SWE 621
SPRING 2025

ARCHITECTURAL STYLES

LOGISTICS

» HW2 due today

» Next week is spring break, no class
» Midterm in class in two weeks

» HW3 due in 4 weeks (3/31)

LaToza GMU SWE 621 Spring 2025

LaToza

MIDTERM

» 200 points / 20% of course grade
» Closed book / closed notes

» ~80% based on lecture (including ideas covered in lecture
and textbook)

» ~20% based on readings

GMU SWE 621 Spring 2025

MIDTERM REVIEW

» Examples of questions
» Questions on concepts, definitions, and process advice
» e.g., What are the characteristics of a good abstraction?
» Questions applying concepts to real world examples

» e.g., critique this code snippet as an abstraction, based on
this code scenario.

» e.g., for these requirements, design a solution and describe
through a component and connector model

LaToza GMU SWE 621 Spring 2025

IN CLASS DISCUSSION

» Why might one build a software system organized into
layers?

LaToza GMU SWE 621 Spring 2025

SOFTWARE ARCHITECTURE

» Software architecture = { Elements, Constraints,
Consequences }

» Elements: the set of structures needed to reason
about the system

» Constraints: the ways in which functionality is assigned
to elements and elements can be composed

» Consequences: the resulting properties of systems
which conform to the constraints

LaToza GMU SWE 621 Spring 2025

FREQUENT ARCHITECTURAL REQUIREMENTS

» Performance: how fast is the system
» Reliability: how likely is the system to be available

» Scalability: how well does adding more computing resources translate to better
performance

» Maintainability: how hard is system to change

» Extensibility: in what ways can new components be added without changing
existing components

» Configurability: how easily can the system behavior be changed by end-users
» Portability: in what environments can the system be used

» Testability: how easy is it to write tests of the system's behavior

LaToza GMU SWE 621 Spring 2025

LaToza

EXAMPLE OF ALTERNATIVE ARCHITECTURES: THE WEB

» Evolving competing architectures for organizing content and
computation between browser (client) and web server

» 1990s: static web pages

» 1990s: server-side scripting (CGl, PHP, ASP, ColdFusion, JSP,
ver)

» 2000s: single page apps (JQuery)

» 2010s: front-end frameworks (Angular, Aurelia, React, ...),
microservices

GMU SWE 621 Spring 2025

STATIC WEB PAGES

» URL corresponds to directory location on server

» e.g. http://domainName.com/img/image5.jpg maps to img/
image5.jpg file on server

» Server responds to HTTP request by returning requested files
» Advantages

» Simple, easily cacheable, easily searchable
» Disadvantages

» No interactivity

LaToza GMU SWE 621 Spring 2025

DYNAMIC WEB PAGES

O
— & http://cs.gmu.edu/syllabus/syllabi-fall16/SWE432BellJ.html| &
HTTP Request web server
GET /syllabus/syllabi-falll6/SWE432BellJl.html HTTP/1.1 < T — 5

Host: cs.gmu.edu
Accept: text/html

(APreE AR

HTTP Response

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

‘A(””””<htm1><head>...

SWE 432 Section 002 Fall 2016 Syllabus and Schedule

“Design and Implementation of Software for the Web"

Class Hours: Tuesdays and Thursdays, 12:00pm-1:15pm Robinson Hall B228
Grades, Readings available as pdfs: Blackboard

Resources (Announcements, Schedule, Assignments, Discussion):

Piazza - https://piazza.com/gmu/fall2016/swe432001/home

Instructor: Prof. Jonathan Bell

bellj@gmu.edu

http://jonbell.net

Twitter: @_jon_bell_

Office: 4422 Engineering Building; (703) 993-6089

Office Hours: Anytime electronically, Tues 10:30am-12:00pm, or by appointment

LaToza GMU SWE 621 Spring 2025 10

DYNAMIC WEB PAGES

O

ﬁ—» &) http://cs.gmu.edu/syllabus/syllabi-fall16/SWE432BellJ.html

HTTP Request
GET /syllabus/syllabi-falll6/SWE432Bell].html HTTP/1.1

Host: cs.gmu.edu *

G

Accept: text/html

web server

== —m) Runs a program

Give me /syllabus/syllabi-falll6/SWE432Bell].html

Web Server < Does whatever it wantsfeIIEISIIE
Application

Bl (Generator
Application

Here’s some text to send back

HTTP Response
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

<html><head>...

u

e and st of St o WG 'here’s a standard mechanism to talk to these

“Design and Implementation of Software for the Web*

Class Hours: Tuesdays and Thursdays, 12:00pm-1:15pm obinson Hall B228
ades, Readings available as pdfs: Black!)oard

Gr: X
Resources (Announcements, Schedule, Assignments, Discussion): u u u u
T ——— a u x I I a r a I ca I O n s ca e O m m O n
nstructor: Prof. Jonathan Bell ,
lli@gmu.edu
/ljonbell

ttp://jonbell.net
Twitter: @_jon_bell

ce: 4422 Engine_en‘ng Building; (703) 993-6089
ice Hours: Anytime electronically, Tues 10:30am-12:00pm, or by appointment

jg_

28

LaToza GMU SWE 621 Spring 2025 11

SERVER SIDE SCRIPTING

) (<!DOCTYPE html> | <html>
<html> " <head><title>First JSP</title></head>
<head> <body>
<title>PHP Test</title> <%
</head> double num = Math.random();
<body> if (num > ©.95) {
%>
<?php echo '<p>Hello World</p>'; 7>
</body5 ? ? ? <h2>You'll have a luck day!</h2><p>(<%= num %>)</p>
<%
< >
/html } else {
%>
<h2>Well, life goes on ... </h2><p>(<%= num %>)</p>
<%
}
%>

» Early approaches emphasized embedding server code inside
html pages

» Examples: CGI

LaToza GMU SWE 621 Spring 2025

12

SERVER SIDE SCRIPTING SITE

tml.
<
</head>

bod:
</body>
tml

IDOCTYPE html>
h >

Browser
HTML
HITTP HTTP
Request Response
(HTML)
Web Server
Database

LaToza GMU SWE 621 Spring 2025

LIMITATIONS

» Poor modularity

» Code representing logic, database interactions, generating
HTML presentation all tangled

» Hard to understand, difficult to maintain

» Still a step up over static pages!

LaToza GMU SWE 621 Spring 2025

14

SERVER SIDE FRAMEWORKS

» Framework that structures server into tiers, organizes logic
into classes

» Create separate tiers for presentation, logic, persistence layer

» Can understand and reason about domain logic without
looking at presentation (and vice versa)

» Examples: ASP.NET, JSP

LaToza GMU SWE 621 Spring 2025

15

SERVER SIDE FRAMEWORK SITE

Prowser
HTML
HTTP
HTTP
Request Response
(HTML)

Web Server

Database

LaToza GMU SWE 621 Spring 2025

LIMITATIONS

» Need to load a whole new web page to get new data

» Users must wait while new web page loads, decreasing
responsiveness & interactivity

» If server is slow or temporarily non-responsive, whole user
interface hangs!

» Page has a discernible refresh, where old content is
replaced and new content appears rather than seamless
transition

LaToza GMU SWE 621 Spring 2025

17

SINGLE PAGE APPLICATION (SPA)

» Client-side logic sends messages to server, receives response
» Logic is associated with a single HTML pages, written in Javascript

» HTML elements dynamically added and removed through DOM manipulation

Projects:
<ol id="new-projects">

<script>

$("#new-projects").load("/resources/load.html #projects li");
</script>

</body>

</html>

» Processing that does not require server may occur entirely client side,
dramatically increasing responsiveness & reducing needed server resources

» Classic example: Gmail

LaToza GMU SWE 621 Spring 2025

18

SINGLE PAGE APPLICATION SITE

ig-:ff:z o — helloWorld();
</::::i°> e e e function helloWorld() {
Browser </:Zb§,§: e even tS s(xggdgfifzgzlz)';'<h1>l-le110, world!</h1>";
— }
HTML HTML elements Javascript
HITTP HTTP
Request Response
| (JSON)
Web Server
Database
LaToza GMU SWE 621 Spring 2025

LIMITATIONS

» Poor modularity client-side

LaToza

» As logicin client grows increasingly large and complex, becomes
Big Ball of Mud

» Hard to understand & maintain

» DOM manipulation is brittle & tightly coupled, where small
changes in HTML may cause unintended changes (e.g., two HTML
elements with the same id)

» Poor reuse: logic tightly coupled to individual HTML elements,
leading to code duplication of similar functionality in many places

GMU SWE 621 Spring 2025

20

FRONT END FRAMEWORKS

LaToza

Client is organized into separate components, capturing model of web
application data

Components are reusable, have encapsulation boundary (e.g., class)
Components separate logic from presentation

Components dynamically generate corresponding code based on
component state

» In contrast to HTML element manipulation, framework generates
HTML, not user code, decreasing coupling

Examples: Meteor, Ember, Angular, Aurelia, React

GMU SWE 621 Spring 2025 21

FRONT END FRAMEWORK SITE

Browser Component logic _ _

A

HTTP HTTP
Request Response
(JSON)

Web Server

Database

LaToza GMU SWE 621 Spring 2025

LIMITATIONS

» Duplication of logic in client & server

LaToza

» As clients grow increasingly complex, must have logic in both
client & server

» May even need to be written twice in different languages! (e.g.,
Javascript, Java)

» Server logic closely coupled to corresponding client logic.

Changes to server logic require corresponding client logic
change.

» Difficult to reuse server logic

GMU SWE 621 Spring 2025

23

MICROSERVICES

» Small, focused web server that communicates through data
requests & responses

» Focused only on logic, not presentation

» Organized around capabilities that can be reused in multiple
context across multiple applications

» Rather than horizontally scale identical web servers, vertically
scale server infrastructure into many, small focused servers

LaToza GMU SWE 621 Spring 2025 24

MICROSERVICE SITE

Browser

HTTP
Request

\4

A

HTTP
Response
(JSON)

Web Servers

Database

LaToza

HITTP
Request

HTTP
Response
(JSON)

>

GMU SWE 621 Spring 2025

HTTP
Request

\4

HTTP
Response
(JSON)

A

HITTP

Request

>

HTTP
Response
(JSON)

25

CAN WE DRAW MORE GENERAL LESSONS?

» Lots of different ways to organize a web app

» Keep inventing new ones that are better by having some
new properties

» But may sometimes sacrifice others

» Can we draw any more general lessons about how to
organize software?

LaToza GMU SWE 621 Spring 2025

26

ARCHITECTURAL STYLES

» Architectural style specifies
» how to partition a system

» how components identify and communicate with each
other

» how information is communicated

» how elements of a system can evolve independently

LaToza GMU SWE 621 Spring 2025

27

ARCHITECTURAL STYLES

» Can also be characterized by one or more architectural decisions

» e.g., elementsin component A can send messages to elements
in component B but not vice versa (i.e., layers)

» Making this decision(s) immediately has one or more
consequences on architectural requirements

» Often binary

» Either code conforms to the constraints and gains the
conseqguences or has at least one violation and does not get the
consequences

LaToza GMU SWE 621 Spring 2025

28

LaToza

SOME COMMON ARCHITECTURAL STYLES

» Big ball of mud

» Layered

» Model-centered
» Publish/subscribe
» Pipe and filter

» REST

» Functional reactive programming

GMU SWE 621 Spring 2025

29

BIG BALL OF MUD

» Forces

» Insufficient time to build the "right" way, with consideration of how
design decisions impact maintainability

» Constraints: none

» Anything can go anywhere.

» Anything can be written in any way.
» Consequences

» Leads to system that is disorganized.

» Makes it hard to find where to make change, understand
implications of change.

» Decreases maintainability

http://www.laputan.org/mud/
LaToza GMU SWE 621 Spring 2025

30

LAYERED ARCHITECTURE

» Elements: layers
» Constraints: can only use lower layers

» Strictly layered: can only use adjacent lower layer
» Consequences

» Supports maintainability by making it easier to find
functionality

» Supports portability and reusability by enabling layers to be
swapped out

LaToza GMU SWE 621 Spring 2025

31

= —— | Component instance
—lew < View/Controller : Controller —— Publish connector instance
A — — Request-reply connector instance
\I? Wy L ; Required update port instance
5 éf R @ Provided update port instance
: B3 Publish port instance
MODEL-CENTERED e D

» Elements: model, view (optional), controller (optional), view-controller (optional)

» Constraints

» Components interact with a central model rather than each other

» Changes originates outside of model, propagate to model, trigger notifications to
elements depending on model

» Synonyms: repository, shared-data, data-centered

» Consequences

» Maintainable: can write data processing in terms of model rather than in terms of Ul
abstractions

» Extensible: easy to add views, controllers, view/models without changing model
» Scalability: can run each element in a separate thread

LaToza GMU SWE 621 Spring 2025 32

EXAMPLE: ANGULAR 1.0 -- MVVM

» Model: domain-specific data, doesn't
matter how much it's interact with

notifications

» View

» Visual representation of current state of
model

» View does not communicate with model

directly Models are much more dumb: no
formatting, etc

» ViewModel: processes user input, translates
into format which work for model

LaToza GMU SWE 621 Spring 2025

33

PUBLISH/SUBSCRIBE p—

R Component instance

—— Pub-sub connector instance

Publish port instance

"B Subscribe port instance

» Elements: component, event bus

» Components broadcast events to listeners on event bus

» Constraints

» Components do not know why an event is published

» Subscribing components do not know who published event, dependi
type rather than specific publisher

» Synonyms: event-based, pub/sub

» Consequences

LaToza

» Maintainability: can make changes to components without impacting

» Performance: can (sometimes) reduce performance due to indirection

GMU SWE 621 Spring 2025

ng on event

others

34

REST (REPRESENTATIONAL STATE TRANSFER)

» Elements: HTTP server, request / response connector

» Constraints:
» Stateless: each client request contains all information necessary to service request
» Cacheable: clients and intermediaries may cache responses.

» Layered: client cannot determine if it is connected to end server or intermediary along
the way

» Uniform interface for resources: a single uniform interface (URIs) simplifies and
decouples architecture

» Consequences
» Scalability and reliability: enables servers to be added and removed at will at runtime

» Performance: enables caching

» Modifiability: hides changes behind URIs

LaToza GMU SWE 621 Spring 2025 35

Filter component instance
Pipe component instance
Write port instance
Read port instance

PIPE AND FILTER

Bo| |

» Elements: pipes, filters, read ports, write ports

» Constraints
» Filters may only interact through pipes

» Filters may not share any global state

» Filters may not make any assumptions about what happens upstream or downstream
» Filter should incrementally read input and generate output

» Consequences:

» Configurability, extensibility: can swap and compose networks of filters together, even at
runtime

» Scalability: can do computation in different filters in parallel

» Modifiability: can more easily make independent changes

LaToza GMU SWE 621 Spring 2025 36

FUNCTIONAL REACTIVE PROGRAMMING

» Elements: component, stream of events
» Constraints:

» Component only gets input from rest of system through stream of events;
cannot access or mutate data elsewhere

» When event arrives, changes state (resulting in new output) and may emit
event to other components

» Consequences

» Maintainability: much easier to make changes to individual element
without having to think about consequences of that change to rest of
system

LaToza GMU SWE 621 Spring 2025 37

SUMMARY

» Architectural style offer specific ways to achieve architectural
requirements

» Often offer ways to separate functionality into separate
elements and constraints on how these elements can interact

» Violating constraints of an architectural style often means
that the consequences of the architectural style will no
longer be realized

LaToza GMU SWE 621 Spring 2025 38

IN CLASS ACTIVITY

aaaaaa

GMU SWE 621 Spring 2025

39

DESIGN ACTIVITY: ARCRITECTURAL STYLE OF A FRAMEWORK

» In groups of 2 or 3, describe the architectural style of a framework (NOT React).

» You should clearly describe (1) the key elements which exist, (2) the constraints on these elements, and
(3) the consequences of these constraints.

» lllustrate the architectural style by describing how you'd build a simple TODO application using the
architectural style. In particular, you should describe the architecture of the TODO application using a
component and connector diagram and then use text to describe how it follows and respects the
architectural style.

» Deliverables:
» Name of a framework and a clear description of its architectural style

» Component and connector diagram illustrating how to architect a TODO application, following the
architectural style of the framework

» Text explaining how the TODO application follows the architectural style.

LaToza GMU SWE 621 Spring 2025 40

LaToza

DESIGN ACTIVITY: STEP 2: DISCUSSION

» Combine groups, forming groups of 4-6

» Compare and contrast designs based on each architectural
style

» (no deliverable)

GMU SWE 621 Spring 2025

41

