
DESIGN FOR CHANGE
SWE 621
SPRING 2025

© THOMAS LATOZA

LaToza GMU SWE 621 Spring 2025

LOGISTICS

▸ Midterm grades will be posted later this week

▸ HW3 due next week

2

LaToza GMU SWE 621 Spring 2025

IN CLASS DISCUSSION

▸ You're worried that x might change. So you hide x behind an
interface, allowing clients to depend on the interface while
you vary x.

▸ What are examples of x that you've hidden?

3

LaToza GMU SWE 621 Spring 2025

DESIGN FOR CHANGE

▸ Design consists of making decisions.

▸ What happens when these decisions change?

▸ Some decisions may be more likely to change than
others.

▸ How can we design software in ways that make likely
to change decisions easier to change?

4

LaToza GMU SWE 621 Spring 2025

CHOOSING ELEMENTS

▸ We've looked at three ways so far to divide systems into elements

▸ Design as domain modeling: choose elements that correspond
to domain elements

▸ Design for abstraction: choose elements that hide irrelevant
details and make writing code easy

▸ Architectural styles: choose elements which respect constraints
which enable quality attributes to be satisfied

▸ Will look at a fourth today: dividing systems into elements to
support change

5

LaToza GMU SWE 621 Spring 2025

KEY WORDS IN CONTEXT (KWIC) PROBLEM

▸ Accepts an ordered set of lines, each line is an ordered set of
words, and each word is an ordered set of characters.

▸ Any line may be "circularly shifted" by repeatedly removing
the first word and appending it at the end of the line.

▸ Outputs a listing of all circular shifts of all lines in
alphabetical order.

6

LaToza GMU SWE 621 Spring 2025

"CLASSIC" FLOW CHART DECOMPOSITION

▸ Each module (except master control) corresponds to step in
flow chart

▸ Input: reads data from input and stores into data structures

▸ Circular shift: prepares data structure shifting words

▸ Alphabetizer: alphabetizes words

▸ Output: creates output listing

▸ Master control: invokes other modules

7

LaToza GMU SWE 621 Spring 2025

MODULARIZATION 2

▸ Line storage: functions and subroutines which give access to line
data structures

▸ Input: reads input, calls line storage to store lines

▸ Circular shifter: offers interface for accessing circularly shifted
lines as index on same underlying data structure

▸ Alphabetizer: alphabetizes words

▸ Output: renders data to console

▸ Master control: invokes other modules

8

LaToza GMU SWE 621 Spring 2025

WHAT ARE SOME DESIGN DECISIONS WHICH MIGHT CHANGE?

1. Input format: how is data entered into system

2. In memory: reading and storing data in memory rather than
externally on disk

3. Representation: the data structure used to store data efficiently in
memory

4. Index: generating output as an index into original data rather
than as a copy of original data

5. Eager sort: make search faster by sorting list rather than doing a
search on demand

9

LaToza GMU SWE 621 Spring 2025

DIFFERENCES BETWEEN MODULARIZATIONS

▸ Changing (2) in memory decision and (3) data structure decisions
would require making edits to all modules in first decomposition

▸ Input: reads data from input and stores into data structures

▸ Circular shift: prepares data structure shifting words

▸ Alphabetizer: alphabetizes words

▸ Output: creates output listing

▸ Master control: invokes other modules

10

LaToza GMU SWE 621 Spring 2025

DIFFERENCES BETWEEN MODULARIZATIONS

▸ Changing (2) in memory decision and (3) data structure decisions
would require making edits to one module in second
decomposition

▸ Input: reads data from input and stores into data structures

▸ Circular shift: prepares data structure shifting words

▸ Alphabetizer: alphabetizes words

▸ Output: creates output listing

▸ Master control: invokes other modules

11

LaToza GMU SWE 621 Spring 2025

WHY?

▸ Knowledge of the exact way that the lines are stored is
entirely hidden

▸ Decisions (2) and (3) can be changed, and only the Line
Storage module would ever know

12

LaToza GMU SWE 621 Spring 2025

INFORMATION HIDING

▸ Can change a decision locally in a module without change
rippling to cause change in other module

▸ Modules characterized by knowledge of a design decision
and what it hides from others

▸ Usually expressed as inverse: here's what decisions are
exposed to clients through interface

13

LaToza GMU SWE 621 Spring 2025

INFORMATION HIDING VS. ABSTRACTION

▸ Isn't this abstraction all over again?

▸ Goal is different

▸ Abstraction: offer operations that make writing client code
compact and easy

▸ Information hiding: enable design decisions in module to
change

▸ Are there examples where a design increases abstraction but
decreases information hiding?

14

LaToza GMU SWE 621 Spring 2025

ASIDE: GOOD ABSTRACTIONS REALLY MATTER

▸ Parnas originally estimated that KWIC could be built in a
week or two in 1972

▸ Assumed C style language with few collection abstractions

▸ Can implement in a few dozen lines with modern collection
abstractions

15

LaToza GMU SWE 621 Spring 2025

EXAMPLE: UNIVERSAL RESOURCE IDENTIFIER (URI) DESIGN

▸ Uniquely describes a resource

▸ https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0

▸ https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys

▸ http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

▸ Which is a file, external web service request, or stored in a database?

▸ It does not matter

▸ As client, only matters what actions we can do with resource, not how
resource is represented on server

16

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

LaToza GMU SWE 621 Spring 2025

PRIVATE MEMBERS

▸ Information hiding offered important motivation for inclusion of access
control in modern OO languages

▸ Can specify private or protected access to limit access to
"implementation details" (a.k.a. hidden design decisions) that clients
should not know about

▸ But principle applies much more broadly to design decisions

▸ Not necessarily about computing / caching data or how data is stored

▸ Design decisions may not be closely associated with a data structure
or method

17

LaToza GMU SWE 621 Spring 2025

EXAMPLE: URI DESIGN

▸ Which is better?

▸ http://myservice.com/cities

▸ http://myservice.com/cities.cfm

▸ http://myservice.com/cities.aspx

18

http://myservice.com/cities
http://myservice.com/cities.cfm
http://myservice.com/cities.aspx

LaToza GMU SWE 621 Spring 2025

TYRANNY OF THE DOMINANT DECOMPOSITION

▸ Many design decisions

▸ Can you hide all of them?

▸ No

▸ Inevitably, will make some design decisions easier to
change than others

19

LaToza GMU SWE 621 Spring 2025

COSTS OF INFORMATION HIDING

▸ Can't hide everything

▸ Will inevitably make some design decisions easy to change,
others harder to change

▸ What should you hide?

▸ Decisions that are most likely to change

▸ Get best payoff by reducing cost of making these expected
changes easier

20

LaToza GMU SWE 621 Spring 2025

REAL OPTIONS

▸ Having a design decision that you can change at low cost creates
options

▸ Second modularization offers the option to consider whether data
should be stored or handled online at low cost

▸ Option provides the right to make a change without the obligation

▸ Important mechanism for risk mitigation

▸ If decision is wrong, project might fail

▸ Mitigate risk by making it easy to change decision after made, by
reducing dependencies on decision

21

LaToza GMU SWE 621 Spring 2025

EXAMPLE: OPTIONS IN A COMPUTER

22

LaToza GMU SWE 621 Spring 2025

MAKING DEPENDENCY STRUCTURE EXPLICIT

▸ How do you know what options you
have?

▸ Build a design structure matrix (DSM)

▸ Design decisions (or "design
parameters") are rows

▸ What they depend on (every other
design decision) are columns

▸ What might happen if design
decision A changed?

23

best choice of design decision B
depends on choice of design decision A

LaToza GMU SWE 621 Spring 2025

IN CLASS ACTIVITY: BUILD A DSM FOR A LAYERED ARCHITECTURE

▸ In groups of 2 or 3, build DSM that depicts dependency
structure of a system in the strictly layered architectural style

24

LaToza GMU SWE 621 Spring 2025

CREATING MODULARITY

▸ How do you break dependencies between modules that you'd
like to be independent?

▸ Organize dependency structure so that there are shared decisions
that others depend on and assert that they won't change.

▸ B and C are now independent of A, because they depend on I

25

LaToza GMU SWE 621 Spring 2025

DSM FOR MODULARIZATION 1

26

Type: procedure interfaces
Data: data structures decisions
Alg: algorithm decisions

LaToza GMU SWE 621 Spring 2025

DSM FOR MODULARIZATION 2

27

LaToza GMU SWE 621 Spring 2025

CONWAY'S LAW

▸ The structure of a designed system is
isomorphic to the organizational
structure of those who built it

▸ If a design decision depends on a
design decision made by another
(e.g., developer, team, company),
there must be coordination when this
decision changes (e.g., email, face to
face meeting) to stay consistent

28

LaToza GMU SWE 621 Spring 2025

SOCIO-TECHNICAL CONGRUENCE

▸ What happens when the required coordination does not happen?

▸ e.g., the infrastructure team that owns the datastore just
changed the query engine

▸ Poor design (if system still works, but less well)

▸ Defects (if system no longer works)

▸ Can observe empirically by comparing decision dependencies
(module references) against coordination (emails sent) to find
divergences, which correlate with defects

29

Cataldo, M., & Herbsleb, J. D. (2013). Coordination Breakdowns and Their Impact on Development Productivity and Software Failures. IEEE
Transactions on Software Engineering 39(3), 343-360.

LaToza GMU SWE 621 Spring 2025

INFORMATION HIDING AND COORDINATION

▸ Want to have clear idea of what the external interface of your
team constitutes

▸ What design decisions which might change would others
care about?

▸ Need to manage coordination around these decisions

30

LaToza GMU SWE 621 Spring 2025

HYRUM'S LAW: A PESSIMISTIC VIEW

▸ With a sufficient number of users of an API,

▸ it does not matter what you promise in the contract:

▸ all observable behaviors of your system

▸ will be depended on by somebody.

▸ Interfaces evaporate with additional clients, as every
observable behavior eventually is depended on by someone

31

http://www.hyrumslaw.com/

http://www.hyrumslaw.com/

LaToza GMU SWE 621 Spring 2025

SUMMARY

▸ Different organizations of functionality into elements leads to
different design decisions being modularized and hidden
behind interfaces

▸ What is hidden in a module is a design decision, not just a
variable or method

▸ Hidden decisions offer real options, making it cheaper to
explore alternative designs

▸ Technical dependencies require coordination between
people, or defects may result

32

LaToza GMU SWE 621 Spring 2025

IN CLASS ACTIVITY

33

LaToza GMU SWE 621 Spring 2025

DESIGN ACTIVITY: DESIGN TODO APPLICATION FOR CHANGE
▸ Form group of 2 or 3

▸ Consider again Todo application requirements

▸ User interactions with todos: add, delete, rename, complete, copy

▸ Display todos to user

▸ Persist todos

▸ Design a todo application for change, hiding decisions likely to change behind interfaces

▸ These decisions are likely to be decisions that are not architectural, which would be hard to hide

▸ Deliverables:

▸ component and connector model showing elements in your system

▸ list of functionality for each element

▸ list of important design decisions

▸ DSM which shows dependencies between these design decisions

▸ short description of how your design supports changes to a subset of these decisions

34

LaToza GMU SWE 621 Spring 2025

DESIGN ACTIVITY: STEP 2: DISCUSSION

35

