
User-Centered Design

SWE 632
Fall 2015

© Thomas LaToza

In class exercise

• Today’s question:

• What makes great software?

2

What makes great software?

3

Administrivia

• HW2 due today

• HW3 due in 1 week

4

User-centered design

5

User-centered design

6

User-centered design

7

What problems
may users

encounter w/
current ways of

doing things?

Who are
the users?

What are the
user’s needs?

What are the
user’s tasks and

goals?

What extreme
cases may

exist?

How does the product fit into
the broader context of their lives?

Technology-centered design

8

What can
this

technology
do?

How might
users use it?

What
features

does it have?

Double diamond model of design
• Question problem,

expand scope,
discover fundamental
issues

• Converge on
problem

• Expand possible
solutions

• Converge on solution

Fail fast
• “Fail frequently, fail fast” David Kelley, founder of Ideo

• Failure is learning experience

• Crucial to understand correct problem to solve & ensure
solution is appropriate

• Abstract requirements are invariably wrong

• Requirements produced by asking people what they want are
wrong

10

Iterative model of design

11

(re) Define the
problem

Needfinding

Brainstorm
ideate

understand
the users

Prototype
build

Test

Iteration
• Repeated study and testing

• Use tests to determine what is working or not working

• Determine what the problem might be, redefining the
problem

• Collect more data

• Generate new alternatives
12

Flexibility-usability tradeoff

14

Flexibility-usability tradeoff
• Jack of all trades, master of none

• Better understanding needs enables specialization
and optimization for common cases

• System evolution over time:

• flexibility —> specialization
15

Navigating a design space

16

• What are key decisions in interaction design

• What alternatives are possible

• What are tradeoffs between these alternatives

Hierarchy of design decisions
• What are you (re)designing?

• the width of the text input

• the maximum length of a valid username

• when in the signup process users enter their username

• if the user must create a username when signing up

• whether users are anonymous or have a login

• if users can interact with other users in your application

17

Picking the right level of redesign
• Where are the user’s pain points

• What are the underlying causes

• What would be the value to the user of
addressing issue

• What do you have time to build (or change)
18

Activities and tasks
• Activity - set of tasks performed together for a common goal

• Go shopping

• Task - component of an activity, organized cohesive set of operations
towards a single low-level goal

• Drive to market

• Find shopping basket

• Find item in store

• Pay for items
19

Activities and tasks
• Activities are hierarchical

• High-level activities spawn other activities, spawn tasks

• Software supports tasks and activities

• Important to design for activities, not just tasks

• Support whole activity seamlessly

• Ensure interactions between tasks do not interfere
20

Example - iPod
• Supports entire activity of listening to music

• discovering music

• purchasing music

• getting it into music player

• developing playlists

• sharing playlists

• listening to music

• ecosystem of external speakers and
accessories

21

Example

22

Observations of investigation & debugging in a complex codebase

23

Par$cipants

Tasks 90	
 minute	
 inves.gate	
 &	

fix	
 design	
 problem x	
 2 55	
 KLOC	
 Java	
 applica.on	
 (jEdit)

13	
 developers	
 median	
 2.5	
 yrs	
  
industry	
 experience

When painting the last line of a file, Buffer.isFoldStart() doesn't call
getFoldLevel(), hence the foldLevelChanged() event might not be sent
for the previous line. Identify and fix problems with this design:

Code	
 smells	

Ignoring	
 the	
 return	
 value	
 of	
 a	
 geKer	

Using	
 geKer	
 for	
 its	
 effects	

Architecturally	
 ques$onable	

Changing	
 buffer	
 state	
 from	
 another	

component	

When a file is opened, a number of redundant UI updates are performed 
that reduce performance. Identify these updates and fix the design to  
reduce them.

Task	
 1

Task	
 2

Data collected

24

Demographic	
 ques.ons	
 	

Thinkaloud	
 audio	
 	
 	
 	
 	

Post	
 task	
 interviews	
 	

Code	
 aTer	
 changes	

Par.cipant	
 typed	
 notes	

Notepaper	
 video	
 camera	

	
 	
 	
 	
 	
 	
 	
 Wide	
 video	
 camera	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 observer	
 notes	
 Camtasia	
 screen	
 video	

Par.cipant	
 handwriKen	
 notes	

Transcripts and analysis

25

	
 (11,821	
 lines)

.me	
 	

code	
 goal	
 ac.on	
 target	
 think	
 aloud	

Hierarchy	
 of	
 goals	
 &	
 ac.ons	

Design	
 decisions	

Length	
 &	
 reason	
 for	
 breakdowns	

Different	
 strategies	
 used	
 for	
 achieving	
 the	
 same	
 goals	

Differences	
 in	
 pieces	
 of	
 system	
 explored	

Code	
 changes	
 and	
 defects	
 introduced	

Analysis - Navigation & Changes

26

markTokens

BufferChangeListener

contentInserted

fireTransactionComplete

redo

remove

undo

transactionComplete

doDelayedUpdate

getFoldLevel

fireFoldLevelChanged

invalidateLineRange

invalidateScreenLineRange

paintValidLine

isFoldStart

foldLevelChanged

JEditBuffer

 BufferHandler

JEditTextArea

TextAreaPainter

LineManager

getFoldLevel

setFirstInvalidFoldLevel

IndentFoldHandler ExplicitFoldHandler

ChunkCache

DisplayManager

collapseFold

expandFold

expandFolds

goToParentFoldgetFontProperty

jEdit

getBooleanProperty

getIntegerProperty

getLineOfOfset

Log

init

Debug
getProperty

main

getFirstInvalidFoldLevel

invalidateFoldLevels

getFoldLevel getFoldLevel

goToParentFold

parseBufferLocalProperties

isFoldEnd

setTokenMarker

getFoldAtLine

fireContentInserted

fireContentRemoved

invalidateFoldLevels

invalidateCachedFoldLevels

getLineInfo

updateChunksUpTo

notifyScreenLineChanges

BufferHandler

contentInserted

preContentRemoved

contentInserted

setFoldHandler

getLineLength

transactionComplete

JEditBuffer

getFoldHandler ExplicitFoldHandler

setFoldLevel

LineManager

setLineContext

bufferLoaded

foldHandlerChanged

delayUpdate

contentRemoved

FoldHandler

getFoldLevel

insertEnterAndIndent

endCompoundEdit

PaintLineBackground PaintText

paintValidLinepaintValidLine

insert

loadText

getLineCount

insertEnterAndIndent beginCompoundEdit

DummyFoldHandler

getFoldLevel

getFoldHandler

getProperty

C&C WRITING

RUNNING CODE

BufferListener

foldLevelChanged

_closeBuffer addBuffertoList

dispose getDisplayManager

getListener

removeBufferListener

No Edit

Box
Class

Text

Method names

Squares

Edits

Circles
Views

Arrows

A calls B

Size
Small < 1 min
Large > 5 mins

Color
Red first 10 min
Violet last 10 min

Analysis - Facts

27

Developers	
 navigated	
 code	
 to	
 answer	
 ques.ons	
 and	
 learn	
 facts	
 about	
 code	

Examples:	

Whenever	
 the	
 window	
 scrolls,	
 the	
 caret	
 status	
 must	
 be	
 updated.	

Whenever	
 the	
 cursor	
 moves,	
 the	
 caret	
 status	
 must	
 be	
 updated.	

Whenever	
 the	
 buffer	
 changes,	
 the	
 caret	
 status	
 should	
 be	
 updated	
 once.	

EditBus	
 is	
 for	
 low	
 frequency	
 events,	
 not	
 high	
 frequency	
 events	
 like	
 buffer	
 edits	

When	
 the	
 buffer	
 change	
 EditBus	
 message	
 is	
 sent,	
 the	
 text	
 area	
 has	
 not	
 yet	
 been	
 updated	

with	
 the	
 new	
 buffer's	
 info.	

Developers	
 some.mes	
 were	
 unsuccessful	
 answering	
 their	
 ques.ons.  
	
 	
 	
 	
 	
 	
 	
 	
 made	
 op.mis.c	
 or	
 pessimis.c	
 assump.ons	

Developers	
 some.mes	
 made	
 false	
 assump$ons  
	
 	
 	
 	
 	
 	
 	
 	
 	

Examples of false beliefs and questions answered incorrectly

28

Ques$on	
 answered	
 incorrectly Correct	
 fact	
 about	
 control	
 flow

Why is calling m necessary? m indirectly calls a function that updates
the screen.

False	
 assump$on Correct	
 fact	
 about	
 control	
 flow

Method m need not invoke method n, as it
is only called in a situation in which n has
already been called.

m is called in several additional situations
in which n has not been called.

…
m updates

the screen

…
m

…
n✖

Findings

29

32	
 changes	

16	
 inserted	
 a	

defect	

16	
 did	
 not	

insert	
 a	
 defect	

5	
 related	
 to	
 false	
 assump.on	

about	
 control	
 flow	

3	
 related	
 to	
 ques.on	
 about	
 control	

flow	
 answered	
 incorrectly	

✔

✖

8	
 unrelated	
 to	

control	
 flow	

‣Developers seek task-relevant information by asking questions and
navigating code to learn facts about code

‣Developers built mental models (sometimes externalized in sketches
and notes) of control flow

‣Developers sometimes hold false beliefs about code 
 because they answered questions incorrectly 

 or made false assumptions

‣False beliefs about control flow led developers to introduce defects

Limitations

30

Study	
 of	
 developers	
 making	
 changes	
 to	
 codebase	
 they’ve	
 never	

seen	
 before	

➡ Maybe	
 developers	
 working	
 with	
 unfamiliar	
 code	
 in	
 a	
 familiar	

codebase	
 do	
 not	
 have	
 these	
 challenges?	

Two	
 tasks	
 in	
 a	
 single	
 codebase	

➡	
 	
 	
 Maybe	
 other	
 tasks	
 or	
 codebases	
 do	
 not	
 have	
 these	
 challenges?

Are	
 these	
 challenges	
 typical	
 of	
 real	
 world	
 soTware	
 development?	
 	

Observations of developers in the field

31

Par$cipants Tasks
~90	
 minutes  

picked	
 one	
 of	
 their	
 own	
 coding	

tasks	
 involving	
 unfamiliar	
 code17	
 professional	
 developers

Transcripts

(386	
 pages)

Interes.ng.	
 This	
 looks	
 like,	
 this	
 looks	
 like	
 the	
 code	
 is	
 approximately	
 the	
 same	
 but	
 it’s	
 refactored.	
 But	
 the	

other	
 code	
 is.	
 	

Changed	
 what	
 flags	
 it’s	
 ???	

He	
 added	
 a	
 new	
 flag	
 that	
 I	
 don’t	
 care	
 about.	
 He	
 just	
 renamed	
 a	
 couple	
 things.	

Well.	

So	
 the	
 change	
 seemed	
 to	
 have	
 changed	
 some	
 of	
 the	
 way	
 these	
 things	
 are	
 registered,	
 	

but	
 I	
 didn’t	
 see	
 anything	
 that	
 talked	
 at	
 all	
 about	
 whether	
 the	
 app	
 is	
 running	
 or	
 whether	
 the	
 app	
 is	
 booted.	

So	
 it	
 seems	
 like,	
 this	
 was	
 useless	
 to	
 me.	

(annotated	
 with	
 observer	
 notes	
 about	
 goals	
 and	
 ac.ons)

Acvies

Coding activities working with unfamiliar code

32

Circle	
 size:	
 	
 	
 %	
 of	
 .me Edge	
 thickness:	
 	
 	
 %	
 of	
 transi.ons	
 observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

Longest activities related to control flow questions

33

4	
 out	
 of	
 the	
 5	
 longest	
 invesgaon	
 acvies

5	
 out	
 of	
 the	
 5	
 longest	
 debugging	
 acvies

Primary question Time
(mins) Related control flow question

How is this data structure being mutated in this
code? 83 Search downstream for writes to data

structure
“Where [is] the code assuming that the tables
are already there?” 53 Compare behaviors when tables are or are

not loaded
How [does] application state change when m
is called denoting startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be
non-zero?” 11

Find statements through which values flow
into status

Where is method m generating an error? 66 Search downstream from m for error text
What resources are being acquired to cause
this deadlock? 51 Search downstream for acquire method

calls
“When they have this attribute, they must use it
somewhere to generate the content, so where
is it?”

35 Search downstream for reads of attribute

“What [is] the test doing which is different from
what my app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread
pools

Longest debugging activity

34

Rapidly	
 found	
 method	
 m	
 implemen.ng	
 command  
Unsure	
 where	
 it	
 generated	
 error	

 
Sta.cally	
 traversed	
 calls	
 looking	
 for	
 something	
 that	

would	
 generate	
 error	

Tried	
 debugger	

 
Did	
 string	
 search	
 for	
 error,	
 found	
 it,	
 but	
 many	
 callers 

Stepped	
 in	
 debugger	
 to	
 find	
 something	
 relevant 

Sta.cally	
 traversed	
 calls	
 to	
 explore 

Went	
 back	
 to	
 stepping	
 debugger	
 to	
 inspect	
 values 
Found	
 the	
 answer

(66	
 minutes)

Where	
 is	
 method	
 m	
 genera$ng	
 an	
 error?

debugger

sta.c	
 call	
 traversal

grep

debugger

sta.c	
 call	
 traversal

debugger

3	
 So	
 we’ll	
 go	
 there	
 and	
 we’ll	
 just	
 crawl	
 through	
 this	
 code	
 and	
 we’ll	
 try	
 to	
 understand	
 that.	
 So	
 this	
 code	
 has	
 some	
 other	
 options	
 in	
 it.	
 	

So,	
 I’m	
 just	
 scanning	
 through	
 to	
 just	
 understand	
 what	
 this	
 is	
 doing.	
 Typically	
 these	
 functions	
 look	
 for	
 subcommands	
 for	
 the	
 main	
 command.	
 So	
 u	
 has	

[looking	
 case	
 statement	
 looking	
 at	
 character	
 entered	
 by	
 the	
 user	
 to	
 dispatch	
 on	
 what	
 command	
 to	
 execute]	

one	
 functionality.	
 And	
 ub	
 has	
 another,	
 and	
 uf	
 has	
 another.	
 So	
 that’s	
 what	
 this	
 code	
 is	
 actually	
 doing,	
 hence	
 parse.	
 	

4	
 And	
 the	
 guy	
 that	
 wrote	
 most	
 of	
 this	
 code	
 was	
 pretty	
 consistent	
 with	
 his	
 code	
 patterns	
 for	
 how	
 he	
 does	
 stuff.	
 So,	
 again	
 the	
 function	
 names	
 are	
 idicative	
 of	
 what	
 is	
 going	
 on.	
 And	
 he	
 makes	
 heavy	
 use	
 of	
 Elags	
 passing	
 around.	
 So	
 more	
 precisely,	
 what	
 I’m	
 looking	
 for,	
 I’m	
 looking	
 for	
 who	
 is	
 actually	
 returning	
 this	
 memory	
 access	
 string.	
 So	
 I	
 don’t	
 see	
 anything	
 just	
 scrolling	
 through	
 this	
 function,	
 clearly	
 it’s	
 not	
 this	
 function,	
 but	
 this	
 function	
 calls	
 a	
 bunch	
 of	
 other	
 functions,	
 so	
 I	
 could	
 walk	
 through	
 all	
 of	
 the	
 calls	
 to	
 try	
 to	
 isolate	
 that,	
 but	
 I’m	
 going	
 to	
 see	
 Eirst	
 if	
 I	
 can	
 get	
 lucky	
 and	
 narrow	
 it	
 down	
 from	
 the	
 other	
 end	
 and	
 look	
 at	
 where	
 the	
 output	
 is	
 coming	
 from.	

5	
 Searching	
 the	
 entire	
 project	
 and	
 we’re	
 just	
 going	
 to	
 do	
 a	
 string	
 search	
 for	
 all	
 of	
 the	
 project	
 and	
 see	
 if	
 that	
 comes	
 up	
 with	
 any,	
 with	
 basically	
 where	
 that	
 output	
 comes	
 from.	
 	

[doing	
 source	
 insight	
 search]	

So,	
 luckily	
 this	
 doesn’t	
 seem	
 to	
 be	
 a	
 piece	
 of	
 output	
 that	
 gets	
 spewed	
 everywhere	
 which	
 is	
 nice,	
 but	
 it	
 seems	
 pretty	
 sparse.	
 And	
 in	
 fact	
 searching	
 the	
 project	
 didn’t	
 actually	
 Eind	
 that	
 at	
 all.	
 So	
 I’m	
 really	
 not	
 going	
 to	
 be	
 able	
 to	
 work	
 backwards	
 from	
 the	
 error	
 string.	

6	
 So	
 we’ll	
 go	
 back	
 to	
 the	
 source	
 Eile	
 itself,	
 so	
 we’ll	
 go	
 back	
 to	
 the	
 original	
 parse	
 Eile,	
 so	
 we	
 have	
 no	
 options.	
 No	
 modes,	
 so	
 we’re	
 in	
 the	
 default	
 mode,	
 so	
 we’re	
 going	
 into	
 this	
 	
 instruction,	
 this	
 is	
 just	
 Elags.	
 I’m	
 just	
 trying	
 to	
 get	
 a	
 feel	
 for	
 the	
 parameters	
 that	
 we	
 are	
 dragging	
 along	
 here.	
 	

I	
 don’t	
 know	
 if	
 you	
 want	
 editorial	
 comment	
 on	
 code	
 or	
 code	
 tools	
 while	
 I’m	
 walking	
 through	
 this.	

“Ah,	
 whatever,	
 it’s	
 mostly	
 just	
 whatever	
 you’re	
 thinking	
 about	
 while	
 your	
 working	
 on	
 the	
 task,	
 if	
 that’s	
 what	
 you’re	
 thinking	
 about	
 that’s	
 Eine.”	

7	
 [laughing]	
 Yeah,	
 it	
 would	
 be	
 nice	
 if	
 looking	
 at	
 this	
 function	
 on	
 the	
 parameters	
 themselves	
 were	
 overlaid	
 with	
 the	
 type.	
 So	
 this	
 has	
 a	
 mouse	
 over	
 that	
 is	
 something,	
 but	
 it	
 doesn’t	
 actually	
 tell	
 me	
 what	
 the	
 type	
 is.	
 So	
 again	
 looking	
 at	
 the	
 function	
 declaration	
 again	
 ???	
 So	
 what	
 I	
 really	
 want	
 to	
 know	
 is	
 which	
 one	
 is	
 the	
 address	
 that	
 I’m	
 actually	
 going	
 to	
 disassemble	
 and	
 be	
 on	
 that.	
 So	

So	
 right	
 now	
 I’m	
 mostly	
 just	
 reading	
 the	
 code	
 and	
 trying	
 to	
 understand	
 stuff.	
 But	
 a	
 few	
 things	
 I	
 do	
 noticie	
 is	
 a	
 lot	
 of	
 the	
 lack	
 of	
 the	
 initialization.	
 So	
 some	
 of	
 that	
 I	
 might	
 change	
 is	
 I	
 ultimately	
 do	
 edit	
 this	
 function.	

[looking	
 at	
 the	
 method	
 that	
 is	
 called	
 from	
 dispatch	
 and	
 that	
 does	
 the	
 actual	
 work	
 for	
 the	
 subcommand	
 of	
 interest]	

8	
 Just	
 because	
 it’s	
 annoying.	
 	

So	
 scanning	
 thorugh	
 here,	
 I’m	
 just	
 looking	
 for	
 the	
 calls	
 are	
 and	
 where	
 we	
 go	
 next,	
 or	
 where	
 the	
 output	
 is,	
 	
 because	
 again	
 I’m	
 interested	
 in	
 who	
 is	
 putting	
 that	
 output	
 in	
 there.	
 So	
 here	
 is	
 this	
 function	
 call,	
 machine	
 disassemble.	
 Here’s	
 a	
 place	
 where	
 source	
 insight	
 falls	
 short,	
 it’s	
 showing	
 me	
 the	
 wrong	
 preview	
 for	
 the	
 dissasmeble	
 function.	

[little	
 preview	
 window	
 in	
 bottom	
 of	
 source	
 insight	
 window	
 for	
 callee]	

I	
 know	
 that	
 because	
 this	
 is	
 a	
 member	
 function	
 and	
 this	
 one	
 is	
 not.	
 This	
 is	
 the	
 wrong	
 number	
 of	
 parameters,	
 blah,	
 blah,	
 blah.	
 So	
 again	
 we	
 have	
 to	
 go	
 back	
 to	
 browse	
 the	
 project	
 symbols	
 for	
 the	
 disassemble	
 function.	
 	

9	
 So	
 again,	
 lots	
 of	
 different	
 ones,	
 but	
 I	
 have	
 which	
 object	
 this	
 is.	
 So	
 if	
 I	
 go	
 back	
 here,	
 we	
 are	
 looking	
 at	
 the	
 machine	
 is	
 our	
 object	
 here,	
 and	
 it	
 is	
 a	
 machine	
 info	
 struct,	
 so	
 we	
 can	
 go	
 back	
 here	
 to	

[Eiguring	
 out	
 type	
 of	
 object	
 to	
 reason	
 about	
 dynamic	
 dispatch	
 for	
 manually	
 going	
 to	
 callee]	

go	
 to	
 the	
 machine	
 info	
 version	
 of	
 disassemble.	
 So	
 this	
 is	
 interesting	
 because,	
 now	
 we’re	
 outside	
 of	
 what	
 the	
 debugger	
 itself	
 is	
 doing	
 and	
 we’re	
 now	
 in	
 the	
 debugger	
 APIs.	
 So	
 that	
 makes	
 the	
 risk	
 of	
 a	
 change	
 higher.	
 There’s	
 more	
 of	
 a	
 regression	
 risk,	
 because	
 it’s	
 not	
 just	
 the	
 debugger	
 that’s	
 using	
 it,	

10	
 it’s	
 all	
 the	
 debugger	
 including	
 ones	
 that	
 are	
 not	
 ours.	
 So	
 I’m	
 just	
 scanning	
 through,	
 typically	
 looking	
 at	
 stuff	
 like	
 this	
 I’m	
 just	
 interested	
 in	
 how	
 big	
 the	
 function	
 is,	
 how	
 many	
 different	
 branches	
 it	
 could	
 take,	
 how	
 complex	
 it	
 is	
 going	
 to	
 be	
 to	
 Eind	
 out	
 where	
 we	
 are	
 going,	
 just	
 from	
 reading	
 the	
 code.	
 Of	
 course	
 I	
 can	
 attach	
 the	
 debugger	
 to	
 the	
 debugger	
 and	
 walk	
 through	
 that	
 which	
 is	
 probably	
 what	
 I’m	
 going	
 to	
 do	
 here	
 in	
 a	
 minute.	

11	
 Yeah,	
 so	
 this	
 will	
 be	
 a	
 little	
 easier	
 to	
 understand	
 if	
 I	
 actually	
 walk	
 through	
 the	
 code.	
 So	
 I’ll	
 just	
 open	
 another	
 debugger	
 session	
 and	
 attach	
 it	
 to	
 this	
 Eirst	
 one.	

[starts	
 a	
 second	
 windbg]	

So	
 we	
 started	
 with	
 parse	
 unassemble,	
 which	
 is	
 going	
 to	
 be	
 in	
 dbg	
 eng.	
 	

12	
 Might	
 have	
 to	
 line	
 up	
 symbols	
 for	
 this.	
 So	
 we’ll	
 wait	
 on	
 that,	
 we’ll	
 go	
 back	
 here.	
 [to	
 source	
 insight]	

Decode.	

So	
 just	
 scrolling	
 through	
 the	
 function	
 and	
 looking	
 at	
 the	
 Eirst	
 actual	
 function	
 call	
 that	
 we	
 will	
 make	
 goes	
 to	
 this	
 decode	
 function.	
 And	
 again	
 I’m	
 just	
 looking	
 for	
 where	
 that	
 output	
 comes	
 from	
 or	
 if	
 we	
 would	
 set	
 a	
 different	
 set	
 of	
 brnaches.	
 The	
 comments	
 are,	
 this	
 is	
 nicely	
 commented	
 code	
 which	
 is	
 rare	
 to	
 say	
 the	
 least,	
 so	
 it’s	
 actually	
 a	
 little	
 easier	
 to	
 try	
 and	
 throw	
 out	
 pieces	
 of	
 code	
 that	
 are	
 probably	
 not	
 related	
 to	
 what	
 I’m	
 looking	
 for.	
 Because	
 I	
 have	
 some	
 innate	
 knowledge	
 as	
 to	
 what	
 I’m	
 looking	
 for,	
 and	
 this	
 error	

[again	
 thinking	
 about	
 reading	
 source	
 code	
 as	
 a	
 Eiltering	
 /	
 search	
 task]	

is	
 actually	
 most	
 likely	
 coming	
 from,	
 we’re	
 reading	
 an	
 address	
 that	
 is	
 not	
 in	
 the	
 dump	
 Eile.	
 So	
 I’m	
 looking	
 speciEically	
 for	
 read	
 memory	
 or	
 read	
 pointer	
 or	
 stuff	
 like	
 that.	

[he’s	
 right	
 –	
 it	
 does	
 end	
 up	
 being	
 from	
 one	
 of	
 these	
 calls]	

But	
 since	
 this	
 entire	
 codebase	
 calls,	
 so	
 I	
 know	
 that	
 that	
 is	
 going	
 to	
 be	
 something	
 like	
 read	
 ptr	
 or	
 read	
 virtual,	
 but	
 I	
 also	
 know	
 that	
 there’s	
 a	
 bazillion	
 calls	
 to	
 that	
 function,	
 and	
 it’s	
 not	
 very	
 easy	
 to	
 narrow	
 it	
 down	
 that	
 way,	
 so	
 I	
 can’t	
 go	
 about	
 it	
 that	
 way.	

[wants	
 do	
 string	
 search	
 of	
 callee	
 tree	
 identiEiers]	

14	
 So	
 the	
 debugger	
 over	
 here	
 came	
 back,	
 so	
 now	
 I	
 can	
 go	
 get	
 symbols	
 for	
 this	
 version.	
 	

So	
 I	
 can	
 pick	
 the	
 symbol	
 path	
 in	
 the	
 debugger	
 so	
 that	
 I	
 can	
 walk	
 through	
 the	
 code,	
 and	
 again	
 we	
 wait	
 a	
 little	
 bit	
 so	
 we’ll	
 go	
 back	
 over	
 here.	
 [to	
 source	
 insight]	

15	
 This	
 part	
 of	
 the	
 code	
 is	
 actually	
 taking	
 apart	
 the	
 instructions,	
 so	
 by	
 this	
 point	
 we	
 already	
 have	
 the	
 data,	
 so	
 the	
 read	
 data	
 would	
 have	
 already	
 occurred,	
 and	
 we	
 would	
 have	
 failed	
 by	
 the	
 point	
 that	
 we	
 got	
 to	
 this	
 code.	
 	

So	
 we’ll	
 go	
 back	
 here,	
 we	
 need	
 to	
 go	
 back	
 to	
 the	
 write	
 disassemble,	
 I	
 believe	
 this	
 is	
 the	
 right	
 one.	

[source	
 insight	
 symbol	
 browser	
 for	
 it]	

16	
 So	
 we’ll	
 assume	
 that	
 decode	
 failed,	
 but	
 if	
 we	
 do	
 that,	
 if	
 it	
 fails	
 totally	
 then	
 we	
 would	
 just	
 exit,	
 which	
 doesn’t	
 seem	
 to	
 be	
 what’s	
 happening.	

Because	
 otherwise	
 this	
 function	
 wouldn’t	
 have	
 this	
 text	
 output	
 that	
 we’re	
 interested	
 in.	

17	
 So	
 the	
 other	
 things	
 that	
 I	
 noticed	
 when	
 I	
 was	
 looking	
 at	
 the	
 deEintions	
 for	
 unsassemble	
 when	
 we	
 called	
 disassemble,	
 there’s	
 a	
 bunch	
 of	
 machine	
 speciEic	
 implementations	
 of	
 disassemble.	
 So	
 it	
 could	
 be	
 that	
 we’re	
 not	
 actually	
 calling	
 the	
 machine	
 info,	
 there	
 could	
 be	
 an	
 x86	
 one	
 that	
 we	
 are	
 actually	
 calling	
 since	
 this	
 is	
 debugging	
 x86	
 code.	
 So	
 my	
 ia64	
 version,	
 which	
 apparently	
 I	
 don’t	
 have	
 code	
 for	
 or	
 maybe	
 it	
 was	
 removed	
 from	
 the	
 project,	
 same	
 thing,	
 so	
 there’s	
 clearly,	
 so	
 there	
 might	
 be	
 something	
 wrong	
 with	
 my	
 project	
 which	
 is	
 why	
 there’s	
 so	
 many	
 deEinitions	
 ffor	
 this.	
 	

18	
 Ok,	
 so	
 the	
 debugger	
 over	
 here	
 came	
 back	
 so	
 I	
 can	
 just	
 set	
 a	
 breakpoint	
 on	
 parse	
 unassemble	
 and	
 then	
 walk	
 back	
 through	
 the	
 code,	
 oh	
 we	
 actually	
 don’t	
 that	
 one	
 bececause	
 that	
 one	
 is	
 going	
 to	
 succeed,	
 we	
 want	
 the	
 failure	
 case	
 which	
 is	
 this	
 one.	

[demonstrated	
 some	
 behavior	
 and	
 got	
 a	
 call	
 into	
 it	
 twice]	

Ok,	
 so	
 we	
 are	
 at	
 parse	
 unassembled,	
 so	
 we’ll	
 make	
 the	
 debugger	
 look	
 at	
 the	
 same	
 source	
 code	
 that	
 we	
 are	
 looking	
 at	
 in	
 source	
 insight	
 over	
 here.	
 	

And	
 the	
 debugger	
 should,	
 if	
 it	
 can	
 Eind	
 the	
 code,	
 maybe	
 it	
 doesn’t	
 like	
 this	
 code	
 path.	
 That	
 will	
 deEinitely	
 make	
 it	
 harder	
 to	
 walk	
 through	
 the	
 code.	

19	
 So	
 we’ll	
 go	
 back	
 into	
 disassemble	
 here,	
 since	
 there’s	
 not	
 really	
 a	
 better	
 implementation	
 that	
 is	
 able	
 to	
 do	
 it,	
 we’ll	
 go	
 back	
 to	
 the	
 machine	
 info	
 one.	
 	

What	
 would	
 really	
 be	
 helpful	
 here	
 is	
 to	
 know	
 what	
 code	
 paths	
 are	
 most	
 common,	
 like	
 the	
 metadata	
 that	
 preEix	
 provides,	
 or	
 some	
 tracing	
 tools.	
 If	
 that	
 was	
 somehow	
 overlaid	
 with	
 the	
 source	
 code,	
 then	
 you	
 could	
 see	
 what	
 code	
 	

20	
 was	
 dead	
 effectively,	
 or	
 what	
 code	
 gets	
 run	
 in	
 certain	
 environments,	
 we’ll	
 just	
 put	
 that	
 in	
 the	
 pipe	
 dream	
 pile.	

“So	
 you	
 just	
 want	
 to	
 see	
 what’s	
 always	
 executed?”	

So	
 it	
 would	
 be	
 nice	
 to	
 see,	
 so	
 like	
 preEix	
 only	
 does	
 a	
 set	
 number	
 of	
 paths,	
 but	
 like	
 Ben	
 Liblit	
 has	
 a	
 project,	
 you’re	
 familiar	
 with	
 him?	

“He’s	
 from	
 wisonsin”	

Yeah,	
 he’s	
 a	
 researcher	
 from	
 Wisconsin,	
 his	
 statistical	
 debugging	
 is	
 his	
 thing,	
 and	
 he	
 has	
 all	
 this	
 tracing	
 stuff	
 that	
 comes	
 up	
 and	
 back	
 and	
 forth.	
 So	
 that,	
 the	
 thing	
 about	
 looking	
 at	
 failure	
 data,	
 because	
 we	
 have	
 failure	
 data	
 too,	
 we	
 can	
 see	
 what	
 code	
 path	
 executes	
 when	
 things	
 fault,	
 what	
 code	
 executes	
 commonly	
 when	
 stuff	
 works,	
 so	
 if	
 we	
 had	
 some	
 way	
 to	
 say	
 in	
 the	
 source	
 code,	
 because	
 I	
 can	
 do	
 it	
 from	
 the	
 debugger,	
 	

21	
 but	
 I	
 had	
 some	
 way	
 to	
 say	
 in	
 the	
 source	
 code,	
 ok,	
 if	
 I	
 give	
 you	
 these	
 values,	
 what	
 paths	
 will	
 execute.	
 Which	
 I	
 guess	
 is	
 effectively	
 debugging	
 the	
 code.	

“So	
 you’d	
 want	
 to	
 specify	
 those	
 values	
 at	
 function	
 entry	
 rather	
 than	
 just	
 randomly	
 end	
 up	
 with	
 the	
 values	
 from	
 playing	
 with	
 the	
 UI?”	

I	
 think	
 what	
 I’m	
 saying	
 is	
 that,	
 given	
 a	
 function	
 deEintion,	
 I	
 Eill	
 in	
 a	
 set	
 of	
 values,	
 so	
 what	
 happens	
 if	
 this	
 guy	
 is	
 null,	
 and	
 this	
 guy	
 is	
 also	
 null,	
 	

[writing	
 asserts	
 on	
 params]	

“Make	
 a	
 bunch	
 of	
 asserts	
 essentially”	

Yeah,	
 it	
 would	
 basically	
 highlight	
 in	
 the	
 code	
 which	
 paths	
 are	
 going	
 to	
 execute,	
 something	
 like	
 that.	

“What	
 would	
 you	
 use	
 that	
 information	
 for,	
 how	
 would	
 that	
 change	
 how	
 you	
 are	
 looking	
 at	
 this	
 method,	
 it	
 would	
 help	
 you	
 rule	
 out	
 pieces?”	

22	
 Yeah,	
 it	
 would	
 help	
 me	
 rule	
 out	
 which	
 paths	
 were	
 going	
 to	
 execute,	
 so	
 commonly	
 when	
 I’m	
 looking	
 at	
 code,	
 either	
 code	
 that	
 I’m	
 familiar	
 with	
 in	
 the	
 project	
 that	
 I	
 worked	
 on	
 commonly	
 or	
 because	
 my	
 job	
 is	
 partially	
 to	
 debug	
 everybody	
 else’s	
 code,	
 so	
 a	
 lot	
 of	
 the	
 time	
 I	
 have	
 crash	
 dumps	
 that	
 say	
 what	
 the	
 state	
 at	
 the	
 time	
 of	
 the	
 failure	
 was,	
 and	
 I	
 have	
 the	
 source	
 code,	
 but	
 I	
 have	
 to	
 do	
 a	
 lot	
 of	
 either	
 qualiEication	
 of	
 values	
 in	
 the	
 debugger	
 itself	
 or	
 a	
 bunch	
 of	
 guessing	
 whatever	
 in	
 my	
 head	
 to	
 try	
 and	
 Eigure	
 out	
 which	
 paths,	
 because	
 we’re	
 looking	
 at	
 a	
 static	
 point	
 of	
 time	
 in	
 the	
 debgugger	
 and	
 a	
 static	
 piece	
 of	
 code.	
 And	
 the	
 2	
 won’t,	
 you	
 can	
 overly	
 the	
 two,	
 but	
 you	
 won’t	
 necessarily	
 know	
 which	
 paths	
 executed,	
 so	
 you	
 have	
 to	
 kind	
 of	
 walk	
 through	
 backwards.	
 So,	
 but	
 I	
 do	
 have,	
 in	
 general	
 I	
 do	
 have	
 the	
 parameters,	
 this	
 is	
 null,	
 this	
 is	
 not	
 null,	
 this	
 is	
 this	
 static	
 value,	
 this	
 is	
 static	
 value.	

23	
 So	
 if	
 I	
 could	
 overlay	
 with	
 the	
 source,	
 so	
 that	
 might,	
 for	
 some	
 of	
 these	
 signiEicantly	
 longer	
 functions,	
 it	
 would	
 help	
 me	
 understand	
 what’s	
 going	
 on	
 there.	
 	

The	
 other	
 thing	
 that	
 I	
 do	
 a	
 lot	
 when	
 I	
 look	
 at	
 code	
 that	
 I	
 own,	
 I’m	
 typically	
 looking	
 for	
 places	
 that,	
 this	
 is	
 for	
 stuff	
 that	
 I	
 much	
 more	
 familiar	
 with,	
 I’m	
 always	
 interested	
 in	
 what	
 sort	
 of	
 things	
 could	
 be	
 refactored.	
 Where	
 I	
 could	
 I	
 make	
 a	
 function	
 smaller,	
 where	
 could	
 I	
 reduce	
 the	
 number	
 of	
 parameters.	
 So	
 having	
 a	
 refactoring	
 mode	
 in	
 the	
 source	
 editor	
 would	
 be	
 helpful.	
 Slickedit	
 has	
 some	
 interesting	
 things	
 where	
 you	
 can	
 highlight	
 a	
 section	
 of	
 code	
 and	
 slickedit	
 will,	
 if	
 you’re	
 going	
 to	
 refactor	
 this,	
 then	
 you	
 also	
 need	
 to	
 drag	
 along	
 these	
 locals	
 and	
 these	
 parameters,	
 and	
 they	
 have	
 to	
 be	
 passed,	
 and	
 it	
 makes	
 your	
 function	
 deEinition	
 for	
 you.	

24	
 So	
 that’s	
 very	
 interesting.	
 	

So,	
 anyway,	
 we’re	
 back	
 to	
 this.	
 It	
 doesn’t	
 like	
 my	
 source	
 path,	
 oh	
 because	
 I’m	
 giving	
 it	
 the	
 wrong	
 one.	

[still	
 trying	
 to	
 load	
 symbols	
 in	
 debugger]	

25	
 [waiting	
 on	
 it	
 to	
 try	
 to	
 load	
 symbols	
 again,	
 back	
 to	
 source	
 insight]	

Ok,	
 again	
 the	
 comments	
 are	
 helpful,	
 because	
 I	
 can	
 basically	
 ignore	
 this	
 branch	
 because	
 I’m	
 pretty	
 sure	
 that	
 the	
 decoder	
 didn’t	
 fail	
 and	
 I	
 don’t	
 see	
 this	
 output.	
 [reasoning	
 about	
 what	
 branches	
 were	
 taken	
 based	
 on	
 output	
 behavior]	

But	
 this	
 is	
 interesting	
 to	
 see	
 this	
 output	
 in	
 the	
 context	
 of	
 that,	
 I	
 was	
 looking	
 for	
 a	
 piece	
 of	
 output,	
 because	
 this	
 output	
 is	
 split	
 across	
 2	
 source	
 lines	
 as	
 if	
 someone	
 had	
 a	
 signiEicantly	
 more	
 narrow	
 source	
 editor	
 view.	
 So	
 that	
 might	
 mean	
 that	
 one	
 of	
 the	
 reasons	
 that	
 I	
 couldn’t	
 Eind	
 the	
 string	
 I	
 was	
 looking	
 for	
 before	
 was	
 because	
 it	
 was	
 wrapped.	
 So	
 maybe	
 if	
 I	
 go	
 back	
 to	
 my	
 search,	
 I	
 was	
 searching	
 for	
 the	
 entire	
 string	
 “memory	
 	

26	
 space	
 access	
 space	
 error”	
 so	
 maybe	
 if	
 I	
 just	
 make	
 it	
 memory	
 access	
 and	
 let	
 it	
 search	
 along,	
 and	
 that	
 Einds	
 signiEicantly	
 more	
 entires,	
 including	
 one	
 in	
 utils	
 dot	
 cpp,	
 in	
 a	
 table	
 of	
 error	
 strings.	

[goes	
 to	
 that	
 reference]	

So	
 wherever	
 that	
 guy	
 was,	
 there	
 you	
 go.	
 So	
 this	
 is	
 like	
 an	
 interesting	
 search	
 problem	
 in	
 general.	
 Actually,	
 I	
 don’t	
 think	
 google	
 or	
 live	
 search	
 do	
 this,	
 but	
 if	
 you	
 give	
 a	
 set	
 of	
 4	
 individual	
 search	
 terms,	
 usually	
 you	
 get	
 all	
 or	
 nothing	
 from	
 a	
 search	
 engine.	
 So	
 you	
 get	
 the	
 set	
 of	
 results	
 that	
 get	
 all	
 4	
 terms,	
 or	
 in	
 this	
 case	
 all	
 3	
 terms,	
 or	
 no	
 terms.	
 	

27	
 But	
 you	
 don’t	
 typically	
 get	
 a	
 treed	
 set	
 of	
 terms,	
 here	
 are	
 the	
 set	
 of	
 results	
 that	
 have	
 all	
 of	
 your	
 terms,	
 here	
 is	
 the	
 set	
 of	
 results	
 that	
 have	
 all	
 minus	
 1,	
 all	
 minus	
 2,	
 all	
 the	
 way	
 down	
 to	
 0.	
 But	
 in	
 that	
 case,	
 this	
 would	
 have	
 been	
 very	
 helpful,	
 this	
 would	
 have	
 potentially	
 saved	
 me	
 a	
 good	
 bit	
 of	
 time.	

So	
 I’m	
 looking	
 for	
 a	
 call	
 to	
 error	
 string	
 with	
 the	
 error	
 value	
 memory.	

[wants	
 the	
 caller	
 to	
 this	
 method	
 with	
 a	
 particular	
 parameter	
 –	
 the	
 enum	
 that	
 forces	
 the	
 case	
 where	
 it	
 prints	
 the	
 string]	

So	
 we	
 can	
 see	
 how	
 many	
 callers	
 there	
 are	
 here,	
 ok,	
 so	
 there’s	
 a	
 pretty	
 large	
 number	
 of	
 callers	
 of	
 this.	
 Maybe	
 we	
 can	
 look	
 at	
 where	
 those	
 callers	
 are	
 and	
 narrow	
 that	
 down	
 based	
 on	
 what	
 we	
 know.	

So	
 there	
 are	
 a	
 lot	
 in	
 typed	
 data,	
 a	
 lot	
 in	
 system.	

28	
 SpeciEically	
 we’re	
 looking	
 for	
 calling	
 error	
 string	
 with	
 the	
 Eirst	
 parameter	
 of	
 memory,	
 but	
 this	
 is	
 another	
 case	
 where	
 search	
 generally	
 fails	
 in	
 general	
 because	
 of	
 spacing.	
 So	
 this	
 is	
 error	
 string	
 open	
 paren,	
 and	
 then	
 the	
 word	
 in	
 all	
 caps	
 memory	
 [(MEMORY)].	

But	
 there’s	
 all	
 sorts	
 of	
 permutations	
 of	
 how	
 that	
 could	
 be	
 spaced	
 and	
 still	
 be	
 legitamite	
 compilable	
 code,	
 so	
 we’ll	
 start	
 with	
 this	
 one	
 and	
 see	
 if	
 we	
 get	
 anything.	
 Which	
 we	
 don’t.	
 So	
 we’ll	
 go	
 back	
 here	

29	
 a	
 lot	
 of	
 spaces,	
 error	
 space,	
 open	
 paren	
 space,	
 and	
 the	
 word	
 memory,	
 and	
 we’ll	
 search	
 for	
 that.	
 	

[still	
 nothing]	

So	
 I’m	
 done	
 trying	
 to	
 do	
 that.	
 So	
 let’s	
 look	
 at	
 callers	
 of	
 error	
 string.	

[back	
 to	
 other	
 strategy	
 of	
 looking	
 through	
 callers]	

So	
 maybe	
 if	
 we	
 just	
 parse	
 through	
 here,	
 or	
 step	
 through	
 here,	
 we	
 can	
 see	
 which	
 ones	
 are	
 calling	
 with	
 the	
 parameter	
 of	
 memory.	

But	
 unfortunately,	
 many	
 of	
 these	
 are	
 calling	
 with	
 the	
 Eirst	
 parameter	
 as	
 a	
 variable.	
 So	
 that	
 would	
 mean	
 that	
 what	
 we	
 were	
 looking	
 at	
 before	
 is	
 not	
 a	
 search	
 problem,	
 it’s	
 a	
 variable	
 interpretation	
 problem.	
 	

30	
 So,	
 I’m	
 just	
 kind	
 of	
 stepping	
 through	
 these	
 values,	
 and	
 in	
 my	
 head,	
 I’m	
 just	
 trying	
 to	
 remember	
 which	
 ones	
 are	
 legitimate	
 and	
 which	
 ones	
 might	
 not	
 be.	
 So	
 it	
 would	
 be	
 nice	
 if	
 I	
 could	
 just	
 take	
 this	
 whole	
 list	
 of	
 result	
 values	
 and	
 select	
 them	
 all	
 out	
 of	
 this	
 combobox,	
 and	
 then	
 paste	
 them	
 into	
 notepad,	
 so	
 I	
 could	
 then	
 remove	
 them	
 from	
 my	
 list.	
 So	
 I	
 wouldn’t	
 have	
 to	
 just	
 worry	
 about	
 remembering	
 them.	
 	

31	
 I	
 think	
 that’s	
 something	
 that	
 I	
 tend	
 to	
 do	
 a	
 lot	
 when	
 debugging	
 as	
 well	
 as	
 reading	
 code,	
 is	
 that	
 I	
 end	
 up	
 with	
 lots	
 of	
 clipboard	
 items,	
 but	
 not	
 clipboard	
 in	
 the	
 sense	
 of	
 you’re	
 sharing	
 text	
 between	
 applications,	
 but	
 clipboard	
 in	
 the	
 sense	
 of	
 these	
 are	
 little	
 hints	
 on	
 which	
 paths	
 I	
 went	
 down	
 and	
 which	
 paths	
 I	
 didn’t.	

“So	
 you	
 want	
 to	
 make	
 sure	
 you’re	
 not	
 repeating	
 paths,	
 and	
 that	
 you’re	
 pursuing	
 all	
 the	
 paths	
 that	
 you	
 might	
 want	
 to	
 reasonably	
 pursue?”	

And	
 more	
 what	
 I	
 was	
 thinking	
 at	
 the	
 time	
 when	
 I	
 omitted	
 a	
 path	
 or	
 considered	
 a	
 path.	
 So	
 sometimes	
 when	
 I	
 am	
 actually	
 editing	
 the	
 code,	
 I	
 will	
 go	
 through	
 an	
 output	
 not	
 likely	
 to	
 be	
 the	
 path	
 because	
 of	
 this,	
 and	
 then	
 a	
 lot	
 of	
 those	
 comments	
 I	
 would	
 then	
 clip	
 out	
 before	
 the	
 code	
 gets	
 submitted	
 because	
 they	
 are	
 mostly	
 just	
 code	
 reviewer	
 comments.	
 And	
 typically,	
 that’s	
 something	
 that	
 we	
 see	
 in	
 collaborative	
 word	
 docs.	

32	
 It’s	
 pretty	
 typical	
 that	
 you’ll	
 collaborate	
 on	
 a	
 word	
 doc,	
 and	
 people	
 will	
 put	
 comments	
 in	
 line	
 with	
 stuff,	
 but	
 it’s	
 a	
 little	
 less	
 typical	
 for	
 source	
 code,	
 source	
 code	
 comments	
 tend	
 to	
 be	
 missing	
 in	
 total	
 or	
 the	
 comment	
 by	
 the	
 actual	
 developer	
 or	
 the	
 maintainer.	
 There’s	
 not	
 really	
 a	
 place	
 for	
 comments	
 for	
 readers.	
 This	
 may	
 have	
 been	
 perfectly	
 clear	
 for	
 the	
 developer	
 who	
 wrote	
 it,	
 the	
 source	
 code	
 maintainer	
 might	
 understand	
 it,	
 but	
 the	
 thousands	
 of	
 other	
 people	
 who	
 are	
 going	
 to	
 read	
 it	
 for	
 debugging,	
 for	
 customers,	
 for	
 the	
 developers	
 themselves,	
 there’s	
 really	
 no	
 place	
 for	
 them	
 to	
 put	
 comments,	
 and	
 maybe	
 there	
 should	
 be.	

“What	
 stops	
 people	
 like	
 from	
 just	
 checking	
 the	
 comment	
 into	
 the	
 source	
 depot?	
 There’s	
 just	
 too	
 much	
 overhead	
 and	
 you	
 don’t’	
 have	
 the	
 authority	
 to	
 do	
 that,	
 or	
 you	
 don’t	
 own	
 that	
 code?”	

33	
 I	
 think	
 it’s	
 not	
 necessarily	
 authority,	
 it’s	
 respect	
 for	
 one.	
 Because	
 this	
 is	
 somebody	
 else’s	
 code,	
 so	
 unless	
 you	
 are	
 going	
 to	
 make	
 a	
 net	
 positive	
 change,	
 I	
 wouldn’t	
 effect	
 a	
 piece	
 of	
 code.	
 And	
 I	
 wouldn’t	
 consider	
 comments	
 to	
 be	
 a	
 net	
 positive	
 change,	
 although	
 maybe	
 I	
 should.	
 Usually	
 it’s	
 not	
 permissions,	
 its	
 usually	
 this	
 change	
 doesn’t	
 need	
 to	
 be	
 persisted.	
 Or	
 in	
 my	
 opinion,	
 it	
 doesn’t	
 need	
 to	
 be	
 persisted.	
 	

You	
 could	
 end	
 up	
 with	
 a	
 very	
 interesting	
 source	
 tree	
 if	
 you	
 just	
 opened	
 it	
 up	
 to	
 ad	
 hoc	
 comments	
 by	
 any	
 reviewer.	
 	

34	
 First	
 you’d	
 have	
 to	
 assume	
 that	
 people	
 do	
 it.	
 But	
 then	
 you	
 get	
 into	
 a	
 tool	
 such	
 as	
 a	
 compiler	
 that	
 will	
 decide	
 if	
 you	
 are	
 correct	
 or	
 not.	
 So	
 if	
 you	
 put	
 a	
 comment	
 in	
 there	
 that	
 says	
 that	
 this	
 is	
 going	
 to	
 do	
 this	
 in	
 this	
 case	
 and	
 you’re	
 wrong,	
 there’s	
 no	
 checking	
 for	
 that.	
 	

“You	
 need	
 some	
 sort	
 of	
 authority	
 about	
 who	
 this	
 person	
 is	
 who	
 is	
 making	
 the	
 comment”	

Maybe	
 that	
 would	
 help.	
 Or	
 maybe,	
 just	
 like	
 you	
 do	
 for	
 changes,	
 that	
 change	
 is	
 effectively	
 a	
 suggestion	
 that	
 you	
 send	
 for	
 review	
 to	
 the	
 code	
 owner.	
 Maybe	
 we	
 do	
 that	
 with	
 comments	
 to.	
 But	
 then	
 that	
 puts	
 an	
 additional	
 constraint	
 on	
 the	
 developers	
 which	
 is	
 already	
 an	
 overused	
 resource,	
 or	
 a	
 busy	
 resource	
 if	
 we’re	
 expecting	
 developers	
 to	
 do	
 this.	
 So,	

35	
 none	
 of	
 these	
 are	
 clearly	
 what’s	
 not	
 going	
 on	
 here.	
 A	
 lot	
 of	
 these	
 are	
 clearly	
 unrelated,	
 but	
 very	
 generic.	
 So	
 this	
 error	
 here	
 is	
 being	
 used	
 by	
 a	
 lot	
 of	
 very	
 generic	
 functions.	
 Which,	
 I	
 guess	
 is	
 pretty	
 typical	
 for	
 c++	
 code.	
 I	
 guess	
 any	
 object	
 based	
 code,	
 because	
 you	
 see	
 it	
 in	
 C#	
 and	
 see	
 it	
 in	
 jave	
 as	
 well,	
 so	
 you	
 have	
 lots	
 of	
 classes	
 and	
 members	
 that	
 overriding	
 ???,	
 so	
 you	
 end	
 up	
 with	
 lots	
 of	
 wrappers,	
 around	
 wrappers,	
 around	
 other	
 wrappers.	
 And	
 it’s	
 a	
 puzzle	
 in	
 itself	
 to	
 Eigure	
 out	
 which	
 one	
 is	
 actually	
 of	
 interest.	

36	
 So	
 we’ll	
 go	
 back	
 to	
 the	
 debugger	
 to	
 see	
 if	
 I	
 can	
 actually	
 walk	
 through	
 some	
 of	
 this	
 code.	

So	
 it	
 looks	
 like	
 I’m	
 not	
 actually	
 going	
 to	
 get	
 source	
 in	
 here,	
 which	
 is	
 unfortunate.	
 So	
 we’ll	
 just	
 have	
 to,	
 we’ll	
 have	
 to	
 kind	
 of	
 guess	
 what	
 is	
 going	
 on	
 here.	

[looking	
 through	
 assembly	
 to	
 see	
 function	
 calls	
 amidst	
 lots	
 of	
 other	
 assembly]	

So	
 some	
 of	
 these	
 functions	
 I	
 don’t	
 remember	
 seeing	
 in	
 the	
 parse	
 function	
 where	
 we	
 started,	
 so	
 I’m	
 going	
 to	
 go	
 look	
 for	
 those.	
 	

37	
 So	
 there’s	
 get	
 range.	
 	

So	
 the	
 other	
 thing	
 that	
 I	
 know	
 about	
 this	
 is	
 that	
 I’m	
 relatively	
 certain	
 that	
 the	
 output	
 will	
 come	
 from	
 one	
 of	
 two	
 functions.	
 So	
 we’ll	
 set	
 a	
 breakpoint	
 on	
 those,	
 and	
 we’ll	
 see	
 who	
 the	
 caller	
 of	
 those	
 is,	
 but	
 clearly	
 I’m	
 wrong,	
 because	
 we	
 didn’t	
 call	
 either	
 of	
 those	
 functions,	
 so	
 we’re	
 going	
 through	
 some	
 other	
 output	
 routine.	
 	

38	
 So	
 again,	
 back	
 to	
 the	
 original	
 function,	
 let’s	
 walk	
 through	
 this	
 a	
 little	
 more	
 carefully.	

[back	
 to	
 source	
 insight]	

So	
 that’s	
 going	
 to	
 be	
 true,	
 that	
 is	
 false,	
 that	
 is	
 false,	
 so	
 is	
 that,	
 as	
 well	
 as	
 that.	
 [picking	
 guards	
 and	
 paths	
 to	
 follow]	

That’s	
 where	
 that	
 annoying	
 error	
 comes	
 from.	

39	
 That	
 one	
 is	
 false	
 and	
 so	
 is	
 this	
 one.	
 So	
 we’re	
 just	
 going	
 to	
 go	
 in	
 here,	
 so	
 the	
 Eirst	
 one	
 that	
 we’ll	
 do	
 is	
 call	
 get	
 range,	
 and	
 set	
 ???	
 to	
 false,	
 so	
 now.	
 	

So	
 maybe	
 we’re	
 not	
 making	
 it	
 as	
 far	
 as	
 the	
 unassembled	
 itself,	
 maybe	
 we’re	
 stuck	
 in	
 this	
 get	
 range	
 function.	
 So	
 here’s	
 another	
 case	
 where	
 the	
 editor	
 is	
 providing	
 me	
 what	
 it	
 think	
 could	
 be	
 the	
 implementation	
 that	
 I’m	
 calling,	
 but	
 I’m	
 second	
 guessing	
 that	
 based	
 on	
 experience.	
 So	
 we’ll	
 look	
 for	
 other	
 ones.	

[browsing	
 list	
 of	
 source	
 insight	
 symbols	
 for	
 that	
 method]	

But	
 that’s	
 probably	
 the	
 correct	
 one,	
 so	
 let’s	
 go	
 into	
 get	
 range	
 and	
 walk.	

40	
 Ok,	
 so	
 this	
 one	
 goes,	
 skips	
 that	
 next	
 character,	
 and	
 that’s	
 not	
 going	
 to	
 do	
 anything	
 in	
 there	
 [reasoning	
 about	
 call	
 –	
 won’t	
 have	
 this	
 effect	
 in	
 it	
 –	
 based	
 on	
 identifer	
 and	
 domain	
 knowledge]	
 and	
 then	
 were	
 going	
 to	
 call	
 get	
 ???	
 address	
 most	
 likely.	

No,	
 we’re	
 going	
 to	
 call	
 evaluate	
 address	
 and	
 here	
 the	
 source	
 code	
 editor	
 doesn’t	
 give	
 me	
 a	
 preview	
 of	
 which	
 one	
 it	
 is.	
 So	
 we’ll	
 see	
 if	
 we	
 even	
 have	
 this	
 at	
 all,	
 so	
 now	
 we	
 have	
 to	
 guess	
 which	
 of	
 these	
 implementations	
 we	
 are	
 actually	
 going	
 to	
 call.	
 	

41	
 The	
 c++	
 one	
 or	
 the	
 masm	
 one,	
 or	
 these	
 are	
 all	
 prototypes.	
 But	
 it	
 may	
 be	
 that	
 we	
 only	
 want	
 this	
 one.	

So	
 we’ll	
 go	
 into	
 that	
 one	
 and	
 see	
 if	
 we	
 see.	
 	

Another	
 fucniton	
 calling	
 a	
 function	
 where	
 we	
 don’t	
 see	
 this	
 at	
 all.	
 Now	
 the	
 source	
 code	
 editor	
 is	
 telling	
 me	
 that	
 this	
 is	
 a	
 macro,	
 but	
 it	
 doesn’t	
 seem	
 to	
 be	
 able	
 to	
 Eind	
 the	
 macro	
 deEinition.	
 	

42	
 So,	
 we’ll	
 just	
 ignore	
 that	
 for	
 the	
 time	
 being.	
 Here’s	
 another	
 one	
 that	
 looks	
 like	
 a	
 macro,	
 but	
 it	
 doesn’t	
 seem	
 to	
 like	
 that,	
 so	
 we’ll	
 go	
 over	
 here	
 and	
 search	
 for	
 it	
 in	
 a	
 different	
 way,	
 because	
 that	
 Einally	
 Einished.	
 	

So	
 now	
 I’m	
 in	
 a	
 razzle	
 window	
 trying	
 to	
 search	
 for	
 the	
 same	
 thing,	
 since	
 my	
 source	
 code	
 editor	
 is	
 failing,	
 I	
 ‘ll	
 go	
 look,	
 I’ll	
 go	
 lower.	

[Eixed	
 a	
 typo	
 in	
 search]	

43	
 Well	
 that’s	
 iterating,	
 it’s	
 not	
 Einding	
 anything.	
 	

I	
 always	
 Eind	
 macros	
 very	
 difEicult	
 to	
 deal	
 with	
 and	
 I’m	
 unsure	
 if	
 that	
 is	
 just	
 general	
 unfamiliarity	
 or	
 the	
 lack	
 of	
 good	
 tools	
 or	
 something	
 else	
 I	
 don’t	
 	
 know.	
 But	
 it	
 always	
 seem	
 that	
 when	
 looking	
 at	
 code	
 in	
 a	
 source	
 code	
 editor,	
 it	
 would	
 be	
 helpful	
 to	
 have	
 an	
 instance	
 macro	
 expander	
 inline,	
 so	
 it	
 would	
 just	
 show	
 you	
 what	
 	

44	
 is	
 actually	
 going	
 to	
 happen.	
 Because	
 macros	
 are	
 there	
 for	
 the	
 code	
 writer,	
 and	
 makes	
 it	
 difEicult	
 for	
 everything	
 else.	
 	

So	
 while	
 this	
 is	
 searching	
 and	
 we’re	
 spending	
 a	
 whole	
 lot	
 of	
 time	
 walking	
 through	
 this	
 code	
 with	
 minimal	
 results.	

45	
 So	
 we’ll	
 go	
 back	
 here	
 to	
 the	
 debugger.	
 And	
 what	
 are	
 we	
 looking	
 for,	
 we’re	
 looking	
 for	
 that	
 function,	
 whatever	
 that	
 function	
 was.	
 Yeah,	
 probably	
 get	
 address	
 expression.	
 	

So,	
 we’ll	
 set	
 a	
 breakpoint	
 there,	
 and	
 sure	
 enough	
 we	
 call	
 that	
 guy.	
 	

So	
 in	
 some	
 ways	
 this	
 is	
 cheating	
 because	
 I	
 can	
 basically	
 repro	
 what	
 I’m	
 doing.	
 	
 [can	
 repro	
 and	
 step	
 through	
 code	
 rather	
 than	
 just	
 getting	
 static	
 snapshot]	

46	
 But	
 debugging	
 postmortem	
 failures,	
 I	
 don’t	
 get	
 a	
 chance	
 to	
 do	
 that,	
 so	
 that’s	
 why	
 I	
 have	
 this	
 dichotomy	
 of	
 what	
 the	
 tools	
 should	
 do,	
 because	
 on	
 the	
 one	
 hand	
 I’m	
 reading	
 the	
 code	
 and	
 maybe	
 editing	
 it,	
 and	
 on	
 the	
 other	
 hand	
 I	
 spend	
 as	
 much	
 time	
 if	
 not	
 more	
 reading	
 code	
 and	
 trying	
 to	
 understand	
 what	
 it’s	
 doing	
 without	
 necessarily	
 having	
 to	
 interact	
 with	
 it	
 at	
 all.	
 	

Everyting	
 very	
 slow	
 today.	

[still	
 waiting	
 on	
 Eile	
 system	
 search	
 and	
 debugger]	

So	
 I’ll	
 switch	
 over	
 here	
 and	
 do	
 a	
 totally	
 unrelated	
 task	
 while	
 I’m	
 waiting.	

47	
 Ok,	
 so	
 the	
 debugger	
 came	
 back	
 so	
 I	
 can	
 walk	
 thorugh	
 here.	

Well,	
 it’s	
 got	
 to	
 be	
 this	
 call	
 here.	
 Yep.	
 So	
 here’s	
 what	
 I	
 was	
 loking	
 for	
 in	
 the	
 source	
 code	
 before,	
 and	
 I	
 didn’t	
 have	
 any	
 way	
 to	
 tell	
 other	
 than	
 walking	
 through	
 ???,	
 but	
 here,	
 walking	
 through	
 the	
 debugger,	
 	

48	
 I	
 can	
 clearly	
 see	
 that	
 the	
 implementation,	
 this	
 particular	
 eval	
 holder	
 local	
 variable,	
 what	
 type	
 it	
 is.	
 So	
 I	
 can	
 go,	
 basically	
 grab	
 this	
 and	
 go	
 back	
 to	
 the	
 code	
 and	
 Eind	
 the	
 masm	
 eval	
 expression	
 and	
 look	
 for	
 eval	
 address	
 in	
 there.	

But,	
 again,	
 my	
 handy	
 dandy	
 code	
 editor	
 is	
 not	
 very	
 helpful	
 today.	
 	

Wait,	
 do	
 I	
 know?	
 	

Ok.	
 	

The	
 symbols	
 say	
 this	
 should	
 be	
 in	
 ee	
 masm,	
 and	
 there’s	
 ee	
 masm,	
 but	
 its	
 not	
 there.	
 So	
 that’s	
 odd,	
 maybe	
 there’s	
 something	
 wrong	
 with	
 the	
 project,	
 so.	

50	
 [trying	
 to	
 add	
 Eile	
 to	
 rpoject,	
 but	
 not	
 in	
 Eilesystem]	

So,	
 no	
 ee	
 masm.	
 So,	
 clearly	
 that	
 Eile	
 is	
 not	
 here.	

Well,	
 that’s	
 because	
 it’s	
 not	
 there.	
 My	
 client	
 view	
 is	
 messed	
 up.	

51	
 [edits	
 sd	
 client	
 conEig	
 Eile]	

Oh,	
 because	
 when	
 I	
 changed	
 that	
 before	
 I	
 broke	
 it.	
 So	
 in	
 doing	
 something	
 else	
 totally	
 different	
 today	
 I	
 basically	
 deleted	
 a	
 bunch	
 of	
 source	
 Eiles	
 from	
 my	
 machine.	
 	

So,	
 we’ll	
 have	
 to	
 Eix	
 that.	
 	

[adding	
 several	
 extra	
 directory	
 lines	
 to	
 his	
 sd	
 client	
 conEig	
 Eile	
 to	
 restore	
 it	
 to	
 normal	
 state]	

52	
 And	
 magically	
 all	
 the	
 Eiles	
 will	
 reappear,	
 which	
 probably	
 explains	
 why	
 my	
 source	
 debugging	
 wasn’t	
 working.	

[does	
 sd	
 sync	
 to	
 get	
 all	
 the	
 Eiles	
 he	
 didn’t	
 have	
 before]	
 [wasn’t	
 getting	
 symbols	
 in	
 debugger]	

53	
 Or	
 maybe	
 not,	
 but	
 alas,	
 maybe	
 I	
 have	
 the	
 Eile	
 I’m	
 looking	
 for	
 now,	
 and	
 low	
 and	
 behold	
 there	
 it	
 is.	
 [source	
 insight	
 scans	
 Eile	
 system	
 and	
 updates	
 index,	
 and	
 now	
 can	
 navigate	
 to	
 that	
 Eile]	

So	
 what	
 are	
 we	
 looking	
 for,	
 eval	
 address.	
 	

54	
 So	
 if	
 I	
 would	
 have	
 to	
 edit	
 this	
 Eile,	
 I	
 would	
 probably	
 Eix	
 some	
 of	
 the	
 spacing	
 issues,	
 these	
 tabs	
 not	
 replaced	
 with	
 spaces	
 etc.	

But	
 I’m	
 also	
 missing	
 some	
 source	
 Eile,	
 let’s	
 see	
 if	
 searching	
 for	
 either	
 of	
 those	
 things	
 I	
 couldn’t	
 Eind	
 before	
 actually	
 yields	
 anything	
 now.	
 [repeats	
 source	
 insight	
 search,	
 still	
 nothing]	
 [illustrates	
 returning	
 to	
 an	
 old	
 path	
 when	
 information	
 about	
 paths	
 changes]	

So	
 where	
 are	
 we,	
 we’re	
 in	
 eval	
 address.	
 	

55	
 [skimming	
 thorugh	
 a	
 block	
 of	
 several	
 methods	
 in	
 source	
 insight]	

So	
 this	
 function	
 calls	
 this	
 function.	
 	

Push	
 context,	
 pop	
 context,	
 compute	
 ???	
 address,	
 and	
 what	
 does	
 it	
 do?	

56	
 [goes	
 to	
 callee]	

So	
 let’s	
 just	
 test	
 this.	
 So	
 we	
 actually	
 make	
 it	
 back	
 to	
 get	
 address	
 expression.	
 And	
 we’re	
 in	
 get	
 address	
 expression.	
 	

Ok,	
 so	
 it	
 seems	
 like	
 we	
 are	
 going	
 to	
 return	
 from	
 this	
 guy	
 without	
 doing	
 anything.	
 So	
 now	
 we’re	
 back	
 to	
 get	
 range.	

57	
 And	
 that’s	
 where	
 we	
 call	
 peek	
 char,	
 we	
 don’t.	
 And	
 a	
 case	
 where	
 the	
 parameters,	
 there’s	
 no	
 comments	
 here,	
 but	
 the	
 parameters	
 are	
 named	
 well,	
 so	
 I	
 can	
 make	
 some	
 assumptions	
 based	
 on	
 them.	
 So	
 if	
 not	
 has	
 ???	
 address	
 expression,	
 address	
 ok,	
 so	
 we	
 go	
 down	
 there.	
 	

[going	
 back	
 and	
 forth	
 between	
 debugger	
 and	
 source	
 insight	
 –	
 inspecting	
 code	
 in	
 source	
 insight,	
 loking	
 at	
 values	
 in	
 debugger]	

but	
 we	
 do	
 call	
 get	
 address	
 expression	
 again.	
 So	
 let’s	
 	

58	
 we’ll	
 go,	
 but	
 we	
 didn’t	
 actually	
 call,	
 so	
 we’re	
 back	
 to	
 that	
 reset.	
 	

So	
 we	
 only	
 call	
 get	
 address	
 expression	
 once,	
 and	
 that	
 call	
 is	
 from	
 get	
 range,	
 so	
 let’s	
 see.	
 So	
 there’s	
 1,	
 2.	
 So	
 we’re	
 not	
 going	
 to	
 do	
 any	
 of	
 this	
 if.	
 	

[still	
 reasoning	
 about	
 what	
 paths	
 to	
 follow	
 in	
 source	
 insight]	

59	
 We’re	
 just	
 going	
 to	
 return?	

So	
 parse	
 and	
 assemble.	

So	
 we	
 do	
 return	
 from	
 get	
 length,	
 oh	
 has	
 length,	
 so	
 we	
 are	
 going	
 to	
 go	
 into	
 that	
 unassembled	
 instruction.	
 We’ll	
 check	
 that,	
 and	
 there	
 we	
 go,	
 we	
 go	
 into	
 the	
 unassembled	
 instruction.	

1:00	
 [checking	
 in	
 dubgger	
 which	
 method	
 gets	
 stepped	
 into,	
 then	
 back	
 to	
 source	
 insight	
 to	
 read	
 it]	

So	
 here’s	
 where	
 we	
 create	
 that,	
 ???	
 	

1:01	
 Address,	
 ok,	
 calls,	
 ok.	
 	

So	
 we’ll	
 assume	
 that	
 it’s	
 related	
 to	
 this	
 call,	
 yep.	
 So	
 we	
 call	
 machine	
 code	
 assemble	
 ??	
 ok	

1:02	
 So	
 I	
 was	
 right	
 in	
 terms	
 of	
 reading	
 the	
 code.	
 It’s	
 nice	
 to	
 have	
 this	
 to	
 conEirm.	
 So	
 it	
 seems	
 that	
 we	
 actually	
 make	
 it	
 to	
 this	
 decode	
 call.	
 	

“You’re	
 basically	
 using	
 the	
 debugger	
 to	
 step”	

More	
 like	
 jump	
 around.	
 I’m	
 not	
 really	
 stepping	
 through	
 the	
 code	
 because	
 a	
 lot	
 of	
 these	
 functions	
 are	
 pretty	
 long.	
 So	
 I’m	
 basically	
 just	
 picking	
 a	
 point,	
 reading	
 code,	
 picking	
 a	
 point,	
 and	
 running	
 to	
 that	
 point	
 to	
 make	
 sure	
 we	
 actually	
 got	
 there,	
 so	
 just	
 testing	
 a	
 theory.	
 So	
 like	
 this	
 one,	

1:03	
 I	
 am	
 looking	
 for	
 where	
 we	
 call	
 decode	
 because	
 I	
 think	
 we’ll	
 make	
 it	
 at	
 least	
 that	
 far.	
 So	
 since	
 the	
 source	
 came	
 back	
 [can	
 Einally	
 link	
 to	
 source	
 in	
 debugger]	

I	
 can	
 actually	
 just	
 run	
 to	
 this	
 point.	
 	

Since	
 the	
 source	
 code	
 of	
 the	
 debugger	
 wasn’t	
 working,	
 I	
 was	
 actually	
 switching	
 back	
 and	
 forth	
 between	
 source	
 code	
 debuggin	
 and	
 assembly	
 debugging.	
 There	
 are	
 different	
 things	
 that	
 are	
 easier	
 to	
 do.	
 Ok,	
 so	
 that’s	
 where	
 we	
 call	
 decode.	
 [wanted	
 to	
 know	
 caller	
 of	
 decode]	

1:04	
 So	
 now	
 I’m	
 just	
 going	
 to	
 step	
 a	
 little	
 bit	
 here.	
 	

Ah,	
 I	
 bet	
 that’s	
 it.	
 	

So	
 where	
 are	
 we	
 –	
 we’re	
 in	
 machine	
 dot	
 cpp.	

[saw	
 a	
 call	
 –	
 read	
 address	
 memory	
 =	
 that	
 he	
 thinks	
 triggers	
 error	
 string]	

And	
 we’re	
 in	
 decode.	
 [method	
 of	
 machine	
 dot	
 cpp]	

1:05	
 And	
 I	
 went	
 aha	
 because	
 I	
 saw	
 the	
 function	
 read	
 address	
 memory.	
 And	
 I’m	
 positing	
 that	
 that	
 is	
 where	
 our	
 error	
 is	
 coming	
 from,	
 and	
 this	
 is	
 what’s	
 calling	
 read	
 virtual.	

So	
 I	
 bet	
 read	
 virtual	
 is	
 failing,	
 so	
 we’ll	
 continue	
 to	
 step	
 through	
 here.	
 And	
 that’s	
 actually	
 what	
 I	
 want	
 to	
 change.	
 I	
 want	
 to	
 change	
 the	
 behavior	
 when	
 read	
 virtual	

[Einally	
 located	
 program	
 point	
 where	
 he	
 wants	
 to	
 make	
 a	
 change!	
 –	
 be	
 interesting	
 to	
 compare	
 to	
 how	
 long	
 it	
 takes	
 developers	
 in	
 other	
 cases]	

fails	
 so.	
 So	
 I	
 think	
 I	
 found	
 where	
 the	
 code	
 change	
 would	
 need	
 to	
 go,	
 but	
 I	
 need	
 to	
 conEirm	
 that	
 that’s	
 the	
 place	
 where	
 the	
 code	
 change	
 needs	
 to	
 go,	
 and	
 then	
 I	
 need	
 to	
 read	
 through	
 the	
 code	
 to	
 see	
 what	
 might	
 be	
 the	
 safest	
 way	
 to	
 make	
 this	
 change.	
 	

1:06	
 So	
 we’ll	
 put	
 the	
 cursor	
 here	
 and	
 we’ll	
 run	
 to	
 this	
 point,	
 and	
 we’ll	
 step	
 into	
 read	
 instruction	
 memory.	
 And	
 I	
 think	
 all	
 of	
 this	
 is	
 largely,	
 wait,	
 that’s	
 not	
 right.	
 Here’s	
 where	
 we	
 call	
 read	
 virtual,	
 so	
 we’ll	
 walk	
 through	
 this	
 just	
 to	
 make	
 sure	
 we	
 don’t’,	
 but	
 I	
 think	
 we’re	
 just	
 going	
 to	
 hit,	
 yeah,	
 we	
 hit	
 that	
 branch,	
 and	
 then	
 we	
 go	
 into	
 that	
 branch,	
 yep.	

[veriEied	
 that	
 that	
 is	
 the	
 call	
 that	
 fails	
 by	
 just	
 seeing	
 how	
 the	
 return	
 from	
 failure	
 is	
 causing	
 it	
 to	
 step	
 into	
 other	
 branches	
 of	
 the	
 method	
 on	
 the	
 failure	
 path]	

Read	
 physical	
 is	
 going	
 to	
 be	
 false,	
 so	
 we’re	
 to	
 call	
 read	
 virtual,	
 yep	
 that’s	
 our	
 offset,	
 our	
 offset	
 is	
 our	
 origainl	
 parameter,	
 there’s	
 our	
 out	
 parameter,	
 let’s	
 see.	
 So	
 where	
 are	
 we,	
 we’re	
 in	
 dump	
 .cpp	

1:07	
 And	
 we’re	
 at	
 line	
 8958.	
 	

[stepping,	
 inspecting	
 some	
 immediates]	

Oh,	
 that’s	
 not	
 right.	
 Cpp.	

So	
 we’ll	
 just	
 walk,	
 and	
 there	
 is	
 our	
 read	
 virtual	
 failure.	
 So	
 when	
 read	
 virtual	
 fails	
 with	
 something	
 other	
 than	
 s	
 ok,	
 we	
 go	
 to	
 done.	
 	
 [stepping]	

Yep,	
 and	
 then	
 	

1:08	
 Is	
 that	
 instruction	
 memory.	
 	

Yeah,	
 so	
 that’s	
 null.	
 	

What	
 is	
 this	
 on,	
 memory	
 bites.	
 	

Yeah,	
 so	
 we	
 read	
 nothing	
 and	
 there’s	
 nothing	
 in	
 our	
 buffer.	

So	
 clear	
 that.	

1:09	
 What’s	
 our	
 status	
 at	
 this	
 point,	
 our	
 status	
 is	
 the	
 hresult,	
 ok.	
 [checking	
 in	
 immediate]	

Ok,	
 so,	
 ok	
 so	
 there’s	
 where	
 we	
 return	
 the	
 status.	
 And,	
 yep	
 we	
 failed,	
 so	
 we	
 return	
 that	
 back,	
 decode	
 returns	
 to	
 disassemble,	
 	

So	
 that’s	
 interesting,	
 we	
 don’t	
 actually	
 check	
 the	
 status	
 here,	
 so	
 what	
 function	
 are	
 we	
 in	
 here,	
 machine	
 dot	
 cpp,	
 and	
 we’re	
 in	
 disassemble	
 [function	
 name]	

Why was this question so hard to answer?

35

Hard	
 to	
 pick	
 the	
 control	
 flow	
 path	
 that	
 leads	
 from	
 star.ng	
 point	
 to	
 target 
	
 	
 	
 	
 	
 	
 Guess	
 and	
 check:	
 which	
 path	
 leads	
 to	
 the	
 target?

m

error

Why are control flow questions frequent?

36

causality

ordering

choice

Helps	
 answer	
 ques.ons	
 about	

	
 	
 	
 	
 	
 	
 What	
 does	
 this	
 do?	
 	
 	
 What	
 causes	
 this	
 to	
 happen?	

	
 	
 	
 	
 	
 	
 Does	
 A	
 happen	
 before	
 B?	

	
 	
 	
 	
 	
 	
 Does	
 x	
 always	
 occur?	
 In	
 which	
 situa.ons	
 does	
 x	
 occur?	

When	
 scaKered	
 across	
 a	
 codebase,	
 finding	
 statements	
 to	
 answer	
 these	

ques.ons	
 can	
 be	
 hard.	

37

Defect-­‐related	
 false	
 assump.ons	

&	
 incorrectly	
 answered	
 ques.ons	

related	
 to	
 control	
 flow

(common	
 characteris.cs	
 of	
 evidence	
 sought)
Reachability	
 Ques$ons

lab	
 observa.ons field	
 observa.ons

37

Primary	
 ques.ons	
 from	
 longest	

inves.ga.on	
 &	
 debugging	

ac.vi.es	
 related	
 to	
 control	
 flow

38

feasible	

paths

statements	
 matching	

search	
 criteria∩

Defect-­‐related	
 false	
 assump.ons	

&	
 incorrectly	
 answered	
 ques.ons	

related	
 to	
 control	
 flow

(common	
 characteris.cs	
 of	
 evidence	
 sought)

.

downstream upstream

search	
 criteria
iden.fier 
statement	
 type	
 (field	

write/read,	
 library	
 call)

feasible	
 paths
filter compare

Reachability	
 Ques$ons

A	
 search	
 along	
 feasible	

paths	
 downstream	
 or	

upstream	
 from	
 a	

statement	
 for	
 target	

statements	
 matching	

search	
 criteria

lab	
 observa.ons field	
 observa.ons

38

Primary	
 ques.ons	
 from	
 longest	

inves.ga.on	
 &	
 debugging	

ac.vi.es	
 related	
 to	
 control	
 flow

Reachability question: example

39

feasible	

paths

statements	
 matching	

search	
 criteria∩

Where	
 is	
 method	
 m	
 genera$ng	
 an	
 error?

m

e

A	
 search	
 along	
 feasible	

paths	
 downstream	
 or	

upstream	
 from	
 a	

statement	
 (m)	
 for	
 target	

statements	
 matching	

search	
 criteria	
 (calls	
 to	
  
method	
 e)

Longest activities related to reachability questions

40

4	
 out	
 of	
 the	
 5	
 longest	
 invesgaon	
 acvies

5	
 out	
 of	
 the	
 5	
 longest	
 debugging	
 acvies

Primary question Time
(mins) Related reachability question

How is this data structure being mutated in this
code? 83 Search downstream for writes to data

structure
“Where [is] the code assuming that the tables
are already there?” 53 Compare behaviors when tables are or are

not loaded
How [does] application state change when m
is called denoting startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be
non-zero?” 11

Find statements through which values flow
into status

Where is method m generating an error? 66 Search downstream from m for error text
What resources are being acquired to cause
this deadlock? 51 Search downstream for acquire method

calls
“When they have this attribute, they must use it
somewhere to generate the content, so where
is it?”

35 Search downstream for reads of attribute

“What [is] the test doing which is different from
what my app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread
pools

Overall findings

41

‣Found	
 that	
 developers	
 can	
 construct	
 incorrect	
 mental	
 models	
 of	
 control	

flow,	
 leading	
 them	
 to	
 insert	
 defects	

‣Found	
 that	
 the	
 longest	
 inves.ga.on	
 &	
 debugging	
 ac.vi.es	
 involved	
 a	

single	
 primary	
 ques.on	
 about	
 control	
 flow	

‣Found	
 evidence	
 for	
 an	
 underlying	
 cause	
 of	
 these	
 difficul.es 
	
 	
 	
 	
 	
 	
 	
 Challenges	
 answering	
 reachability	
 ques$ons	

‣Built	
 formalism	
 describing	
 informa.on	
 needs	
 in	
 reachability	
 ques.ons	

Paper prototype study
• Built mockups of interface for task from lab study

• Asked 1 participant to complete lab study task with
Eclipse & mockup of Reacher

• Paper overlay of Reacher commands on monitor

• Experimenter opened appropriate view

• Asked to think aloud, screen capture + audio recording
43

Study results
• Used Reacher to explore code, unable to complete task

• Barriers discovered

• Wanted to see methods before or after, not on path to origin or
destination

• Switching between downstream and upstream confusing,
particularly search cursor

• Found horizontal orientation confusing, as unlike debugger call
stacks

• Wanted to know when a path might execute
44

Examples of observed reachability questions Reacher supports Steps to use Reacher

What resources are being acquired to cause this deadlock? Search downstream for each method which might acquire a
resource, pinning results to keep them visible

When they have this attribute, they must use it somewhere to
generate the content, so where is it?

Search downstream for a field read of the attribute

How are these thread pools interacting? Search downstream for the thread pool class
How is data structure struct being mutated in this code (between o
and d)?

Search downstream for struct class, scoping search to
matching type names and searching for field writes.

How [does] application state change when m is called denoting
startup completion?

Search downstream from m for all field writes

Step 2: Find statements matching search criteria

45

Step 3: Help developers understand paths and stay oriented

46

Goal:	
 help	
 developers	
 reason	
 about	
 control	
 flow	
 by	
 summarizing	

statements	
 along	
 paths	
 in	
 compact	
 visualiza.on

Challenges:	
  
control	
 flow	
 paths	
 can	
 be	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 complex	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 long	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 repe..ve	

developers	
 get	
 lost	
 and	
 disoriented	

naviga.ng	
 code

Approach:	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 visually	
 encode	
 proper.es	
 of	
 path

hide	
 paths	
 by	
 default

coalesce	
 similar	
 paths

use	
 visualiza.on	
 to	
 support	

naviga.on

Example

47

Evaluation

48

 

Method	
  
	
 	
 	
 	
 	
 	
 12	
 developers	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 15	
 minutes	
 to	
 answer	
 reachability	
 ques.on	
 	
 x	
 6 
	
 	
 	
 	
 	
 	
  
	
 	
 	
 	
 	
 	
 Eclipse	
 only	
 on	
 3	
 tasks	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Eclipse	
 w/	
 REACHER	
 on	
 3	
 tasks	

Tasks	

	
 	
 	
 	
 	
 Based	
 on	
 developer	
 ques.ons	
 in	
 lab	
 study.	

	
 	
 	
 	
 	
 Example:	

	
 	
 	
 	
 	
 When	
 a	
 new	
 view	
 is	
 created	
 in	
 jEdit.newView(View),	
 what	
 messages,	
 in	
 	
  
	
 	
 	
 	
 	
 what	
 order,	
 may	
 be	
 sent	
 on	
 the	
 EditBus	
 (EditBus.send())?	

Does	
 REACHER	
 enable	
 developers	
 to	
 answer	
 reachability	

ques.ons	
 faster	
 or	
 more	
 successfully?

(order	
 counterbalanced)

Developers	
 with	
 REACHER	

were	
 5.6	
 .mes	
 more	

successful	
 than	
 those	

working	
 with	
 Eclipse	
 only.	

Results

49

Task	
 .me	
 includes	
 only	
 par.cipants	
 that	
 succeeded.	

(not	
 enough	
 successful	
 to	

compare	
 .me)	

REACHER helped developers stay oriented

50

When	
 not	
 using	
 REACHER,	
 par.cipants	
 oTen	
 reported	
 being	
 lost	
 and	
 confused.

Par.cipants	
 with	
 REACHER	
 used	
 it	
 to	
 jump	
 between	

methods.

“Where	
 am	
 I?	
 I’m	
 so	
 lost.”	

“These	
 call	
 stacks	
 are	
 horrible.”	

“There	
 was	
 a	
 call	
 to	
 it	
 here	
 somewhere,	

but	
 I	
 don’t	
 remember	
 the	
 path.”	

“I’m	
 just	
 too	
 lost.”

“It	
 seems	
 pretty	
 cool	
 if	
 you	
 can	
 navigate	

your	
 way	
 around	
 a	
 complex	
 graph.”

“I	
 like	
 it	
 a	
 lot.	
 It	
 seems	
 like	
 an	
 easy	
 way	
 to	
 navigate	
 the	
 code.	
 And	
 the	
 view	

maps	
 to	
 more	
 of	
 how	
 I	
 think	
 of	
 the	
 call	
 hierarchy.”	

“Reacher	
 was	
 my	
 hero.	
 …	
 It’s	
 a	
 lot	
 more	
 fun	
 to	
 use	
 and	
 look	
 at.”	

“You	
 don’t	
 have	
 to	
 think	
 as	
 much.”

Par.cipants	
 reported	
 that	
 they	
 liked	
 working	
 with	
 REACHER.

Needfinding

51

Needfinding (a.k.a. design research)
• Goal: understand user’s needs

• Use of methods to gather qualitative data

• behaviors, attitudes, aptitudes of potential and existing users

• technical, business, and environmental contexts - domain

• vocabulary and social aspects of domain

• how existing products used

• Empowers team w/ credibility and authority, helping inform decisions
52

Needfinding vs. market research
Needfinding

• What users really need

• How they will really use
product

• Qualitative methods to study
in depth

• Small numbers of participants
53

Market research

• Who might purchase item

• What factors influence
purchasing

• Quantitative studies w/ focus
groups, surveys

• Large numbers of participants

Example
• Cooper conducted a user study for entry-level video editing

product

• Company built professional software, looking to move into
consumer software

• Help connect those w/ computers and video cameras

• Found strongest desire for video editing was parents

• Found 1/12 had successfully connected camera, using work IT guy
54

Solving the correct problem

• Practices may sometimes mask deeper problems

• Goal: uncover layers of practices to understand
how problems emerge

55

Interviews
• May include bother current users and potential users w/ related needs

• Questions

• context of how product fits into lives or work

• when, why, how is or will product be used

• what do users need to know to do jobs?

• current tasks and activities, including those not currently supported

• goals and motivations of using product

• problems and frustrations with current products or systems
56

Observations
• Most incapable of accurately assessing own behaviors

• May avoid talking about problems to avoid feeling
dumb

• Observing yields more accurate data

• Capture behaviors: notes, pictures, video (if possible)

57

Contextual inquiry

• Method that includes both interviews and
observations

• Next time

58

Ideation

59

Ideation
• Process of generating, developing, communicating new ideas

• Guidelines and best practices

• Generate numerous ideas

• Number ideas

• Avoid premature dismissal of ideas

• Sharpen the focus - pose the right problem

• Build and jump - build to keep momentum on ideas, jump when
theme tapers out

60

Design in the world of business

61

Norman’s law of product development
• The day a product development process starts, it is

behind schedule and above budget.

• Teams often not budgeted time for understanding
users, iterating design

• In some markets, competitive forces can
(sometimes) drive design evolution

62

Featuritis
• Existing customers like the product, but express wish for more

feature, functions, capability

• Competing company adds features, producing competitive
pressure to match and exceed

• Customers are satisfied but market saturated, leading to pressure
for new features

• Leads products towards more power, but also more complexity

• Antidote: focus on customer and strengths, strengthen even more
63

Legacy problems

• Users used to existing version of system

• Changing system functionality may force users into
relearning how to use system

• Discourages design innovation

64

Technology changes
• Fundamental user

needs stable

• Technology
enables new ways
for these to be
addressed

65

Group activity

66

Group activity
• In groups of 3 or 4

• Scenario: Your customers tell you, our organization is large, and we all just
get too much email that wastes too much time. Build us a new
communication and messaging system.

• Answer the following questions:

• What would you focus on learning through needfinding?

• What problems and practices might lead to this issue?

• Make an (arbitrary) choice on which you think it is

• Based on this choice, generate design ideas for addressing these issues
67

