
FOLLOWING A DESIGN
SWE 621
SPRING 2025

© THOMAS LATOZA

LaToza GMU SWE 621 Spring 2025

LOGISTICS

▸ HW4 due next week

2

LaToza GMU SWE 621 Spring 2025

FOLLOWING A DESIGN
▸ So far we've considered how design choices can help system achieve

quality attributes

▸ abstractions, architectural styles, design patterns

▸ by minimizing risk, by following domain model, hiding decisions likely
to change

▸ What happens when a developer makes a code change that fails to
follow the constraints imposed by the design decision?

▸ How do you prevent developers from not following design decisions?

▸ What happens when the design decision should change?

▸ Requirement changes may lead to decisions no longer being effective.

▸ May find better design choices as better understand problem.

3

LaToza GMU SWE 621 Spring 2025

EXAMPLE: HOW SOFTWARE EVOLVES OVER TIME

▸ ATM Simulator

▸ Describes
behavior of
ATM machine
as user interacts
with machine

4

LaToza GMU SWE 621 Spring 2025

V1: STATE PATTERN

▸ Decisions

▸ Use the state
pattern

▸ Put data in
context class

▸ Make context a
property of
ATMState

▸ Use command
line for UI

5

LaToza GMU SWE 621 Spring 2025

V1: STATE PATTERN

▸ ATMContext stores variables used by ATMState subclasses

▸ Need to be shared between subclasses

▸ Everything needs references to context class

▸ ATMContext contains many methods that only forward the call to
the current state

▸ ATMContext does not check whether a particular event is
supported by the current state

▸ Potential for defects

6

LaToza GMU SWE 621 Spring 2025

V2: FLYWEIGHT

▸ Goals

▸ Memory
usage:
instantiate
each state
class only
once

▸ Performance:
reduce startup
time for
simulator

7

LaToza GMU SWE 621 Spring 2025

V2: FLYWEIGHT

▸ Each state class is only created once

▸ Removed the context property from ATMState, added
context parameter in each event method

8

LaToza GMU SWE 621 Spring 2025

V3: MULTIPLE INSTANCES

▸ Goals

▸ Parallelism:
enable each
simulator to
run in a
separate
thread

▸ UI: support
multiple
simulators

9

LaToza GMU SWE 621 Spring 2025

V3: MULTIPLE INSTANCES

▸ Replaced command line with GUI, each containing multiple
windows

▸ Each window associated with ATMContext

▸ GUI connected to ATMContext with pipes and filters

▸ Whenever a user enters data, can read from IOStream from
GUI just as if it were the command line

10

LaToza GMU SWE 621 Spring 2025

V4: DELEGATION-BASED APPROACH

▸ Goals

▸ Configurability: allow for adding new states and transitions
at runtime (e.g., machine runs out of paper)

▸ Separation of concerns: decouple state machine further

11

LaToza GMU SWE 621 Spring 2025

V4: DELEGATION-BASED APPROACH

12

LaToza GMU SWE 621 Spring 2025

V4: DELEGATION BASED APPROACH

▸ Use delegation rather than inheritance

▸ States no longer subclass FSMState

▸ Transitions are now first class

▸ Transitions delegate behavior to Action

13

LaToza GMU SWE 621 Spring 2025

V5: DECOUPLING

▸ Goals

▸ Reduce use of
static

14

▸ Introduce FSM, which separates responsibility of storing FSM from dispatching events

LaToza GMU SWE 621 Spring 2025

SUMMARY OF EVOLUTION

15

▸ Later decisions revised earlier

LaToza GMU SWE 621 Spring 2025

SUMMARY OF EVOLUTION

▸ Design decisions changed over time

▸ Driven by making a particular usage or scenario easier

▸ Reasons may not be apparent without knowing these scenarios

▸ Easy to lose track of decisions

▸ Constant change makes it harder to stay up to date with the current
version of each design decision

▸ Risk that might make change inconsistent with design

▸ Risk that when changing a decision might not update everything
required

16

LaToza GMU SWE 621 Spring 2025

SOFTWARE EVOLUTION

▸ As requirements are added and change, code must
implement these changes.

▸ This requires making changes to system that are either

▸ consistent with the existing design

▸ changing decisions to better accommodate these new
requirements, updating the relevant implementation

17

LaToza GMU SWE 621 Spring 2025

ARCHITECTURAL EROSION

▸ Software architectural erosion (or decay): the gap between
the architecture as designed as an as built

▸ e.g., intended to be a pipes and filters architecture, but isn't
entirely

▸ Consequences of design decision are no longer achieved

▸ if decision helped enable maintainability, it does no longer

▸ May sometimes lead to behaviorally observable defects, but
not always

18

LaToza GMU SWE 621 Spring 2025

CODEBASES TEND TO DECAY OVER TIME

▸ Study of large software system, as observed through commit
data

▸ Over time

▸ Increase in # of files touched per commit

▸ Increase in # of modules touched per commit

▸ These increases lead to increased effort to make change

▸ Relationship between edits and defects introduced

19

S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus. Does code decay? Assessing the evidence from change
management data. IEEE Trans. Softw. Eng. (TSE), 27(1):1–12, Jan 2001.

LaToza GMU SWE 621 Spring 2025

AN EXAMPLE

▸ You've built a system following the publish / subscribe
architectural style.

▸ Wanted to enable adding and removing components without
impacting existing code

▸ Constraints

▸ Components do not know why an event is published

▸ Subscribing components do not know who published event,
depending on event type rather than specific publisher

20

LaToza GMU SWE 621 Spring 2025

TECHNICAL DEBT

▸ Sometime you know that you've broken the design, but still
decide to do it anyway.

▸ Why? Schedule pressure.

▸ But.... then have to live with the consequences

▸ Changes get more expensive

21

LaToza GMU SWE 621 Spring 2025

MANAGING TECHNICAL DEBT

▸ Debt metaphor: deferred some of the work necessary to
complete changes to the future

▸ It passes these tests, but violates design principles that
enable extensibility and maintainability.

▸ Need to have a plan to pay down debt.

▸ Plan work to improve design to make it again consistent
with design.

22

LaToza GMU SWE 621 Spring 2025

WHAT TO DO ABOUT CODE DECAY?

▸ Prevent code decay

▸ Better communicate design to developers

▸ Check that changes are consistent with design

▸ Fix code decay after it occurs

▸ Refactor code to be consistent with design

▸ Change code to be consistent with design changes

23

LaToza GMU SWE 621 Spring 2025

BETTER COMMUNICATE DESIGN TO DEVELOPERS

▸ How does a developer know
that there's a design decision
they should follow?

▸ Ask a teammate

▸ Read a comment

▸ Read documentation

▸ e.g., in our codebase, we
only create element x by
doing y.

24

LaToza GMU SWE 621 Spring 2025

CHECK THAT CHANGES ARE CONSISTENT WITH DESIGN

▸ Code reviews offer important
quality gate

▸ Before any change is committed,
another developer must review the
a delta of the code change

▸ That developer looks for
potential defects in the code as
well as violations of design
decisions.

▸ Gives comments, which original
developer must then fix before
code is committed

25

LaToza GMU SWE 621 Spring 2025

MAKING DESIGN CONSISTENT WITH CODE

26

Working with software docs

● ICSE 2006, PLATEAU 2010

● Developers are encouraged to use documentation to store and learn
about design.

○ Often non-existent, outdated, and untrustworthy.

276

● Developers have to manually reverse engineer code.

○ Tedious, time-consuming, error-prone.

○ Differentiating accidental patterns from intentional ones.

○ Understanding the rationale one of the hardest problems developers face.

● Developers may consult senior team members.

○ Left teams, forgotten the specifics, or too occupied.

Active Documentation

http://drive.google.com/file/d/1dP6epzXBJGjocMlM6ZHOlr8x1WsWN75y/view

Our Solution - Active Documentation

29

Find
design rules
from code

Document
design decisions

Follow
design decisions

[Mehrpour et al. VL/HCC 2019][Mehrpour at al. ESEC/FSE 2020][Mehrpour et al. Submitted to UIST 2024]

Actively Following Design Decisions in Code

Documentation should be "active".

30

● Design decisions are actively checked against code.

● An active link between the documentation and code is
generated.

● Developers can actively update the documentation.

[Mehrpour et al. VL/HCC 2019]

 ActiveDocumentation

31
[Mehrpour et al. VL/HCC 2019]

http://drive.google.com/file/d/1j26yIoj2AP4DbL1MBZS0VfrNr22Svs61/view

ActiveDocumentation: Active Link

32
[Mehrpour et al. VL/HCC 2019]

http://drive.google.com/file/d/1dP6epzXBJGjocMlM6ZHOlr8x1WsWN75y/view

ActiveDocumentation: Active Check

33
[Mehrpour et al. VL/HCC 2019]

http://drive.google.com/file/d/1YbrXNxPUK6jVURYhdbhZrc_D-Mhuk0iX/view

User Study
● Conducted a user study with 18 participants. 

Goal: Add new code to an existing codebase while following design decisions.

● Task: Add a new feature in Microtask prgramming codebase given ActiveDocumentation and
traditional documentation.

● Results:

○ ActiveDocumentation helped participants work with design decisions:

■ Quickly – 3 times faster in starting editing the code (U = 12.5, p < 0.05), 28% faster in finishing the

task (U = 16.5, p < 0.05)

■ Successfully – 98% fewer incorrect lines of code (p < 0.044)

○ Used example snippets to learn how to follow decisions.

○ Used links to violated snippets to locate parts of code that need change.

○ Used instant feedback to verify changes.

34
[Mehrpour et al. VL/HCC 2019]

Active Documentation
We help software developers to change code other developers wrote in less time. Team 3577

Engineering managers at small- or medium-sized companies
working on software products that require long-term
maintenance will use our documentation-building process
to reduce knowledge transfer time and cost.

NSF Lineage:
NSF 1845508, NSF 1703734

We developed a new static-
analysis based technique to keep
design docs in sync with code
and use data mining techniques
to infer design from code.

Team

● Consuelo Lopez, EL

+16 years experience in different roles in software industry.

● Thomas LaToza, Co-EL

Professor and an expert in designing new types of developer tools.

● Sahar Mehrpour, TL

Researcher specializing in documentation tools with 7+ years of
experience.

● Austin Henley, IM

Former CTO of an acquired startup and VP of Engineering at a Series C
company.

Tool Adoption Process

● Big companies
○ Big companies have their own internal tools org, and build tools in-house
○ Or have complex policies and paperwork for adoption
○ Buy developer tools from other big companies.

● Most adoption is more bottom up
○ Team leads or senior engineers learn about tools through social media
○ Engineers try out tool (for free) on their own hobby / OSS projects
○ Engineers suggest tool to team lead or other manager or decision maker for feedback
○ [Sometimes] Gather alternative tools for comparison
○ [Sometimes] Trial tool internally or compare against alternative tools
○ Build business case: cost of tool vs. value of saving
○ Decision maker makes decision

When do teams pay for tools?

“Companies are willing to pay for tools that makes developers do less work.”

● Hard to sell a developer tool as a new startup - have to build trust & reputation
● Teams are spending more than $10 - 20 on developer tools, mostly from big

companies
● Scared of being on the bleeding edge and adopting something that will

disappear or not yet validated

LaToza GMU SWE 621 Spring 2025

FIX CODE DECAY AFTER IT OCCURS

▸ Make changes that improve the design of the code without changing the
behavior: refactoring

▸ Goal: before and after change, code should behave exactly the same

▸ Involves moving and renaming functionality

▸ Modern IDEs support automatic low-level refactorings

▸ e.g., move method.

▸ Finds references to functionality and updates

▸ Tries to guarantee that defects are not inserted.

▸ Often need to make many low-level changes to achieve higher-level goal

▸ Many may not be supported directly through automated refactoring
39

LaToza GMU SWE 621 Spring 2025

EXAMPLE: REFACTORING SUPPORT

40

LaToza GMU SWE 621 Spring 2025

SOME EXAMPLES OF REFACTORINGS

▸ Encapsulate field – force code to access the field with getter and setter methods

▸ Generalize type – create more general types to allow for more code sharing

▸ Replace conditional with polymorphism

▸ Extract class: moves part of the code from an existing class into a new class.

▸ Extract method: turn part of a larger method into a new method.

▸ Move method or move field: move to a more appropriate class or source file

▸ Rename method or rename field: changing the name into a new one that better
reveals its purpose

▸ Pull up: move to a superclass

▸ Push down: move to a subclass

41

LaToza GMU SWE 621 Spring 2025

SUMMARY

▸ As software evolves, its requirements may change,
necessitating changes to the implementation

▸ Code that is inconsistent with the design introduces code
decay, where expected consequences of design decisions are
no longer realized

▸ Code decay makes code harder to change and can lead to
defects

▸ To reduce code decay, important to prevent code decay and
fix it when it occurs

42

LaToza GMU SWE 621 Spring 2025

IN CLASS ACTIVITY

43

LaToza GMU SWE 621 Spring 2025

IN-CLASS ACTIVITY: STEP 1
▸ Your team is growing & looking to hire 3 new junior engineers. You're in charge of

helping onboard them.

▸ Based on the concepts about design & architecture you've learned in class so far,
outline a plan.

▸ What design documents will you create? What sections will these documents contain
and how well they help to describe the design & architecture to new engineers?

▸ What processes & practices will you put in place to help onboard engineers into your
project?

▸ What key performance indicators (KPIs) will you collect to evaluate what is working,
or not working, in your onboarding efforts?

▸ Deliverables

▸ Description of the design docs, processes, and KPIs you will use to onboard new
engineers

44

LaToza GMU SWE 621 Spring 2025

IN-CLASS ACTIVITY: STEP 2

▸ Combine with another group

▸ Compare & contrast your approaches:

▸ How are your doc structures similar or different?

▸ How are your process & practices similar or different?

▸ How are KPIs similar or different?

▸ Deliverables: Analysis of key differences & your
recommendations on the best ways to proceed

45

