
DESIGN ECOSYSTEMS
SWE 621 
SPRING 2025

© THOMAS LATOZA



LaToza GMU SWE 621 Spring 2025

LOGISTICS

▸ HW5 due today 

▸ Final Project Presentation: 5/5 

▸ Review for final on 5/5 

▸ Final Exam in two weeks on 5/12

2



LaToza GMU SWE 621 Spring 2025

EXAMPLE: NPM

3

https://twitter.com/garybernhardt/status/1067111872225136640 

https://twitter.com/garybernhardt/status/1067111872225136640


LaToza GMU SWE 621 Spring 2025

ECOSYSTEMS
▸ Networks of systems with complex dependencies 

▸ Each system may have a separate organization / 
individual responsible for its creation and maintenance 

▸ Key characteristic: no single point of control 

▸ Multiple individuals / organizations with separate 
goals, needs 

▸ But have deep interdependencies, where 
organizations depend on others in order to exist 

▸ Fundamentally differs from traditional design process, 
where is no single organization that makes design 
decisions that impact final system 

▸ Dependencies both social and technical 

▸ Technical: our code uses your code 

▸ Social: we'd really like to have some input on what 
your code does and output on how it does it 

▸ Driven by quest for scale

4



LaToza GMU SWE 621 Spring 2025

SOFTWARE ECOSYSTEMS EXAMPLE: NPM PACKAGES

5



LaToza GMU SWE 621 Spring 2025

SOFTWARE ECOSYSTEMS: FACEBOOK

6



LaToza GMU SWE 621 Spring 2025

ACTIVITY

▸ What are other examples of software ecosystems?

7



LaToza GMU SWE 621 Spring 2025

SOME CHARACTERISTICS OF SOFTWARE ECOSYSTEMS

▸ Increase value of the core offering to existing users  

▸ Increase attractiveness for new users  

▸ Increase “stickiness” of the application platform 

▸ Accelerate innovation through open innovation in the ecosystem  

▸ Collaborate with partners in the ecosystems to share cost of 
innovation  

▸ Platformize functionality developed by partners in the ecosystem 
(once success has been proven) 

8



LaToza GMU SWE 621 Spring 2025

FIRST CHARACTERIZED IN CONTEXT OF MILITARY SYSTEMS

▸ "Ultra large scale systems" 

▸ Book published by Software Engineering Institute in 
2006 

▸ Large scale in terms of number of people, amount of data, 
number of interdependencies 

▸ Decentralized in a variety of ways 

▸ Developed and used by a wide variety of stakeholders 
with conflicting needs 

▸ Constructed from heterogeneous parts.  

▸ Software and hardware failures will be the norm rather 
than the exception. 

▸ More like a city than a building

9

https://resources.sei.cmu.edu/asset_files/Book/2006_014_001_30542.pdf 

https://resources.sei.cmu.edu/asset_files/Book/2006_014_001_30542.pdf


LaToza GMU SWE 621 Spring 2025

TYPES OF ECOSYSTEMS

▸ Can describe ecosystems by the key player in the ecosystem 

▸ Usually the organization that owns the key API 

▸ Power accrues to organization by controlling what the API 
can and cannot do 

▸ But organization needs API users to be successful 

▸ In some cases, may be no key player (e.g., NPM package 
ecosystem)

10



LaToza GMU SWE 621 Spring 2025

OS-CENTRIC ECOSYSTEMS

▸ Linux vs. Windows vs. OS X 

▸ node.js vs. Java servlets vs. PHP 

▸ Platform which offers an API which others build on top of 

▸ Platform abstracts over complexity of underlying hardware 

▸ Key player goal: increase value of platform by getting more 
users

11



LaToza GMU SWE 621 Spring 2025

APPLICATION-CENTRIC ECOSYSTEMS

▸ Facebook vs. Twitter vs. LinkedIn 

▸ Word vs. Google Docs 

▸ User facing application which exposes points where 3rd 
party developers can extend application 

▸ Key player goal: increase value of application by getting 
more developers to build more functionality

12



LaToza GMU SWE 621 Spring 2025

END-USER PROGRAMMING ECOSYSTEMS

▸ Microsoft Excel vs. Yahoo Pipes vs. 
Scratch 

▸ Domain specific language (DSL) offers a 
simpler way to program for those who 
are not professional software 
developers (e.g., kids, scientists, 
financial analysts) 

▸ Platform offers language, programming 
environment, and (sometimes) 
repository of programs which can be 
remixed

13



LaToza GMU SWE 621 Spring 2025

PACKAGE-CENTRIC ECOSYSTEMS

▸ NPM vs. R vs. Ruby 

▸ Individual publish packages in central repository 

▸ Packages may depend on other packages 

▸ Automated build process automatically fetches package 
from repository, enabling automatic updating to latest 
version 

▸ Popular packages gain recognition, encourage reuse by 
others

14



LaToza GMU SWE 621 Spring 2025

EXAMPLE: NODE PACKAGE MANAGER 
(NPM) ECOSYSTEM

▸ Node.js is runtime environment for 
server-side JavaScript applications 

▸ Node package manager is an 
online repository of packages 
containing over 700,000 packages 

▸ Core value: make it easy to 
publish, use, and rapidly change 
packages 

▸ Resulted in large repository of 
packages that are very widely 
used in web applications

15



LaToza GMU SWE 621 Spring 2025

DEVELOPERS, DEVELOPERS, DEVELOPERS

16

https://www.youtube.com/watch?v=Vhh_GeBPOhs 

https://www.youtube.com/watch?v=Vhh_GeBPOhs


LaToza GMU SWE 621 Spring 2025

DEVELOPERS

▸ Key goal: increase value of ecosystem for owner by 
encouraging more people to use it 

▸ Key player benefits from scale, which increases value of their 
platform 

▸ Others may benefits as well 

▸ More scale --> more StackOverflow posts, tutorials, 
knowledgable developers --> easier to use

17



LaToza GMU SWE 621 Spring 2025

DEPENDENCIES

▸ Central to ecosystem is a 
dependency, where downstream 
system depends on upstream 
system 

▸ Can think about individual 
dependencies (e.g., we depend 
on this method in this element) or 
just that there is a dependency 
(e.g., there exists some 
dependency from our project on 
project x)

18



LaToza GMU SWE 621 Spring 2025

CHANGE

▸ What happens when an upstream system introduces a change? 

▸ Backwards compatible change: upstream system provides everything they did 
before and more 

▸ Nothing needs to change on downstream system 

▸ Just have new functionality to be used 

▸ Breaking change: upstream system no longer fulfills contract it did before 

▸ Method might be deprecated, renamed, or changed in its behavior 

▸ Burden of change 

▸ Downstream system will not work until is updated to work with new version 

19



LaToza GMU SWE 621 Spring 2025

IN-CLASS ACTIVITY

▸ Have you needed to respond to a breaking change? 

▸ Have you introduced a breaking change?

20



LaToza GMU SWE 621 Spring 2025

WHY DO BREAKING CHANGES HAPPEN?
▸ Imposes burden on downstream projects, so why would anyone do this? 

▸ Technical debt: current version has poorly chosen object models or method names, lack of 
extensibility, little used methods 

▸ Determine better way of exposing functionality, introducing through backwards 
compatible change 

▸ Introduces cost to maintain old API 

▸ Old API adds confusion, where there's multiple ways of doing things that confuses new 
developers  

▸ Efficiency: faster implementation requires new API 

▸ Fixing defects: implementation incorrect, but downstream project relies on incorrect 
behavior 

▸ Downstream projects may have workaround for defect, which may break when defect is 
fixed

21



LaToza GMU SWE 621 Spring 2025

TECHNIQUES TO MITIGATE OR DELAY COSTS
▸ Maintain old interfaces 

▸ Deprecate interfaces but still keep supporting them 

▸ Maintain multiple parallel releases 

▸ Multiple major versions with breaking changes 

▸ Keep incorporating minor changes (e.g,. security patches) for older versions 

▸ Expose different APIs for different users 

▸ Detailed and frequently updated API for sophisticated users, higher level and 
more stable API for casual users 

▸ Reduce number of releases with breaking changes 

▸ Communicate breaking changes in advance 

▸ Include documentation and/or tool support for migrating clients to new versions
22



LaToza GMU SWE 621 Spring 2025

EXAMPLE: BREAKING CHANGES IN ECLIPSE ECOSYSTEM

▸ Eclipse IDE has ecosystem of plugins that extend Eclipse to 
offer additional functionality (e.g., support for additional 
programming language) 

▸ Eclipse Ecosystem values backwards compatibility 

▸ Has tooling to identify unexpected subtle breaking changes 

▸ Maintains backwards compatible interfaces 

▸ Large effort put into release planning to ensure smooth 
transitions and infrequent releases

23



LaToza GMU SWE 621 Spring 2025

EXAMPLE: BREAKING CHANGES IN NPM ECOSYSTEM

▸ Demands little of developers making breaking change 

▸ Ok to make any breaking change, just need to increment version 
correctly 

▸ Enables exploration of different API design to achieve better 
usability 

▸ Downstream projects can specify which version of package to use 

▸ No central release planning, individual package authors can make 
any changes they desire

24



LaToza GMU SWE 621 Spring 2025

EXAMPLE: LEFT-PAD IN NPM

▸ Developer removed 250 modules from 
NPM 

▸ One of these was left-pad 

▸ Had 2,486,696 downloads in one 
month 

▸ Downstream users now depended on 
module that no longer existed 

▸ So disruptive that NPM violated 
community norms by bringing module 
back against wishes of author

25

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/ 

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/


LaToza GMU SWE 621 Spring 2025

RESPONDING TO UPSTREAM CHANGE

▸ When an upstream system changes, downstream system may 
have options about whether, when, how to respond 

▸ Ignore? Upgrade immediately? Upgrade later?

26



LaToza GMU SWE 621 Spring 2025

MONITORING CHANGE

▸ How do you know when an upstream system introduced change? 

▸ Strategies 

▸ Actively monitor GitHub projects for systems (high effort) 

▸ Participate in upstream project: offers voice into features and 
functionality of project 

▸ Social awareness: follow twitter, mailing lists to learn about changes 

▸ Reactive monitoring: wait to hear about problems others experience 

▸ Testing: ensure that system works correctly

27



LaToza GMU SWE 621 Spring 2025

REDUCING EXPOSURE TO CHANGE

▸ Can reduce effort to monitor and react to change by reducing dependencies 

▸ Only depend on things that are really important 

▸ Copy or recreate functionality internally 

▸ Selecting appropriate dependencies with signals that indicated high quality 

▸ Reputation from large organization or past success 

▸ Activity level of project 

▸ Size and identify of user base 

▸ Past history of dealing with changes 

▸ Quality of project artifacts: coding style, documentation, code size

28



LaToza GMU SWE 621 Spring 2025

POLICIES AND COMMUNITIES

▸ Within ecosystem, not everyone may act consistently with 
practices 

▸ Need to make a breaking change quickly, don't want to 
indicate through a major version change, which might be 
more work to adopt

29



LaToza GMU SWE 621 Spring 2025

MAINTAINER BURNOUT

▸ Growing problem in OSS community 
for packages which gain popularity 
which are not accusing value for key 
ecosystem player (e.g., Facebook, 
Twitter, Google) 

▸ Someone built something which 
everyone uses and published it as OSS 

▸ How are maintainer compensated? 

▸ Who pays?

30

https://twitter.com/ryanchenkie/status/1067801413974032385 

https://twitter.com/ryanchenkie/status/1067801413974032385


LaToza GMU SWE 621 Spring 2025

MAINTAINER BURNOUT

▸ In principle, can publish something once and have an infinite 
number of users at no additional cost 

▸ Does not work in practice 

▸ Maintainers may abandon project 

▸ Open question: who should maintain abandoned projects?

31



LaToza GMU SWE 621 Spring 2025

SUMMARY

▸ Software systems exists in context of ecosystem of upstream 
and downstream systems connected by dependencies 

▸ Ecosystems may be centered around OS, application, or end-
user programming or distributed into individual packages 

▸ Breaking changes incur costs, which can be distributed 
between upstream or downstream systems 

▸ Different ecosystems have different values and policies for 
dealing with breaking changes

32



LaToza GMU SWE 621 Spring 2025

IN CLASS ACTIVITY

33



LaToza GMU SWE 621 Spring 2025

PART 1: CHARACTERIZE A SOFTWARE ECOSYSTEM

▸ In groups of 1, 2 or 3, 

▸ Pick a software ecosystem which we did not discuss in class 

▸ Pick one that you or your group has used before 

▸ Deliverables 

▸ Describe the software ecosystem: is it OS, application, or end-user 
programming centric; or is it distributed and package centric? 

▸ How does ecosystem handle breaking changes? How is this policy 
related to ecosystem's values? 

▸ DUE: 12pm Friday, May 2

34



LaToza GMU SWE 621 Spring 2025

PART 2: INTRODUCE A BREAKING CHANGE

▸ Now imagine that you are a developer inside the organization at the 
center of your ecosystem 

▸ You need to make a breaking change. 

▸ How will you do this? 

▸ Deliverables 

▸ Describe a (fictional) breaking change. What changed? 

▸ How will you mitigate the impact of this change? 

▸ DUE: 12pm Friday, May 2

35


