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LOGISTICS

▸ Midterm grades will be posted later this week 

▸ HW3 due next week
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IN CLASS DISCUSSION

▸ You're worried that x might change. So you hide x behind an 
interface, allowing clients to depend on the interface while 
you vary x. 

▸ What are examples of x that you've hidden?
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DESIGN FOR CHANGE

▸ Design consists of making decisions. 

▸ What happens when these decisions change? 

▸ Some decisions may be more likely to change than 
others.  

▸ How can we design software in ways that make likely 
to change decisions easier to change?
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CHOOSING ELEMENTS

▸ We've looked at three ways so far to divide systems into elements 

▸ Design as domain modeling: choose elements that correspond 
to domain elements 

▸ Design for abstraction: choose elements that hide irrelevant 
details and make writing code easy 

▸ Architectural styles: choose elements which respect constraints 
which enable quality attributes to be satisfied 

▸ Will look at a fourth today: dividing systems into elements to 
support change
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KEY WORDS IN CONTEXT (KWIC) PROBLEM

▸ Accepts an ordered set of lines, each line is an ordered set of 
words, and each word is an ordered set of characters.  

▸ Any line may be "circularly shifted" by repeatedly removing 
the first word and appending it at the end of the line.  

▸ Outputs a listing of all circular shifts of all lines in 
alphabetical order. 
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"CLASSIC" FLOW CHART DECOMPOSITION

▸ Each module (except master control) corresponds to step in 
flow chart 

▸ Input: reads data from input and stores into data structures 

▸ Circular shift: prepares data structure shifting words 

▸ Alphabetizer: alphabetizes words 

▸ Output: creates output listing 

▸ Master control: invokes other modules
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MODULARIZATION 2

▸ Line storage: functions and subroutines which give access to line 
data structures 

▸ Input: reads input, calls line storage to store lines 

▸ Circular shifter: offers interface for accessing circularly shifted 
lines as index on same underlying data structure 

▸ Alphabetizer: alphabetizes words 

▸ Output: renders data to console 

▸ Master control: invokes other modules
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WHAT ARE SOME DESIGN DECISIONS WHICH MIGHT CHANGE?

1. Input format: how is data entered into system 

2. In memory: reading and storing data in memory rather than 
externally on disk 

3. Representation: the data structure used to store data efficiently in 
memory 

4. Index: generating output as an index into original data rather 
than as a copy of original data 

5. Eager sort: make search faster by sorting list rather than doing a 
search on demand
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DIFFERENCES BETWEEN MODULARIZATIONS

▸ Changing (2) in memory decision and (3) data structure decisions 
would require making edits to all modules in first decomposition 

▸ Input: reads data from input and stores into data structures 

▸ Circular shift: prepares data structure shifting words 

▸ Alphabetizer: alphabetizes words 

▸ Output: creates output listing 

▸ Master control: invokes other modules
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DIFFERENCES BETWEEN MODULARIZATIONS

▸ Changing (2) in memory decision and (3) data structure decisions 
would require making edits to one module in second 
decomposition 

▸ Input: reads data from input and stores into data structures 

▸ Circular shift: prepares data structure shifting words 

▸ Alphabetizer: alphabetizes words 

▸ Output: creates output listing 

▸ Master control: invokes other modules
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WHY?

▸ Knowledge of the exact way that the lines are stored is 
entirely hidden  

▸ Decisions (2) and (3) can be changed, and only the Line 
Storage module would ever know
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INFORMATION HIDING

▸ Can change a decision locally in a module without change 
rippling to cause change in other module 

▸ Modules characterized by knowledge of a design decision 
and what it hides from others 

▸ Usually expressed as inverse: here's what decisions are 
exposed to clients through interface
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INFORMATION HIDING VS. ABSTRACTION

▸ Isn't this abstraction all over again? 

▸ Goal is different 

▸ Abstraction: offer operations that make writing client code 
compact and easy 

▸ Information hiding: enable design decisions in module to 
change 

▸ Are there examples where a design increases abstraction but 
decreases information hiding?
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ASIDE: GOOD ABSTRACTIONS REALLY MATTER

▸ Parnas originally estimated that KWIC could be built in a 
week or two in 1972 

▸ Assumed C style language with few collection abstractions 

▸ Can implement in a few dozen lines with modern collection 
abstractions
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EXAMPLE: UNIVERSAL RESOURCE IDENTIFIER (URI) DESIGN

▸ Uniquely describes a resource 

▸ https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0 

▸ https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys  

▸ http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf  

▸ Which is a file, external web service request, or stored in a database? 

▸ It does not matter 

▸ As client, only matters what actions we can do with resource, not how 
resource is represented on server
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PRIVATE MEMBERS

▸ Information hiding offered important motivation for inclusion of access 
control in modern OO languages 

▸ Can specify private or protected access to limit access to 
"implementation details" (a.k.a. hidden design decisions) that clients 
should not know about 

▸ But principle applies much more broadly to design decisions 

▸ Not necessarily about computing / caching data or how data is stored 

▸ Design decisions may not be closely associated with a data structure 
or method
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EXAMPLE: URI DESIGN

▸ Which is better? 

▸ http://myservice.com/cities  

▸ http://myservice.com/cities.cfm 

▸ http://myservice.com/cities.aspx
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TYRANNY OF THE DOMINANT DECOMPOSITION

▸ Many design decisions 

▸ Can you hide all of them? 

▸ No 

▸ Inevitably, will make some design decisions easier to 
change than others
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COSTS OF INFORMATION HIDING

▸ Can't hide everything 

▸ Will inevitably make some design decisions easy to change, 
others harder to change 

▸ What should you hide? 

▸ Decisions that are most likely to change 

▸ Get best payoff by reducing cost of making these expected 
changes easier
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REAL OPTIONS

▸ Having a design decision that you can change at low cost creates 
options 

▸ Second modularization offers the option to consider whether data 
should be stored or handled online at low cost 

▸ Option provides the right to make a change without the obligation 

▸ Important mechanism for risk mitigation 

▸ If decision is wrong, project might fail 

▸ Mitigate risk by making it easy to change decision after made, by 
reducing dependencies on decision

21



LaToza GMU SWE 621 Spring 2025

EXAMPLE: OPTIONS IN A COMPUTER
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MAKING DEPENDENCY STRUCTURE EXPLICIT

▸ How do you know what options you 
have? 

▸ Build a design structure matrix (DSM) 

▸ Design decisions (or "design 
parameters") are rows 

▸ What they depend on (every other 
design decision) are columns 

▸ What might happen if design 
decision A changed?
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IN CLASS ACTIVITY: BUILD A DSM FOR A LAYERED ARCHITECTURE

▸ In groups of 2 or 3, build DSM that depicts dependency 
structure of a system in the strictly layered architectural style

24



LaToza GMU SWE 621 Spring 2025

CREATING MODULARITY

▸ How do you break dependencies between modules that you'd 
like to be independent? 

▸ Organize dependency structure so that there are shared decisions 
that others depend on and assert that they won't change. 

▸ B and C are now independent of A, because they depend on I
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DSM FOR MODULARIZATION 1
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Type: procedure interfaces 
Data: data structures decisions 
Alg: algorithm decisions
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DSM FOR MODULARIZATION 2
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CONWAY'S LAW

▸ The structure of a designed system is 
isomorphic to the organizational 
structure of those who built it 

▸ If a design decision depends on a 
design decision made by another 
(e.g., developer, team, company), 
there must be coordination when this 
decision changes  (e.g., email, face to 
face meeting) to stay consistent
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SOCIO-TECHNICAL CONGRUENCE

▸ What happens when the required coordination does not happen? 

▸ e.g., the infrastructure team that owns the datastore just 
changed the query engine 

▸ Poor design (if system still works, but less well) 

▸ Defects (if system no longer works) 

▸ Can observe empirically by comparing decision dependencies 
(module references) against coordination (emails sent) to find 
divergences, which correlate with defects
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INFORMATION HIDING AND COORDINATION

▸ Want to have clear idea of what the external interface of your 
team constitutes 

▸ What design decisions which might change would others 
care about? 

▸ Need to manage coordination around these decisions
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HYRUM'S LAW: A PESSIMISTIC VIEW

▸ With a sufficient number of users of an API, 

▸ it does not matter what you promise in the contract: 

▸ all observable behaviors of your system 

▸ will be depended on by somebody. 

▸ Interfaces evaporate with additional clients, as every 
observable behavior eventually is depended on by someone
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SUMMARY

▸ Different organizations of functionality into elements leads to 
different design decisions being modularized and hidden 
behind interfaces 

▸ What is hidden in a module is a design decision, not just a 
variable or method 

▸ Hidden decisions offer real options, making it cheaper to 
explore alternative designs 

▸ Technical dependencies require coordination between 
people, or defects may result
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IN CLASS ACTIVITY
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DESIGN ACTIVITY: DESIGN TODO APPLICATION FOR CHANGE
▸ Form group of 2 or 3 

▸ Consider again Todo application requirements 

▸ User interactions with todos: add, delete, rename, complete, copy 

▸ Display todos to user 

▸ Persist todos 

▸ Design a todo application for change, hiding decisions likely to change behind interfaces 

▸ These decisions are likely to be decisions that are not architectural, which would be hard to hide 

▸ Deliverables:  

▸ component and connector model showing elements in your system 

▸ list of functionality for each element 

▸ list of important design decisions 

▸ DSM which shows dependencies between these design decisions 

▸ short description of how your design supports changes to a subset of these decisions
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DESIGN ACTIVITY: STEP 2: DISCUSSION
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