
» Find StackOverflow snippets
» Find similar code in your own codebase that also reuses x

» Try out APl functions, see what they do

LaToza GMU SWE 621 Spring 2025

16

OPPORTUNISTIC VS. SYSTEMATIC DEVELOPERS

» Developers vary in which sorts of strategies they prefer

» Key choice: how completely do you need to understand API before deciding
your understanding is "good enough"

» Systematic: as much as possible
» Opportunistic: as little as possible
» This leads to different developers preferring different types of strategies
» Opportunistic developers more likely to start with example code
» Systematic developers more likely to read the documentation first

» ---> APl documentation should support both types of strategies

LaToza GMU SWE 621 Spring 2025

17

STRATEGIES VARY WITH DEGREE OF PRIOR KNOWLEDGE OF API

WEB SESSION INTENTION:

LEARNING

CLARIFICATION

REMINDER

Reason for using Web

Just-in-time learning of

Connect high-level knowledge

Substitute for memorization (e.g., language

unfamiliar concepts to implementation details syntax or function usage lookup)

Web session length Tens of minutes ~ 1 minute < 1 minute
Starts with web search? Almost always Often Sometimes
Search terms Natural language related Mix of natural language and code, Mostly code (e.g., function

to high-level task cross-language analogies names, language keywords)
Example search “ajax tutorial” “Jjavascript timer” “mysql fetch_array”
Num. result clicks Usually several Fewer Usually zero or one
Num. query refinements Usually several Fewer Usually zero
Types of webpages visited Tutorials, API documentation, API documentation,

how-to articles blog posts, articles result snippets on search page

Amount of code copied Dozens of lines Several lines Varies
from Web (e.g., from tutorial snippets)
Immediately test copied code? Yes Not usually, often trust snippets Varies

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code. Conference on Human Factors in
Computing Systems (CHI '09), 1589-1598.

LaToza

GMU SWE 621 Spring 2025

18

TYPES OF REUSE

» Learning—relies on selecting highest quality tutorials tutorials
» e.g., “update web page without reloading php”
» Clarification—learning syntax based on exiting understanding of the domain concepts
» e.g., reminding use of syntax of HTML forms
» Often search by analogy to domain concepts in other languages / frameworks
» e.g., Perl has a function to format dates as strings, what's the one for PHP?
» Reminder—using web as external memory aid
» e.g., forgot a word in a long function name

» e.g., 6 lines of code necessary to connect and disconnect from MySQL database
copied hundreds of times by individual

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code. Conference on Human Factors in
Computing Systems (CHI '09), 1589-1598.

LaToza GMU SWE 621 Spring 2025

19

EFFECTS OF API DESIGN CHOICES: METHOD PLACEMENT

» Where to put functions when doing
object-oriented design of APIs

» mail_Server.send(mail_Message)
) VS.
» mail_Message.send(mail_Server)

» When desired method is on the class
that they start with, users were
between 2.4 and 11.2 times faster

[Stylos FSE, 2008]

LaToza GMU SWE 621 Spring 2025

Time (min)

20
15

10

S}
0

Email Task

Time to Find a Method

Web Task Thingies Task

@ Methods on
Expected Objects

m Methods on
Helper Objects

20

EFFECTS OF API DESIGN CHOICES: REQUIRED PARAMETERS IN CONSTRUCTORS

» Compared default constructor (create-set- » vs. required constructor

call)
» var foo = new FooClass(barValue);

» var foo = new FooClass();
» foo.Bar = barValue; > too.Use();
» foo.Use();

» Results

What Object Do I Use?

» All developers assumed there would be a

Instantiate the object ‘

default constructor —
Satisfy Required Constructor

» Required constructors imposed premature
commitment: had to figure out how to
COnStrUCt ObjeCt befOre COUId deCide if it Callthemethod/Setthepropert}i

was the right object for task - '
Honhs L 18 What's the Next Step?

Is This the Right Object? What Properties or

Methods Do I Need?

» Did not insure valid objects - passed in null

[Stylos & Clarke, ICSE'07]

LaToza GMU SWE 621 Spring 2025

21

EFFECTS OF API DESIGN CHOICES: FACTORIES

» Compared "normal” creation: Widget w = new Widget();
» Vvs. creation using factory pattern
» AbstractFactory f = AbstractFactory.getDefault();
» Widget w = f.createWidget();
» Factory pattern frequently in Java (>61) and .Net (>13) and SAP
» Results

» Time to develop using factories took 2.1 to 5.3 times longer compared to
regular constructors (20:05 vs 9:31, 7:10 vs 1:20)

» All developers had difficulties using factories in APIs
» --> Very important if using factory to document how to create objects

» Particularly in class developers might start with
[Ellis 2007]

LaToza GMU SWE 621 Spring 2025

22

LaToza

HOW CAN YOU DESIGN FOR REUSE TO MAKE IT EASIER?

» Given these (and other) findings, how can an API be
designed for reuse?

» Some recommendations
» Create effective documentation
» Apply natural programming method

» Make API design choices which optimize for usability and
power quality attributes

GMU SWE 621 Spring 2025

23

CREATE EFFECTIVE DOCUMENTATION

» Include short code snippets that document APl usage patterns of how multiple
methods work together and capture best way to use API

» Focus on documenting higher level usage, not boilerplate documentation that adds
little beyond method signatures

» Match scenarios capturing common use cases to how to do that in API
» Include discussion of performance consequences of specific APl usage

» Examples:

» https://reactjs.org/docs/getting-started.html|

» https://github.com/d3/d3-brush/blob/v1.1.5/README.md#brush_clear

» https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Working_with_Objects

LaToza GMU SWE 621 Spring 2025

24

https://reactjs.org/docs/getting-started.html
https://github.com/d3/d3-brush/blob/v1.1.5/README.md#brush_clear
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects

ACTIVITY

» In groups of 2 or 3,
» Pick a library or framework of your choice

» Critique the documentation: what works, what could be
improved

» Deliverables: be prepared to present back to class

LaToza GMU SWE 621 Spring 2025

25

NATURAL PROGRAMMING METHOD

» Give developers a task, ask them imagine that there's a
framework that does this task, ask them to write code on a
blank screen to complete task

» It definitely won't compile

» Examine code they wrote to understand what elements and
methods they expect to see

» Elicits their mental model of how they expect APl to work

Stylos, J. and Myers., B.A. (2008) The implications of method placement on API learnability. FSE, 105-112.
LaToza GMU SWE 621 Spring 2025

26

http://www.cs.cmu.edu/~NatProg/papers/p62-myers-CACM-API_Usability.pdf

LaToza

MAKE EFFECTIVE DESIGN CHOICES FOR USABILITY

» Design problem similar to designing for software for users
more generally

» Can apply Nielsen's Heuristic evaluation heuristics to API
design (see SWE 632 for more!)

GMU SWE 621 Spring 2025

27

LaToza

VISIBILITY OF SYSTEM STATUS

» Should be easy for APl user to check state of framework
» e.g., whether file is open or closed

» Using wrong operation for the current state should generate
appropriate feedback

» e.g., writing to closed file should generate meaningful error
message

GMU SWE 621 Spring 2025

28

MATCH BETWEEN SYSTEM AND REAL WORLD

» Names given to methods and organization of methods into
classes should match APl users' expectations

» e.g., user wanting to write to File most likely to look for File
class first, not FileOutputStream

» Users often interact with class first by creating an instance

LaToza GMU SWE 621 Spring 2025

29

LaToza

USER CONTROL AND FREEDOM

» APl users should be able to abort or reset operations and
return the APl back to previous state

GMU SWE 621 Spring 2025

30

CONSISTENCY AND STANDARDS

» All design choices should be consistent across API

» e.g., naming of classes and methods, naming of arguments, order
of arguments, placement of methods into classes

» Example violation: order of arguments in opposite order
» void writeStartElement(String namespaceURI, String localName)

» void writeStartElement(String prefix, String localName, String
namespaceURI)

LaToza GMU SWE 621 Spring 2025

31

ERROR PREVENTION

» APl should guide user into doing the right thing
» Have defaults that match users' expectations

» Avoid using String parameters, particularly long sequences
of String parameters

» Compiler cannot check if arguments in correct order

» e.g., void setShippingAddress (String firstName, String
lastName, String street, String city, String state, String
country, String zipCode, String email, String phone)

LaToza GMU SWE 621 Spring 2025

32

RECOGNITION RATHER THAN RECALL

» APl users often try to find the right method through
autocomplete

» Make names clear and understandable, so users can
recognize what they want

LaToza

GMU SWE 621 Spring 2025

33

LaToza

FLEXIBILITY AND EFFICIENCY OF USE

» APl users should be able to accomplish their tasks efficiently

GMU SWE 621 Spring 2025

34

LaToza

HELP USERS RECOGNIZE, DIAGNOSE, RECOVER FROM ERRORS

» When a developer uses APl incorrectly, APl should offer error
messages that explain the problem and offer suggestions on
how to resolve issue

GMU SWE 621 Spring 2025

35

SUMMARY

» Developers spend much of their time interacting with libraries and
frameworks through APlIs

» Developers differ in use of opportunistic and systematic strategies for
reuse, requiring different considerations in APl and documentation
design

» Documentation that focuses on scenarios and best practice usages,
rather than boilerplate, can make big impact in usability

» Many design choices such as naming, organization of functionality into
classes, and error messages can have a profound choice on usability

» Can apply usability heuristics to API design

LaToza GMU SWE 621 Spring 2025

36

IN CLASS ACTIVITY

aaaaaa

GMU SWE 621 Spring 2025

37

APPLY API DESIGN HEURISTICS

» In groups of 2 or 3
» Pick a framework (e.g., React, Firebase, Flask, PyTorch)
» Critique the framework using APl design heuristics (Slides 28-35)

» Identify one example for each heuristic (8 total) where the framework
either follows or violates the heuristic

» For example of the 8 examples, list the name of the heuristic, give
an element within the framework (e.g., method, class), and describe
how element either follows or violates the heuristic

» Deliverables

» Choice of framework, description of 8 examples

LaToza GMU SWE 621 Spring 2025 38

