SWE 621
SPRING 2025

FOLLOWING A DESIGN

© THOMAS LATOZA

LOGISTICS

» HW4 due next week

LaToza GMU SWE 621 Spring 2025

FOLLOWING A DESIGN

» So far we've considered how design choices can help system achieve
quality attributes

» abstractions, architectural styles, design patterns

» by minimizing risk, by following domain model, hiding decisions likely
to change

» What happens when a developer makes a code change that fails to
follow the constraints imposed by the design decision?

» How do you prevent developers from not following design decisions?
» What happens when the design decision should change?
» Requirement changes may lead to decisions no longer being effective.

» May find better design choices as better understand problem.

LaToza GMU SWE 621 Spring 2025

EXAMPLE: HOW SOFTWARE EVOLVES OVER TIME

» ATM Simulator

» Describes
behavior of
ATM machine
as user interacts
with machine

LaToza

done

done

®

_ start
Wait .
done
tseftcard

\/

invalidcard ' CardInserted

\4

(Cardlnvalid)
aborttra “SaCﬁO"bborttransa tion

(k
SwallowCard
K

validcard

tried3times

V K invalidpin
CardValid J >GinCodelnvaliD

validpin

payamount

v
(=)

printreceipt

(¢

GrintReoeipD

proceed

(V aborttransaction Ve
KEjectCard kAskAmounD<

validpin

invalidamount

validgmount
ValidAmounD

GMU SWE 621 Spring 2025

G\validAmou@

V1: STATE PATTERN

4

LaToza

Decisions

» Use the state
pattern

» Put data in
context class

» Make context a
property of
ATMState

» Use command
line for Ul

ATMMain

Note that:

- get/set methods have been omitted
- we don't include all states and events in the model

+main(in Argsf] : String)
I

N
ATMContext

-state : ATMState ATMState

-card : String -context : ATMContex{

-pincodesentered :int} _ “f+abortTransaction()

+abortTransaction() +proceed()

+proceed() +payAmount()

+payAmount() +invalidPIN()

+invalidPIN() A

EjectCard Pay PinCodelnvalid

+abortTransaction() +payAmount() +invalidPIN()
+proceed()

GMU SWE 621 Spring 2025

V1: STATE PATTERN

» ATMContext stores variables used by ATMState subclasses
» Need to be shared between subclasses
» Everything needs references to context class

» ATMContext contains many methods that only forward the call to
the current state

» ATMContext does not check whether a particular event is
supported by the current state

» Potential for defects

LaToza GMU SWE 621 Spring 2025

V2: FLYWEIGHT

» Goals

LaToza

» Memory

usage:
Instantiate
each state
class only
once

Performance:

reduce startup

time for
simulator

ATMMain

+main(in Args]] : String)

|
A4

ATMContext

-state : ATMState
-card : String
-pincodesentered : int

+proceed(in ¢ : ATMContext)
+payAmount(in ¢ : ATMContext)
+invalidPIN(in ¢ : ATMContext)

+abortTransaction(in ¢ : ATMContext]

p—

Note that:

- get/set methods have been omitted
- we don't include all states and events in the model

ATMState

~{+abortTransaction(in ¢ : ATMContext|

+proceed(in ¢ : ATMContext)
+payAmount(in ¢ : ATMContext)

+invalidPIN(in ¢ : ATMContext)

EjectCard

+abortTransaction(in ¢ : ATMContext)|

+proceed(in ¢ : ATMContext)

Pay

+payAmount(in c : ATMContext]l

GMU SWE 621 Spring 2025

PinCodelnvalid

+invalidPIN(in ¢ : ATMContext

V2: FLYWEIGHT

» Each state class is only created once

» Removed the context property from ATMState, added
context parameter in each event method

LaToza GMU SWE 621 Spring 2025

V3: MULTIPLE INSTANCES

» Goals

data
‘ metrnp:» Aln——— Note that:
- get/set methods have been omitted
} P a r a I I e I i S m o +main(in Args(] : String] - we don't include all states and events in the mode
1 T
JAN N
b | h ATMContext
e n a e e a C -state : ATMState
InpOutFrame -card : String
S i m u I at O r t O outField - JTextAreal -pin.oodesentered sint
inField : JTextField |- —— -~~~ -br : BufteredReader ATMState
-pw : PipedWriter -myGUI : InpOutFrame
. +abortTransaction(in ¢ : ATMContext| — ‘
r u NninN a +proceed(in ¢ : ATMContext) S }*abortTrar_'sacnon(m ¢ : ATMContext|
+payAmount(in ¢ : ATMContext) +proceed(in ¢ : ATMContext)
+invalidPIN(in ¢ : ATMContext) +payAmount(in ¢ : ATMContext)
S e p a r at e +invalidPIN(in ¢ : ATMContext)
|
|
threed 1 1 1 - ___i__
EjectCard Pay PinCodelnvalid |
|
|
+abortTransaction(in ¢ : ATMContext +payAmount(in ¢ : ATMContext) +invalidPIN(in ¢ : ATMContext| L
+proceed(in ¢ : ATMContext)

» Ul: support
multiple
simulators

LaToza GMU SWE 621 Spring 2025

V3: MULTIPLE INSTANCES

» Replaced command line with GUI, each containing multiple
windows

» Each window associated with ATMContext
» GUI connected to ATMContext with pipes and filters

» Whenever a user enters data, can read from IOStream from
GUI just as if it were the command line

LaToza GMU SWE 621 Spring 2025

10

LaToza

Vi: DELEGATION-BASED APPROACH

» Goals

» Configurability: allow for adding new states and transitions
at runtime (e.g., machine runs out of paper)

» Separation of concerns: decouple state machine further

GMU SWE 621 Spring 2025

11

V4: DELEGATION-BASED APPROACH

public class ATMSimulator extends FSMContext {
static FSMState ejectcard = new FSMState(“ejectcard”);
static FSMState pay = new FSMState (“pay’’);
static FSMState pincodeinvalid = new FSMState(“pincodeinvalid”);
static FSMState cardvalid = new FSMState(‘‘cardvalid’);
...// more state definitions
static { // static -> it’s executed only once
pincodeinvalid. setInitAction(
new AbstractFSMAction() { // Inner class definition
public void execute(FSMContext fsmc) {
...// desired behavior

h
)

pincodeinvalid.addTransition(cardvalid, new DummyAction(), ‘“validcard™);
...// more transition and action definitons

H
...//rest of the class

h
FSMState
FSMContext -name : String
-currentState : FSMState @~ | ------- %:g')::g’;%nnj':'%‘:::éann
+dispatch(in eventName : String) +dispatch(in eventName : String, in context : FSMContext)

+addTransition(in transition : FSMTransition, in eventName : String)

<________-

FSMAction FSMTransition
R — -targetState : FSMState
-myAction : FSMAction
+execute(in context : FSMContext)|

+execute(in context : FSMContext)|

LaToza GMU SWE 621 Spring 2025

Vi: DELEGATION BASED APPROACH

» Use delegation rather than inheritance
» States no longer subclass FSMState
» Transitions are now first class

» Transitions delegate behavior to Action

LaToza GMU SWE 621 Spring 2025

13

Va: DECOUPLING

FSM

startState : FSMState

} G O a IS states : Hashtable

addState(in init : FSMAction, in name : String, in exit : FSMAction)
addTransition(in source : String, in target : String, in action : FSMAction, in event : String)

0
(o o= o= on o en en en e e e en en e e e e e e o
|
» Reduce use of :
I FSMState
o FSMContext name : String
Stat | C currentState : FSMState |)winitAction : FSMAction
fsm : FSM exitAction : FSMAction
dispatch(in eventName : String) dispatch(in eventName : String, in context : FSMContext)
addTransition(in transition : FSMTransition, in eventName : String)
l
|
|
|
|
|
|
A/
FSMAction FSMTransition
A targetState : FSMState
: myAction : FSMAction
execute(in context : FSMContext)| execute(in context : FSMC ontext)

» Introduce FSM, which separates responsibility of storing FSM from dispatchi

LaToza GMU SWE 621 Spring 2025 14

SUMMARY OF EVOLUTION

» Later decisions revised earlier

Version Decision Effect on system
vl 1.1 Use the State pattern For each state in a FSM, a subclass of State has
to be created
1.2 Put data in context class Each event method in the State subclasses refers
to the Context class to access data
1.3 Make context a property of ATMState The context i1s available to all State instances
1.4 Use command line for Ul The code i1s littered with calls to System.in and
System.out
v2 2.1 Make instances of State static The keyword static needs to be put before
instantiations of State subclasses
2.2 Remove context property from ATM- All event methods need to be edited
State and use parameter in event
method instead
v3 3.1 Create a GUI A class 1s added to the system
3.2 Replace System.in and System.out All event methods need to be revised
calls with calls to the GUI
3.3 Apply the pipes and filters for commu- The changes needed in the event methods are
nication between GUI and simulator relatively small
v4 4.1 Refactor the system to use delegation New classes are created that model the behaviour
(Van Gurp and Bosch, 1999). of states and transitions. All existing State sub-
classes are removed from the system.
4.2 Use the command pattern to separate For each event method 1n the State subclasses, an
behaviour from structure inner class needs to be created that implements
the FSMAction interface. An instance of such
classes needs to be associated with the appropri-
ate transition(s)
4.3 Introduce state exit and entry events to The event dispatching mechanism needs to be
the FSM model changed to support this type of events
VS 5.1 Introduce factory classes for states and A new class is created. The initialisation code for
transitions FFSMs can be made non static and becomes much
simpler
LaToza GMU SWE 621 Spring 2025

15

SUMMARY OF EVOLUTION

» Design decisions changed over time

» Driven by making a particular usage or scenario easier

» Reasons may not be apparent without knowing these scenarios
» Easy to lose track of decisions

» Constant change makes it harder to stay up to date with the current
version of each design decision

» Risk that might make change inconsistent with design

» Risk that when changing a decision might not update everything
required

LaToza GMU SWE 621 Spring 2025

16

SOFTWARE EVOLUTION

» As requirements are added and change, code must
implement these changes.

» This requires making changes to system that are either
» consistent with the existing design

» changing decisions to better accommodate these new
requirements, updating the relevant implementation

LaToza GMU SWE 621 Spring 2025

17

ARCHITECTURAL EROSION

» Software architectural erosion (or decay): the gap between
the architecture as designed as an as built

» e.g., intended to be a pipes and filters architecture, but isn't
entirely

» Consequences of design decision are no longer achieved
» if decision helped enable maintainability, it does no longer

» May sometimes lead to behaviorally observable defects, but
not always

LaToza GMU SWE 621 Spring 2025 18

CODEBASES TEND TO DECAY OVER TIME

» Study of large software system, as observed through commit
data

» Over time

|

» Increase in # of files touched per commit

|

» Increase in # of modules touched per commit
» These increases lead to increased effort to make change

» Relationship between edits and defects introduced

S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus. Does code decay? Assessing the evidence from change
management data. IEEE Trans. Softw. Eng. (TSE), 27(1):1-12, Jan 2001.

LaToza GMU SWE 621 Spring 2025

' [—1] Component instance

—— Pub-sub connector instance
Publish port instance

"B Subscribe port instance

AN EXAMPLE

» You've built a system following the publish / subscribe
architectural style.

» Wanted to enable adding and removing components without
impacting existing code

» Constraints
» Components do not know why an event is published

» Subscribing components do not know who published event,
depending on event type rather than specific publisher

LaToza GMU SWE 621 Spring 2025 20

TECHNICAL DEBT

» Sometime you know that you've broken the design, but still
decide to do it anyway.

» Why? Schedule pressure.
» But.... then have to live with the consequences

» Changes get more expensive

LaToza GMU SWE 621 Spring 2025

21

MANAGING TECHNICAL DEBT

» Debt metaphor: deferred some of the work necessary to
complete changes to the future

» It passes these tests, but violates design principles that
enable extensibility and maintainability.

» Need to have a plan to pay down debt.

» Plan work to improve design to make it again consistent
with design.

LaToza GMU SWE 621 Spring 2025

22

WHAT T0 DO ABOUT CODE DECAY?

» Prevent code decay

» Better communicate design to developers

» Check that changes are consistent with design
» Fix code decay after it occurs

» Refactor code to be consistent with design

» Change code to be consistent with design changes

LaToza GMU SWE 621 Spring 2025

23

BETTER COMMUNICATE DESIGN TO DEVELOPERS

» How does a developer know
that there's a design decision
they should follow?

» Ask a teammate
» Read a comment
» Read documentation

» e.g., in our codebase, we
only create element x by
doingy.

LaToza GMU SWE 621 Spring 2025

CHECK THAT CHANGES ARE CONSISTENT WITH DESIGN

» Code reviews offer important e
q ua||ty gate Zz : pub(crate) struct OutputHandler;
86 4+ impl OutputHandler {
» Before any change is committed, g Timidoeron ey 62019 Member
another developer must review the . e

a delta of the code change

client/src/lua/mod.rs

112 } else {

} Th at develcper IOO ks for 113 4 // TODO We may not always want to add a new screen
114 // see how awesome does it and fix this.
115 & trace!("Allocating screen for new output");

potential defects in the code as
well as violations of design
decisions.

‘ Timidger on May 6, 2019 Member

Either remove or give more information (e.g. resolution, positioning, etc.). The more
information the easier it is to debug potential problems later.

(Side note: I'm ok with adding debug information that is not present in AwesomeWM. It
should just make sense of course to add it, as we don't want to fill up user's harddrives with
needless debug prints)

» Gives comments, which original
developer must then fix before
code is committed

LaToza GMU SWE 621 Spring 2025

MAKING DESIGN CONSISTENT WITH CODE

LaToza GMU SWE 621 Spring 2025

26

Working with software docs

o |CSE 2006, PLATEAU 2010

e Developers are encouraged to use documentation to store and learn
about design.

o Often non-existent, outdated, and untrustworthy.

e Developers may consult senior team members.

o Left teams, forgotten the specifics, or too occupied.

e Developers have to manually reverse engineer code.
o Tedious, time-consuming, error-prone.
o Differentiating accidental patterns from intentional ones.

o Understanding the rationale one of the hardest problems developers face.

Documentation

Software Design

Software Code

26

Active Documentation

. com £M crowdcoding £l commands DesignDocCommand

DesignDocCommand.java

com.crowdcoding.commands

com.crowdcoding.entities.artifacts.DesignDoc
com.crowdcoding.servlets.ThreadContext

DesignDocCommand Command {
DesignDocCommand create(String String

DesignDocCommand(Long DesignDocId) {
: = DesignDocld
queueCommand ()

queueCommand (Command command) {
ThreadContext threadContext = ThreadContext.get()
threadContext.addCommand(command) ;

execute(String projectId) {
(1= 9) {
DesignDoc designDoc = DesignDoc. find(

(designDoc ==)
System.

printin(

+

{

execute(designDoc, projectld)

}

execute(projectld)

CHramm nrasn~4+TA)

DesignDocCommand

@
U
O
(Te
®
O

1S PNOJ

abe.Jo

> Tahila A Aantant A R LT Ib— N mavaba Er el
e lable of Content All Rules Violated Rules (Generate Rules

Rules applicable for File:
CrowdCode-master/CrowdCoding/src/com/crowdcoding/comm

ands/DesignDocCommand.java
3

(view the rule and all snippets) a -
All Microtask commands must be handled by Command subclasses

IF a method is a static method on Command THEN it should implement its behavior by
constructing a new Command subclass instance. The Command class contains a number of
static methods. Each method creates a specific type of Command by invoking the constructor
of the corresponding subclass.

Examples@out of@» Violated@Pout of @D

Commands must implement execute (view the rule and all snippets) a

IF a class is a subclass of Command THEN it must implement execute. Commands represent
an action that will be taken on an Artifact. In order for this action to be invoked, each subclass
of Command must implement an execute method. This method should not be directly invoked
by clients, but should be used by the Command execution engine.

Examples@out of@) Violatedout of)

(view the rule and all snippets) « =
Artifacts should be marked as a data region with an @Entity annotation

IF an object is an artifact subclass THEN it needs to be an entity. To signal that instances of a
class constitute a separate data region, the class should have the @Entity annotation. All

http://drive.google.com/file/d/1dP6epzXBJGjocMlM6ZHOlr8x1WsWN75y/view

Our Solution - Active Documentation

® </>
<
> >
Find Document Follow
design rules design decisions design decisions
from code
[Mehrpour et al. Submitted to UIST 2024] [Mehrpour at al. ESEC/FSE 2020] [Mehrpour et al. VL/HCC 2019]

29

Actively Following Design Decisions in Code

Documentation should be "active".

e Design decisions are actively checked against code.

e An active link between the documentation and code is
generated.

e Developers can actively update the documentation.

30

[Mehrpour et al. VL/HCC 2019]

ActiveDocumentation

commands DesignDocCommand

& Table of Content All R

ADTCommand.java

00 1Ng.commanas

Active Documentation

k
cCommand create(String Tags
_ A B CDEF G HI J KL MN OWP QMR STWU
DesignDocCol md”r(-jlll,_(r:jr’)‘zj‘)ocld) V W X Y Z Al
ueueCommand|] .
Command Data Transfer Objects
Entity Microtask
Objectify Persistence
queueCommand (Commant Serialization Sharding
fhreadContext threadContext
threadContext, adgCommand{ command)
Rules
1 All Microtask commands must be handled by Command subclasses
2 Commands must implement execute
3 Artifacts should be marked as a data region with an @Entity annotation
4 Microtasks must have a reference to the Artifact that it belongs to
6 Communication between artifacts should be indirected through a Command
8 Objects to be sent to an external service should have a corresponding DTO that

needs to be transferred has a DTO, i.e. ObjectMapper should not be in Entity.

[Mehrpour et al. VL/HCC 2019]

http://drive.google.com/file/d/1j26yIoj2AP4DbL1MBZS0VfrNr22Svs61/view

ActiveDocumentation: Active Link

M com &N crowdcoding £l commands DesignDocCommand

DesignDocCommand.java

com. crowdcoding.commands
com.crowdcoding.entities.artifacts.DesignDoc

com.crowdcoding.servlets.ThreadContext

DesignDocCommand Command {

DesignDocCommand create(String String

DesignDocCommand(Long DesignDocId) {
: = DesignDocId
queueCommand ()

queueCommand (Command command) {
ThreadContext threadContext = ThreadContext.get()
threadContext.addCommand(command) ;

execute(String projectId) {
(1= 9) {

DesignDoc designDoc = DesignDoc. find(

(designDoc ==)
System.
printin(
+
{

execute(designDoc, projectld)

}

execute(projectld)

AvearitralNacsmanNacs NAacs anNAa~ Chdrmanmm nraAasnm

DesignDocCommand

[Mehrpour et al. VL/HCC 2019]

1S pnoj) 9|boos

abeJo

¢ Table of Content All Rules Violated Rules (Generate Rules

Rules applicable for File:

CrowdCode-master/CrowdCoding/src/com/crowdcoding/comm

ands/DesignDocCommand.java
S

(view the rule and all snippets) a
All Microtask commands must be handled by Command subclasses

IF a method is a static method on Command THEN it should implement its behavior by
constructing a new Command subclass instance. The Command class contains a number of
static methods. Each method creates a specific type of Command by invoking the constructor
of the corresponding subclass.

Examples@out of @) Violated€Pout of D

Commands must implement execute (view the rule and all snippets) a

IF a class is a subclass of Command THEN it must implement execute. Commands represent
an action that will be taken on an Artifact. In order for this action to be invoked, each subclass
of Command must implement an execute method. This method should not be directly invoked
by clients, but should be used by the Command execution engine.

Examples@@out of@) Violatedout of)

(view the rule and all snippets) « =
Artifacts should be marked as a data region with an @Entity annotation

IF an object is an artifact subclass THEN it needs to be an entity. To signal that instances of a
class constitute a separate data region, the class should have the @Entity annotation. All

32

http://drive.google.com/file/d/1dP6epzXBJGjocMlM6ZHOlr8x1WsWN75y/view

ActiveDocumentation: Active Check

ADTCommand.java

r

DesignDocCommand.java

DesignDocCommand(Long DesignDocId) {
.DesignDocId = DesignDocld
queueCommand ()

7: Structure

-

queueCommand (Command command) {

ThreadContext threadContext = ThreadContext.get()
threadContext.addCommand(command)

execute(String projectId) {

(DesignDocId != @) {
DesignDoc designDoc = DesignDoc.find(DesignDocId)

}

(designDoc ==)
System.out

printin(
+ DesignDocId)

I
1

execute(designDoc, projectIld)

execute(projectId)

¥ 2: Favorites

execute(DesignDoc DesignDoc, String projectId)

Create DesignDocCommand {

String title
String description

isApiArtifact
isReadOnly

Create(String title, String description isApiArtifact
(0L)

title = title

.description R}description

. isApiArtifact = isApiArtifact

.1sReadOnly = isReadOnly

DesignDocCommand Create

[Mehrpour et al. VL/HCC 2019]

SO0(J8ANDY s108loid usae

aseqgeleq

pling Uy

abelols pno|n a|6oos M

All Rules

All Microtask commands must be handled by Command subclasses (view the rule and all snippets) a

IF a method is a static method on Command THEN it should implement its behavior by constructing a new
Command subclass instance. The Command class contains a number of static methods. Each method creates a
specific type of Command by invoking the constructor of the corresponding subclass.

Ciroask | Gonman | shardng

Examples@) Violated)

Commands must implement execute (view the rule and all snippets) a

IF a class is a subclass of Command THEN it must implement execute. Commands represent an action that will
be taken on an Artifact. In order for this action to be invoked, each subclass of Command must implement an
execute method. This method should not be directly invoked by clients, but should be used by the Command
execution engine.

Commana | snarang
Examples@E) Violated @)

Artifacts should be marked as a data region with an @Entity annotation (view the rule and all snippets) a

IF an object is an artifact subclass THEN it needs to be an entity. To signal that instances of a class constitute a
separate data region, the class should have the @Entity annotation. All Artifact subclasses should be marked as a
data region.

Sraang
Examples@f)) Violated))

Microtasks must have a reference to the Artifact that it belongs to (view the rule and all snippets) a

IF a class is a subclass of Microtask THEN it needs a field representing the reference to the associated entity.
Each Microtask represents work to be done on an Artifact. As such, it needs to be connected back to its owning
artifact through a reference to the Artifact. Without the reference, they need to have an ID of the artifact and for
submitting they need to load the data beforehand.

Ceniy | Microas | Obieity § Perisance

Examples@() Violated)

(view the rule and all snippets) a
Communication between artifacts should be indirected through a Command

IF an Artifact needs to communicate with another artifact THEN it should create a Command describing the

33

http://drive.google.com/file/d/1YbrXNxPUK6jVURYhdbhZrc_D-Mhuk0iX/view

User Study

e (Conducted a user study with 18 participants.
Goal: Add new code to an existing codebase while following design decisions.

e Task: Add a new feature in Microtask prgramming codebase given ActiveDocumentation and
traditional documentation.

e Results:

o ActiveDocumentation helped participants work with design decisions:

m Quickly - 3 times faster in starting editing the code (U = 12.5, p < 0.05), 28% faster in finishing the
task (U =16.5, p < 0.05)

m Successfully — 98% fewer incorrect lines of code (p < 0.044)

o Used example snippets to learn how to follow decisions.
o Used links to violated snippets to locate parts of code that need change.

o Used instant feedback to verify changes.

[Mehrpour et al. VL/HCC 2019]

34

Active Documentation

We help software developers to change code other developers wrote in less time.

Engineering managers at small- or medium-sized companies
working on software products that require long-term
maintenance will use our documentation-building process
to reduce knowledge transfer time and cost.

Interviews ¢ InPerson ™ Virtual < Phone

New New

New New
Total Total Total Total

104 35 66 3

Team 3577

NSF Lineage:
NSF 1845508, NSF 1703734

We developed a new static-
analysis based technique to keep
design docs in sync with code
and use data mining techniques
to infer design from code.

e C(Consuelo Lopez, EL

+16 years experience in different roles in software industry.

e Thomas LaToza, Co-EL

Professor and an expert in designing new types of developer tools.

e Sahar Mehrpour, TL

Researcher specializing in documentation tools with 7+ years of
experience.

e Austin Henley, IM

Former CTO of an acquired startup and VP of Engineering at a Series C
company.

Tool Adoption Process

e Big companies
o Big companies have their own internal tools org, and build tools in-house
o Or have complex policies and paperwork for adoption
o Buy developer tools from other big companies.

e Most adoption is more bottom up

Team leads or senior engineers learn about tools through social media

Engineers try out tool (for free) on their own hobby / OSS projects

Engineers suggest tool to team lead or other manager or decision maker for feedback
[Sometimes] Gather alternative tools for comparison

[Sometimes] Trial tool internally or compare against alternative tools

Build business case: cost of tool vs. value of saving

Decision maker makes decision

O O O O O O O

When do teams pay for tools?

LA

“Companies are willing to pay for tools that makes developers do less work.”

e Hard to sell a developer tool as a new startup - have to build trust & reputation
e Teams are spending more than $10 - 20 on developer tools, mostly from big
companies

e Scared of being on the bleeding edge and adopting something that will
disappear or not yet validated

FIX CODE DECAY AFTER IT OCCURS

» Make changes that improve the design of the code without changing the
behavior: refactoring

» Goal: before and after change, code should behave exactly the same
» Involves moving and renaming functionality
» Modern IDEs support automatic low-level refactorings
» e.g., move method.
» Finds references to functionality and updates
» Tries to guarantee that defects are not inserted.
» Often need to make many low-level changes to achieve higher-level goal

» Many may not be supported directly through automated refactoring

LaToza GMU SWE 621 Spring 2025 39

EXAMPLE: REFACTORING SUPPORT
% CodeRetractoring - Microsot Viswal Sidie Mamimsee T s

File Edit View Refactor Project Build Debug Team Data Tools Architecture Test ReSharper Analyze W

: @ ~ v 7 3 Rename..) ‘Windows Phone 7 Emulator ~| | Debug -
i) %y, R A> | ¥ Extract Method... Ctrl+R, Ctrl+M [} _|2) 21| ¥ ¢ ab S F|)

75 [—— @ Encapsulate Field...
' e —=* Extract Interface... Ctrl+R, Ctrl+I
- — ah Remove Parameters... Ctrl+R, Ctrl+V

a,b Reorder Parameters...

1210|dx3 133G

NN

string lastName = "Vadgama";

AT ATAT AT A AT AYAY

‘\b string firstName = "Jalpesh”;

PrintMyName(firstName, lastName);

¥

= private static void PrintMyName(string firstName, string lastName)
{
Console.lWriteline(string.Format("FirstName:{0}", firstName));
Console.Writeline(string.Format("LastName:{0}", lastName));

LaToza GMU SWE 621 Spring 2025

SOME EXAMPLES OF REFACTORINGS

4

LaToza

Encapsulate field - force code to access the field with getter and setter methods
Generalize type - create more general types to allow for more code sharing
Replace conditional with polymorphism

Extract class: moves part of the code from an existing class into a new class.
Extract method: turn part of a larger method into a new method.

Move method or move field: move to a more appropriate class or source file

Rename method or rename field: changing the name into a new one that better
reveals its purpose

Pull up: move to a superclass

Push down: move to a subclass

GMU SWE 621 Spring 2025

41

SUMMARY

» As software evolves, its requirements may change,

LaToza

necessitating changes to the implementation

Code that is inconsistent with the design introduces code
decay, where expected consequences of design decisions are
no longer realized

Code decay makes code harder to change and can lead to
defects

To reduce code decay, important to prevent code decay and
fix it when it occurs

GMU SWE 621 Spring 2025 42

IN CLASS ACTIVITY

aaaaaa

GMU SWE 621 Spring 2025

43

IN-CLASS ACTIVITY: STEP 1

» Your team is growing & looking to hire 3 new junior engineers. You're in charge of
helping onboard them.

» Based on the concepts about design & architecture you've learned in class so far,
outline a plan.

» What design documents will you create? What sections will these documents contain
and how well they help to describe the design & architecture to new engineers?

» What processes & practices will you put in place to help onboard engineers into your
project?

» What key performance indicators (KPls) will you collect to evaluate what is working,
or not working, in your onboarding efforts?

» Deliverables

» Description of the design docs, processes, and KPls you will use to onboard new
engineers

LaToza GMU SWE 621 Spring 2025

IN-CLASS ACTIVITY: STEP 2

» Combine with another group

» Compare & contrast your approaches:
» How are your doc structures similar or different?
» How are your process & practices similar or different?
» How are KPIs similar or different?

» Deliverables: Analysis of key differences & your
recommendations on the best ways to proceed

LaToza GMU SWE 621 Spring 2025

45

