(G V/ | GEORGE MASON
UNIVERSITY:

SWE 621
SPRING 2025

DESIGN FOR CHANGE

© THOMAS LATOZA

LOGISTICS

» Midterm grades will be posted later this week

» HW3 due next week

LaToza GMU SWE 621 Spring 2025

IN CLASS DISCUSSION

» You're worried that x might change. So you hide x behind an
interface, allowing clients to depend on the interface while
you vary X.

» What are examples of x that you've hidden?

LaToza GMU SWE 621 Spring 2025

DESIGN FOR CHANGE

» Design consists of making decisions.
» What happens when these decisions change?

» Some decisions may be more likely to change than
others.

» How can we design software in ways that make likely
to change decisions easier to change?

LaToza GMU SWE 621 Spring 2025

CHOOSING ELEMENTS

» We've looked at three ways so far to divide systems into elements

» Design as domain modeling: choose elements that correspond
to domain elements

» Design for abstraction: choose elements that hide irrelevant
details and make writing code easy

» Architectural styles: choose elements which respect constraints
which enable quality attributes to be satisfied

» Will look at a fourth today: dividing systems into elements to
support change

LaToza GMU SWE 621 Spring 2025

LaToza

KEY WORDS IN CONTEXT (KWIC) PROBLEM

» Accepts an ordered set of lines, each line is an ordered set of
words, and each word is an ordered set of characters.

» Any line may be "circularly shifted" by repeatedly removing
the first word and appending it at the end of the line.

» Outputs a listing of all circular shifts of all lines in
alphabetical order.

GMU SWE 621 Spring 2025

"CLASSIC™ FLOW CHART DECOMPOSITION

» Each module (except master control) corresponds to step in
flow chart

» Input: reads data from input and stores into data structures
» Circular shift: prepares data structure shifting words

» Alphabetizer: alphabetizes words

» Output: creates output listing

» Master control: invokes other modules

LaToza GMU SWE 621 Spring 2025

MODULARIZATION 2

» Line storage: functions and subroutines which give access to line
data structures

» Input: reads input, calls line storage to store lines

» Circular shifter: offers interface for accessing circularly shifted
lines as index on same underlying data structure

» Alphabetizer: alphabetizes words
» Output: renders data to console

» Master control: invokes other modules

LaToza GMU SWE 621 Spring 2025

WHAT ARE SOME DESIGN DECISIONS WHICH MIGHT CHANGE?

1. Input format: how is data entered into system

2. In memory: reading and storing data in memory rather than
externally on disk

3. Representation: the data structure used to store data efficiently in
memory

4. Index: generating output as an index into original data rather
than as a copy of original data

5. Eager sort: make search faster by sorting list rather than doing a
search on demand

LaToza GMU SWE 621 Spring 2025

DIFFERENCES BETWEEN MODULARIZATIONS

» Changing (2) in memory decision and (3) data structure decisions
would require making edits to all modules in first decomposition

» Input: reads data from input and stores into data structures
» Circular shift: prepares data structure shifting words

» Alphabetizer: alphabetizes words

» Output: creates output listing

» Master control: invokes other modules

LaToza GMU SWE 621 Spring 2025

10

DIFFERENCES BETWEEN MODULARIZATIONS

» Changing (2) in memory decision and (3) data structure decisions
would require making edits to one module in second
decomposition

» Input: reads data from input and stores into data structures
» Circular shift: prepares data structure shifting words

» Alphabetizer: alphabetizes words

» Output: creates output listing

» Master control: invokes other modules

LaToza GMU SWE 621 Spring 2025

11

WHY?

» Knowledge of the exact way that the lines are stored is
entirely hidden

» Decisions (2) and (3) can be changed, and only the Line
Storage module would ever know

LaToza GMU SWE 621 Spring 2025

12

INFORMATION HIDING

» Can change a decision locally in a module without change
rippling to cause change in other module

» Modules characterized by knowledge of a design decision
and what it hides from others

» Usually expressed as inverse: here's what decisions are
exposed to clients through interface

LaToza GMU SWE 621 Spring 2025

13

INFORMATION HIDING VS. ABSTRACTION

» Isn't this abstraction all over again?
» Goal is different

» Abstraction: offer operations that make writing client code
compact and easy

» Information hiding: enable design decisions in module to
change

» Are there examples where a design increases abstraction but
decreases information hiding?

LaToza GMU SWE 621 Spring 2025

14

LaToza

ASIDE: GOOD ABSTRACTIONS REALLY MATTER

» Parnas originally estimated that KWIC could be builtin a
week or two in 1972

» Assumed C style language with few collection abstractions

» Can implement in a few dozen lines with modern collection
abstractions

GMU SWE 621 Spring 2025

15

EXAMPLE: UNIVERSAL RESOURCE IDENTIFIER (URI) DESIGN

» Uniquely describes a resource

» https://mail.google.com/mail/u/0/#inbox/157d5tb79515%ac0

» https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys

» http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov_ RESTIDontThinkltMeansWhatYouThinkltDoes.pdf

» Which is a file, external web service request, or stored in a database?

» It does not matter

» As client, only matters what actions we can do with resource, not how
resource is represented on server

LaToza GMU SWE 621 Spring 2025

16

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

PRIVATE MEMBERS

» Information hiding offered important motivation for inclusion of access
control in modern OO languages

» Can specify private or protected access to limit access to
"implementation details" (a.k.a. hidden design decisions) that clients

should not know about
» But principle applies much more broadly to design decisions
» Not necessarily about computing / caching data or how data is stored

» Design decisions may not be closely associated with a data structure
or method

LaToza GMU SWE 621 Spring 2025 17

EXAMPLE: URI DESIGN

» Which is better?

» http://myservice.com/cities

» http://myservice.com/cities.cfm

» http://myservice.com/cities.aspx

LaToza GMU SWE 621 Spring 2025

18

http://myservice.com/cities
http://myservice.com/cities.cfm
http://myservice.com/cities.aspx

LaToza

TYRANNY OF THE DOMINANT DECOMPOSITION

» Many design decisions
» Can you hide all of them?
» No

» Inevitably, will make some design decisions easier to
change than others

GMU SWE 621 Spring 2025

19

COSTS OF INFORMATION HIDING

» Can't hide everything

» Will inevitably make some design decisions easy to change,
others harder to change

» What should you hide?
» Decisions that are most likely to change

» Get best payoff by reducing cost of making these expected
changes easier

LaToza GMU SWE 621 Spring 2025

20

REAL OPTIONS

» Having a design decision that you can change at low cost creates
options

» Second modularization offers the option to consider whether data
should be stored or handled online at low cost

» Option provides the right to make a change without the obligation
» Important mechanism for risk mitigation
» If decision is wrong, project might fail

» Mitigate risk by making it easy to change decision after made, by
reducing dependencies on decision

LaToza GMU SWE 621 Spring 2025 21

EXAMPLE: OPTIONS IN A COMPUTER

Design Structure Matrix Map of a Laptop Computer

LaToza

. X X X X X
X . X X X X X X X X
Drive X X . X X
System X X X X X X X X X X X
X X X
X X X X X X
X X X X X
X X X . X X X X
X X X X X X X |[X
Main X X X X X X
Board X X X X[[Xx X X X —x /D X X
X X X X . X X
X X X X . X X X
X . X
X X X X X
X X X X X X
LCD X X q X
Screen ¥—H—p, X X X
X X X X X X X X
X X X X
X X X X X X X X
X X X . X X X X
X X X X X X X
Packaging X X X X X X
X X X X X . X X
X X X X X X
X X X X X
X X X X X

Graphics controller on Main Board or not?
If yes, screen specifications change;
If no, CPU must process more; adopt different interrupt protocols

22

MAKING DEPENDENCY STRUCTURE EXPLICIT

» How do you know what options you T a_®8 ¢

have? '
. o, -

» Build a design structure matrix (DSM)

best choice of design decision B
depends on choice of design decision A

» Design decisions (or "design
parameters"”) are rows

» What they depend on (every other
design decision) are columns

» What might happen if design
decision A changed?

LaToza GMU SWE 621 Spring 2025 23

IN CLASS ACTIVITY: BUILD A DSM FOR A LAYERED ARCHITECTURE

» In groups of 2 or 3, build DSM that depicts dependency
structure of a system in the strictly layered architectural style

LaToza GMU SWE 621 Spring 2025

24

CREATING MODULARITY

» How do you break dependencies between modules that you'd
like to be independent?

» Organize dependency structure so that there are shared decisions
that others depend on and assert that they won't change.

..~ [

» B and C are now independent of A, because they depend on |

OoOw >» =

LaToza GMU SWE 621 Spring 2025 25

DSM FOR MODULARIZATION 1
~ |ABCDEFGHI JKLM

A -In Type

B - In Data . e s
ype: proceadure interraces
C-ln Alg Data: data structures decisions

D - Circ Type Alg: algorithm decisions

E - Circ Data
F - Circ Alg

G - Alph Type
H - Alph Data
| - Alph Alg

J - Out Type
K - Out Data
L - Out Alg

LaToza GMU SWE 621 Spring 2025 26

DSM FOR MODULARIZATION 2

LaToza

 INADGJOPBCEFHIKLM

N - Line Type
A-InType
D - Circ Type
G - Alph Type
J - Out Type

O Line Data
P - Line Alg

B - In Data

C -InAlg

E - Circ Data
F - Circ Alg

H - Alph Data
| - Alph Alg

K - Out Data
L - Out Alg

GMU SWE 621 Spring 2025 27

Design Structure Matrix Map of a Laptop Computer

X X X X X
X . X X X X X X X X X
Drive X X . X X X
System
CONWAY'S LAW ol i M o
X X X X .|IX X X
X X X\ - X X
X X X X X X X
» The structure of a designed system is R XXX X
isomorphic to the organizational o T D T Ty
o X X X X X . X X X
structure of those who built it x X X
o o xdx |
» If a design decision depends on a — ™~ A o,
. o o X X X X X X X X
design decision made by another X X x X
X X X X . X X X X
(e.g., developer, team, company), xx / O oxx xx
there must be coordination when this Packaging Y xxxx X
decision changes (e.g., email, face to Tax I x oxl
. . X X X X X
face meeting) to stay consistent 7/

Graphics controller on Main Board or not?
If yes, screen specifications change;
If no, CPU must process more; adopt different interrupt protocols

LaToza GMU SWE 621 Spring 2025 28

S0CIO-TECHNICAL CONGRUENCE

» What happens when the required coordination does not happen?

» e.g., the infrastructure team that owns the datastore just
changed the query engine

» Poor design (if system still works, but less well)
» Defects (if system no longer works)

» Can observe empirically by comparing decision dependencies
(module references) against coordination (emails sent) to find
divergences, which correlate with defects

Cataldo, M., & Herbsleb, J. D. (2013). Coordination Breakdowns and Their Impact on Development Productivity and Software Failures. IEEE
Transactions on Software Engineering 39(3), 343-360.

LaToza GMU SWE 621 Spring 2025 29

INFORMATION HIDING AND COORDINATION

» Want to have clear idea of what the external interface of your
team constitutes

» What design decisions which might change would others
care about?

» Need to manage coordination around these decisions

LaToza GMU SWE 621 Spring 2025

30

HYRUM'S LAW: A PESSIMISTIC VIEW

» With a sufficient number of users of an AP,
» it does not matter what you promise in the contract:
» all observable behaviors of your system

» will be depended on by somebody.

» Interfaces evaporate with additional clients, as every
observable behavior eventually is depended on by someone

http://www.hyrumslaw.com/

LaToza GMU SWE 621 Spring 2025

31

http://www.hyrumslaw.com/

SUMMARY

» Different organizations of functionality into elements leads to
different design decisions being modularized and hidden
behind interfaces

» What is hidden in a module is a design decision, not just a
variable or method

» Hidden decisions offer real options, making it cheaper to
explore alternative designs

» Technical dependencies require coordination between
people, or defects may result

LaToza GMU SWE 621 Spring 2025

32

IN CLASS ACTIVITY

aaaaaa

GMU SWE 621 Spring 2025

33

DESIGN ACTIVITY: DESIGN TODO APPLICATION FOR CHANGE

» Form group of 2 or 3
» Consider again Todo application requirements
» User interactions with todos: add, delete, rename, complete, copy
» Display todos to user
» Persist todos
» Design a todo application for change, hiding decisions likely to change behind interfaces
» These decisions are likely to be decisions that are not architectural, which would be hard to hide
» Deliverables:
» component and connector model showing elements in your system
» list of functionality for each element
» list of important design decisions
» DSM which shows dependencies between these design decisions

» short description of how your design supports changes to a subset of these decisions

LaToza GMU SWE 621 Spring 2025

34

DESIGN ACTIVITY: STEP 2: DISCUSSION

LaToza GMU SWE 621 Spring 2025

35

