@M‘I GEORGE MASON
AVl UNIVERSITY.

SWE 621 SPRING 2025

DESIGN AS
ABSTRACTION




LOGISTICS

» HW1 due today

» HW2 due in two weeks

LaToza GMU SWE 621 Spring 2025



IN CLASS EXERCISE

» What is an abstraction?

LaToza GMU SWE 621 Spring 2025



WHAT IS AN ABSTRACTION?

» The ability to interact with an idea while safely ignoring some of its details.
» A set of operations on shared state that make solving problems easier.
» Examples

» Data: String

» Collections: array, list, stack, queue, map, set, ...

» Big data: MapReduce, BigTable, Spanner

» Al: TensorFlow

» Web: HTTP request, HTTP response

» Business: Person, Party, Organization

LaToza GMU SWE 621 Spring 2025



ABSTRACTION AS MECHANISM FOR REUSE

» Abstractions serve as a mechanism for reuse of functionality
» Stakeholders in reuse
» Author: developer implementing the abstraction
» User: developer that is using the abstraction in their own code
» Often, a developer may be both an author and a user
» May have multiple authors, who may change over time

» For important abstractions, usually many more users than
authors

LaToza GMU SWE 621 Spring 2025



CRAFTING ABSTRACTIONS

» Where do elements come from?
» Last time: from the domain model

» But... sometimes there are technical implementation
considerations that lead to better ways of grouping
functionality into elements

» Goal: choose elements that make solving the underlying
problem easier

LaToza GMU SWE 621 Spring 2025



IN-CLASS ACTIVITY

» Write a function to reverse a List
» Available operations on elements in linked list
» Class ListElem
> {
» public ListElem getNext()

» public void setNext(ListElem e)

» }

LaToza GMU SWE 621 Spring 2025



IN CLASS ACTIVITY

» Write a function to reverse a list
» Available operations on a list
» class List{

» get(i)

» set(i)

» remove(i)

LaToza GMU SWE 621 Spring 2025



IN-CLASS ACTIVITY

» Write a function to reverse a List

» Available operations on elements in linked list
» getNext
» setNext
» getPrev

» setPrev

LaToza GMU SWE 621 Spring 2025



EXAMPLE: LIST

» State: an ordered set of
elements

» Key operations
List<Integer> 11 = new ArraylList<Integer>();

11.add(e, 1); // adds 1 at © index
» add 11.add(1, 2); // adds 2 at 1 index
System.out.println(l11); // [1, 2]

p set

» get

» contains
) remove

) size

LaToza GMU SWE 621 Spring 2025



EXAMPLE: LIST

» User can be oblivious about how state is stored

» Could be linked list, could be array, could be stored locally,
could be stored on another computer

» Supports a wide range of typical interactions with a list

» Abstraction author has wide range of implementation
options

LaToza GMU SWE 621 Spring 2025

11



EXAMPLE: MAPREDUCE

» Organize computation into a map function that generates a
new list from an old list and a reduce function that generates
one (or a few) elements from a whole list

» Operations
» Map(k1,v1) — list(k2,v2)

» Reduce(k2, list (v2)) = list(v3)

.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

LaToza GMU SWE 621 Spring 2025

12


https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

EXAMPLE: MAPREDUCE

» Can distribute computation down to elements in the list to separate servers,
which can work in parallel.

» Infrastructure
» marshals distributed servers
» runs tasks in parallel
» manages communication
» provides redundancy and fault tolerance

» Lets abstraction users focus on the computation to be done and let
infrastructure worry about how to parallelize it

» Applicable for parallelizing a wide variety of typical computations

LaToza GMU SWE 621 Spring 2025

13



class Timer extends React.Component {
constructor(props) {
super(props);
this.state = { seconds: 0 };

tick() {
this.setState(state => ({
seconds: state.seconds + 1

F));

componentDidMount() {
this.interval = setInterval(() => this.tick(),
1000) ;
}

componentWillUnmount () {

clearInterval(this.interval);

render() A
return (
<div>
Seconds: {this.state.seconds}
</div>

ReactDOM. render(<Timer />, mountNode);

LaToza GMU SWE 621 Spring 2025


https://reactjs.org/

EXAMPLE: REACT COMPONENT

» React components do not need to worry about incrementally
changing output in response to every event

» Would be complicated to figure out for every possible state change
how to update output

» Instead, simply generate all new output whenever state no longer
consistent with output

» Components focus on state and output for single element of interface

» Can be reused in many contexts because loosely coupled to parent
and other ancestors

LaToza GMU SWE 621 Spring 2025

15



IN CLASS ACTIVITY

» Form a group of 2

» What's an abstraction you use frequently?
» What state does it have?

» What are the key operations?

» How does the abstraction simplify typical scenarios that
occur?

LaToza GMU SWE 621 Spring 2025

16



BENEFITS OF GOOD ABSTRACTIONS

» Interoperability - can pass common data structures around
» Really important for library interop

» Can think about the problem without having to think about some low
level details

» How is your data stored
» How computation is distributed to different servers in cluster
» Can predict behavior of operations, without reading implementation

» If common abstraction, that users are likely to be familiar with already

LaToza GMU SWE 621 Spring 2025

17



LaToza

CHARACTERISTICS OF A GOOD ABSTRACTION

» Should do one thing and do it well

» If hard to name, that's a bad sign
» Implementation should not leak into abstraction

» If there's details that do not need to be exposed, do not
» Names matter

» Be self-explanatory, consistent, reqular

GMU SWE 621 Spring 2025

18



CHALLENGES

» What operations to include? (a.ka., interface)
» Choices of operations has many consequences

» Not supporting necessary operations with state may make it
impossible to use it in desired way, or lead to inefficient client code

» Supporting fewer operations may cause client code to be repetitive
» Operation choices may constrain design space of implementations

» If different users have slightly different needs, how do you balance
conflicts?

LaToza GMU SWE 621 Spring 2025

19



IN CLASS ACTIVITY

» What's the most annoying abstraction you've ever used?

» What made it so hard to use?

LaToza GMU SWE 621 Spring 2025

20



HOW TO DESIGN A GOOD ABSTRACTION

Adapted from How to Design a Good APl and Why it Matters, Joshua Bloch

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf

LaToza GMU SWE 621 Spring 2025

21


https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf

GATHER REQUIREMENTS

» Often get proposed solutions instead
» Your job is to extract true requirements

» Should exist as scenarios where you abstraction will be
used

» What does user want to accomplish in this scenario?

LaToza GMU SWE 621 Spring 2025

22



START WITH SHORT 1 PAGE DRAFT

» Focus on key ideas rather than completeness

» Bounce draft off as many people as possible

» What additional scenarios do they suggest?

» How well does your abstraction support these scenarios?

» How can it support these better?

LaToza GMU SWE 621 Spring 2025

23



RULE OF THREES

» Should try out abstraction with at least three scenarios

» Iterate design based on scenarios, ideally before publicly
releasing

» How can you make these typical scenarios easier for users?

» How can you enable more efficient implementations?

LaToza GMU SWE 621 Spring 2025

24



SUMMARY

» Abstractions shape how you write code and think about a problem

4

LaToza

Design abstractions that cleanly capture typical operations on element
at the right level of detail

Good abstractions reduce boilerplate and let you focus on core
problems.

May require refactoring, as you have deeper insight into how to
represent key ideas more clearly

Important to keep abstractions consistent across team. Having similar
but competing abstractions leads to confusion and conversion
boilerplate.

GMU SWE 621 Spring 2025

25



IN CLASS ACTIVITY, STEP 1: BUILD ABSTRACTION

» In groups of 2 or 3, build abstraction(s) for a company org chart.

Each employee has a 0 or 1 bosses and 0 to n subordinates

Employee may direct one or more operating units, divisions, groups, or teams
Operating units contain divisions

Divisions contain groups

vV VvV VvV VvV Vv

Groups contain teams

» Include operations to support common operations that might occur in an
organization chart.

» Deliverable: for each element you create, describe member elements in a class
implementing this abstraction including

» State: what member variables does it contain

» Operations: what methods does it define and what is their signature

LaToza GMU SWE 621 Spring 2025 26



LaToza

STEP 2: USE ABSTRACTION

» Switch groups, forming new groups of 2 or 3

» Using one of the abstractions of your group members, sketch
an algorithm to promote a division to an operating unit. Each
group inside division remains a group.

» Deliverable: sketch (pseudocode) of algorithm

GMU SWE 621 Spring 2025

27



LaToza

DESIGN ACTIVITY: DISCUSSION

» What did you learn about the practice of design from this
activity?

GMU SWE 621 Spring 2025

28



