
User-Centered Design
SWE 632
Fall 2024

© Thomas LaToza

Administrivia

•HW1 due next Tuesday before class

•Anyone still looking for a Tech Talk group?

2

What We Learned & Looking Ahead

• Examined human cognition

• Have 2 ways to identify usability issues (Heuristics & Principles)

• But... is HCI just identifying usability issues?

• What does design mean?

• How do we learn about user needs?

• How do we build designs?

• How do we evaluate designs?

3

Overview of User-Centered
Design

In Class Discussion

• Today’s question:

• What does user-centered design mean to you?

5

User-centered design

6

User-centered design

7

What problems may
users encounter w/

current ways of doing
things?

Who are the
users?

What are the user’s
needs?

What are the
user’s tasks and

goals?
What extreme

cases may exist?

How does the product fit
into the broader context

of their lives?

Technology-Centered Design

8

What can this
technology

do?

How might
users use it?

What features
does it have?

8

Double Diamond Model of Design

• Question problem, expand scope, discover fundamental issues

• Converge on problem

• Expand possible solutions

• Converge on solution

9

Iterative Model of Design

10

Observation

Idea Generation

Prototype

(Re)Define the Problem

Test

Understand User Needs

Brainstorm
what to build

Evaluate what
you have built

Build

Iteration, Iteration, Iteration

• Repeated study and testing

• Use tests to determine what is working or not working

• Determine what the problem might be, redefining the problem

• Collect more data

• Generate new alternatives

11

Observation

Needfinding (a.k.a. design research)

• Goal: understand user’s needs

• Use of methods to gather qualitative data

• behaviors, attitudes, aptitudes of potential and existing users

• technical, business, and environmental contexts - domain

• vocabulary and social aspects of domain

• how existing products used

• Empowers team w/ credibility and authority, helping inform decisions

13

Needfinding vs. market research

Needfinding

• What users really need

• How they will really use product

• Qualitative methods to study in depth

• Small numbers of participants

14

Market research

• Who might purchase item

• What factors influence
purchasing

• Quantitative studies w/
focus groups, surveys

• Large numbers of
participants

Example

• Cooper conducted a user study for entry-level video editing product

• Company built professional software, looking to move into consumer software

• Help connect those w/ computers and video cameras

• Found strongest desire for video editing was parents

• Found 1/12 had successfully connected camera, using work IT guy

15

Solving the correct problem

• Practices may sometimes mask deeper problems

• Goal: uncover layers of practices to understand how problems emerge

16

Interviews

• May include bother current users and potential users w/ related needs

• Questions

• context of how product fits into lives or work

• when, why, how is or will product be used

• what do users need to know to do jobs?

• current tasks and activities, including those not currently supported

• goals and motivations of using product

• problems and frustrations with current products or systems

17

Observations

• Most incapable of accurately assessing own behaviors

• May avoid talking about problems to avoid feeling dumb

• Observing yields more accurate data

• Capture behaviors: notes, pictures, video (if possible)

18

Contextual inquiry

• Method that includes both interviews and observations

• Next week’s lecture

19

Idea Generation

Creativity

• What's the most creative software app you've seen?

• What made it creative?

21

Ideation

• Process of generating, developing, communicating new ideas

• Guidelines and best practices

• Generate numerous ideas

• Number ideas

• Avoid premature dismissal of ideas

• Sharpen the focus - pose the right problem

• Build and jump - build to keep momentum on ideas, jump when theme tapers out

22

Prototyping

Prototyping - Building Quickly

• Build quick prototype or mock-up of each potential solution

• “Wizard of Oz” Studies

• Mainly performed to ensure the problem is well understood

24

Testing

Testing - User Centered Evaluation

• Test with population similar to target population

• Have them use prototypes as close as possible to intended

• If possible, have two people use a prototype, one guiding the other’s
use.

• More on this in a future lecture…

26

User-Centered Design
Considerations

Fail Fast

• “Fail frequently, fail fast” David Kelley, founder of Ideo

• Failure is learning experience

• Crucial to understand correct problem to solve & ensure solution is
appropriate

• Abstract requirements are invariably wrong

• Requirements produced by asking people what they want are wrong

28

Flexibility-usability tradeoff

30

Flexibility-Usability Tradeoff

• Jack of all trades, master of none

• Better understanding needs enables specialization and
optimization for common cases

• System evolution over time:

• flexibility —> specialization

31

Examples of flexibility / usability tradeoff?

32

Navigating Design Space

• What are key decisions in interaction design?

• What alternatives are possible?

• What are tradeoffs between these alternatives?

3333

Hierarchy of Design Decisions

• What are you (re)designing?

• The width of the text input

• The maximum length of a valid username

• When in the signup process users enter their username

• If the user must create a username when signing up

• Whether users are anonymous or have a login

• If users can interact with other users in your application

34

Picking the Right Level of Redesign

• Where are the user’s pain points

• What are the underlying causes

• What would be the value to the user of addressing issue

• What do you have time to build (or change)

35

Example - iPod

• Supports entire activity of listening to music

• discovering music

• purchasing music

• getting it into music player

• developing playlists

• sharing playlists

• listening to music

• ecosystem of external speakers and accessories

36

Example of a Design Process

• How do you get from let's make listening to music better to designing an iPod??

• Iterative design...

• But what does that actually look like more concretely?

• What insights into activity help inspire design?

• How does watching users help lead to these insights?

• How do insights translate into an actual real design?

• How do know the new design is actually better?

37

In-Class Activity

• Redesign PatriotWeb

• Consider: at what level are you redesigning it? What's the problem (at this
level)? How are you making it better?

38

Example

Domain: Debugging

• Design goal: how do we better support activity of debugging in large,
complex codebases?

• Build a better debugging tool (?)

• What should it do? How would it help?

• Design a better watch window? Support new types of breakpoints?

• What's really the key steps in debugging that lead users to struggle the
most?

40

Domain: Debugging

41

Observing Developers

42

Participants Tasks
~90 minutes 

picked one of their own coding
tasks involving unfamiliar code17 professional developers

Transcripts

(386 pages)

Interesting. This looks like, this looks like the code is approximately the same but it’s refactored. But the other code
is. 	

Changed what flags it’s ???	

He added a new flag that I don’t care about. He just renamed a couple things.	

Well.	

So the change seemed to have changed some of the way these things are registered, 	

but I didn’t see anything that talked at all about whether the app is running or whether the app is booted. So it
seems like, this was useless to me.

(annotated with observer notes about goals and actions)

Activities

42

Coding Activities

43

Circle size: % of time Edge thickness: % of transitions observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

43

Longest Activities: Control Flow

4444

4 out of the 5 longest investigation activities

5 out of the 5 longest debugging activities

Primary question Time (m) Related control flow question

How is this data structure being mutated in this code? 83 Search downstream for writes to data structure

“Where [is] the code assuming that the tables are already
there?” 53 Compare behaviors when tables are or are not loaded

How [does] application state change when m is called denoting
startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be non-zero?” 11 Find statements through which values flow into status

Where is method m generating an error? 66 Search downstream from m for error text

What resources are being acquired to cause this
deadlock? 51 Search downstream for acquire method calls

“When they have this attribute, they must use it
somewhere to generate the content, so where is it?” 35 Search downstream for reads of attribute

“What [is] the test doing which is different from what my
app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread pools
44

Longest Debugging Activities

454545

Rapidly found method m implementing command
Unsure where it generated error

Statically traversed calls looking for something that
would generate error

Tried debugger

Did string search for error, found it, but many callers

Stepped in debugger to find something relevant

Statically traversed calls to explore

Went back to stepping debugger to inspect values
Found the answer

(66 minutes)

Where is method m
generating an error?

Debugger

Static call traversal

Grep

Debugger

Static Call Traversal

Debugger

3	
So we’ll go there and we’ll just crawl through this code and we’ll try to understand that. So this code has some other options in it. 	

So, I’m just scanning through to just understand what this is doing. Typically these functions look for subcommands for the main command. So u has	

[looking case statement looking at character entered by the user to dispatch on what command to execute]	

one functionality. And ub has another, and uf has another. So that’s what this code is actually doing, hence parse. 	

4	
And the guy that wrote most of this code was pretty consistent with his code patterns for how he does stuff. So, again the function names are idicative of what is going on. And he makes heavy use of flags passing
around. So more precisely, what I’m looking for, I’m looking for who is actually returning this memory access string. So I don’t see anything just scrolling through this function, clearly it’s not this function, but this
function calls a bunch of other functions, so I could walk through all of the calls to try to isolate that, but I’m going to see first if I can get lucky and narrow it down from the other end and look at where the output is
coming from.	

5	
Searching the entire project and we’re just going to do a string search for all of the project and see if that comes up with any, with basically where that output comes from. 	

[doing source insight search]	

So, luckily this doesn’t seem to be a piece of output that gets spewed everywhere which is nice, but it seems pretty sparse. And in fact searching the project didn’t actually find that at all. So I’m really not going to be able
to work backwards from the error string.	

6	
So we’ll go back to the source file itself, so we’ll go back to the original parse file, so we have no options. No modes, so we’re in the default mode, so we’re going into this instruction, this is just flags. I’m just trying to get
a feel for the parameters that we are dragging along here. 	

I don’t know if you want editorial comment on code or code tools while I’m walking through this.	

“Ah, whatever, it’s mostly just whatever you’re thinking about while your working on the task, if that’s what you’re thinking about that’s fine.”	

7	
[laughing] Yeah, it would be nice if looking at this function on the parameters themselves were overlaid with the type. So this has a mouse over that is something, but it doesn’t actually tell me what the type is. So again
looking at the function declaration again ??? So what I really want to know is which one is the address that I’m actually going to disassemble and be on that. So	

So right now I’m mostly just reading the code and trying to understand stuff. But a few things I do noticie is a lot of the lack of the initialization. So some of that I might change is I ultimately do edit this function.	

[looking at the method that is called from dispatch and that does the actual work for the subcommand of interest]	

8	
Just because it’s annoying. 	

So scanning thorugh here, I’m just looking for the calls are and where we go next, or where the output is, because again I’m interested in who is putting that output in there. So here is this function call, machine
disassemble. Here’s a place where source insight falls short, it’s showing me the wrong preview for the dissasmeble function.	

[little preview window in bottom of source insight window for callee]	

I know that because this is a member function and this one is not. This is the wrong number of parameters, blah, blah, blah. So again we have to go back to browse the project symbols for the disassemble function. 	

9	
So again, lots of different ones, but I have which object this is. So if I go back here, we are looking at the machine is our object here, and it is a machine info struct, so we can go back here to	

[figuring out type of object to reason about dynamic dispatch for manually going to callee]	

go to the machine info version of disassemble. So this is interesting because, now we’re outside of what the debugger itself is doing and we’re now in the debugger APIs. So that makes the risk of a change higher. There’s
more of a regression risk, because it’s not just the debugger that’s using it,	

10	
it’s all the debugger including ones that are not ours. So I’m just scanning through, typically looking at stuff like this I’m just interested in how big the function is, how many different branches it could take, how complex
it is going to be to find out where we are going, just from reading the code. Of course I can attach the debugger to the debugger and walk through that which is probably what I’m going to do here in a minute.	

11	
Yeah, so this will be a little easier to understand if I actually walk through the code. So I’ll just open another debugger session and attach it to this first one.	

[starts a second windbg]	

So we started with parse unassemble, which is going to be in dbg eng. 	

12	
Might have to line up symbols for this. So we’ll wait on that, we’ll go back here.	
[to source insight]	

Decode.	

So just scrolling through the function and looking at the first actual function call that we will make goes to this decode function. And again I’m just looking for where that output comes from or if we would set a different
set of brnaches. The comments are, this is nicely commented code which is rare to say the least, so it’s actually a little easier to try and throw out pieces of code that are probably not related to what I’m looking for.
Because I have some innate knowledge as to what I’m looking for, and this error	

[again thinking about reading source code as a filtering / search task]	

is actually most likely coming from, we’re reading an address that is not in the dump file. So I’m looking specifically for read memory or read pointer or stuff like that.	

[he’s right – it does end up being from one of these calls]	

But since this entire codebase calls, so I know that that is going to be something like read ptr or read virtual, but I also know that there’s a bazillion calls to that function, and it’s not very easy to narrow it down that
way, so I can’t go about it that way.	

[wants do string search of callee tree identifiers]	

14	
So the debugger over here came back, so now I can go get symbols for this version. 	

So I can pick the symbol path in the debugger so that I can walk through the code, and again we wait a little bit so we’ll go back over here.	
[to source insight]	

15	
This part of the code is actually taking apart the instructions, so by this point we already have the data, so the read data would have already occurred, and we would have failed by the point that we got to this code. 	

So we’ll go back here, we need to go back to the write disassemble, I believe this is the right one.	

[source insight symbol browser for it]	

16	
So we’ll assume that decode failed, but if we do that, if it fails totally then we would just exit, which doesn’t seem to be what’s happening.	

Because otherwise this function wouldn’t have this text output that we’re interested in.	

17	
So the other things that I noticed when I was looking at the defintions for unsassemble when we called disassemble, there’s a bunch of machine specific implementations of disassemble. So it could be that we’re not
actually calling the machine info, there could be an x86 one that we are actually calling since this is debugging x86 code. So my ia64 version, which apparently I don’t have code for or maybe it was removed from the
project, same thing, so there’s clearly, so there might be something wrong with my project which is why there’s so many definitions ffor this. 	

18	
Ok, so the debugger over here came back so I can just set a breakpoint on parse unassemble and then walk back through the code, oh we actually don’t that one bececause that one is going to succeed, we want the
failure case which is this one.	

[demonstrated some behavior and got a call into it twice]	

Ok, so we are at parse unassembled, so we’ll make the debugger look at the same source code that we are looking at in source insight over here. 	

And the debugger should, if it can find the code, maybe it doesn’t like this code path. That will definitely make it harder to walk through the code.	

19	
So we’ll go back into disassemble here, since there’s not really a better implementation that is able to do it, we’ll go back to the machine info one. 	

What would really be helpful here is to know what code paths are most common, like the metadata that prefix provides, or some tracing tools. If that was somehow overlaid with the source code, then you could see
what code 	

20	
was dead effectively, or what code gets run in certain environments, we’ll just put that in the pipe dream pile.	

“So you just want to see what’s always executed?”	

So it would be nice to see, so like prefix only does a set number of paths, but like Ben Liblit has a project, you’re familiar with him?	

“He’s from wisonsin”	

Yeah, he’s a researcher from Wisconsin, his statistical debugging is his thing, and he has all this tracing stuff that comes up and back and forth. So that, the thing about looking at failure data, because we have failure data
too, we can see what code path executes when things fault, what code executes commonly when stuff works, so if we had some way to say in the source code, because I can do it from the debugger, 	

21	
but I had some way to say in the source code, ok, if I give you these values, what paths will execute. Which I guess is effectively debugging the code.	

“So you’d want to specify those values at function entry rather than just randomly end up with the values from playing with the UI?”	

I think what I’m saying is that, given a function defintion, I fill in a set of values, so what happens if this guy is null, and this guy is also null, 	

[writing asserts on params]	

“Make a bunch of asserts essentially”	

Yeah, it would basically highlight in the code which paths are going to execute, something like that.	

“What would you use that information for, how would that change how you are looking at this method, it would help you rule out pieces?”	

22	
Yeah, it would help me rule out which paths were going to execute, so commonly when I’m looking at code, either code that I’m familiar with in the project that I worked on commonly or because my job is partially to
debug everybody else’s code, so a lot of the time I have crash dumps that say what the state at the time of the failure was, and I have the source code, but I have to do a lot of either qualification of values in the debugger
itself or a bunch of guessing whatever in my head to try and figure out which paths, because we’re looking at a static point of time in the debgugger and a static piece of code. And the 2 won’t, you can overly the two, but
you won’t necessarily know which paths executed, so you have to kind of walk through backwards. So, but I do have, in general I do have the parameters, this is null, this is not null, this is this static value, this is static
value.	

23	
So if I could overlay with the source, so that might, for some of these significantly longer functions, it would help me understand what’s going on there. 	

The other thing that I do a lot when I look at code that I own, I’m typically looking for places that, this is for stuff that I much more familiar with, I’m always interested in what sort of things could be refactored. Where I
could I make a function smaller, where could I reduce the number of parameters. So having a refactoring mode in the source editor would be helpful. Slickedit has some interesting things where you can highlight a
section of code and slickedit will, if you’re going to refactor this, then you also need to drag along these locals and these parameters, and they have to be passed, and it makes your function definition for you.	

24	
So that’s very interesting. 	

So, anyway, we’re back to this. It doesn’t like my source path, oh because I’m giving it the wrong one.	

[still trying to load symbols in debugger]	

25	
[waiting on it to try to load symbols again, back to source insight]	

Ok, again the comments are helpful, because I can basically ignore this branch because I’m pretty sure that the decoder didn’t fail and I don’t see this output.	
[reasoning about what branches were taken based on output behavior]	

But this is interesting to see this output in the context of that, I was looking for a piece of output, because this output is split across 2 source lines as if someone had a significantly more narrow source editor view. So
that might mean that one of the reasons that I couldn’t find the string I was looking for before was because it was wrapped. So maybe if I go back to my search, I was searching for the entire string “memory 	

26	
space access space error” so maybe if I just make it memory access and let it search along, and that finds significantly more entires, including one in utils dot cpp, in a table of error strings.	

[goes to that reference]	

So wherever that guy was, there you go. So this is like an interesting search problem in general. Actually, I don’t think google or live search do this, but if you give a set of 4 individual search terms, usually you get all or
nothing from a search engine. So you get the set of results that get all 4 terms, or in this case all 3 terms, or no terms. 	

27	
But you don’t typically get a treed set of terms, here are the set of results that have all of your terms, here is the set of results that have all minus 1, all minus 2, all the way down to 0. But in that case, this would have
been very helpful, this would have potentially saved me a good bit of time.	

So I’m looking for a call to error string with the error value memory.	

[wants the caller to this method with a particular parameter – the enum that forces the case where it prints the string]	

So we can see how many callers there are here, ok, so there’s a pretty large number of callers of this. Maybe we can look at where those callers are and narrow that down based on what we know.	

So there are a lot in typed data, a lot in system.	

28	
Specifically we’re looking for calling error string with the first parameter of memory, but this is another case where search generally fails in general because of spacing. So this is error string open paren, and then the
word in all caps memory [(MEMORY)].	

But there’s all sorts of permutations of how that could be spaced and still be legitamite compilable code, so we’ll start with this one and see if we get anything. Which we don’t. So we’ll go back here	

29	
a lot of spaces, error space, open paren space, and the word memory, and we’ll search for that. 	

[still nothing]	

So I’m done trying to do that. So let’s look at callers of error string.	

[back to other strategy of looking through callers]	

So maybe if we just parse through here, or step through here, we can see which ones are calling with the parameter of memory.	

But unfortunately, many of these are calling with the first parameter as a variable. So that would mean that what we were looking at before is not a search problem, it’s a variable interpretation problem. 	

30	
So, I’m just kind of stepping through these values, and in my head, I’m just trying to remember which ones are legitimate and which ones might not be. So it would be nice if I could just take this whole list of result
values and select them all out of this combobox, and then paste them into notepad, so I could then remove them from my list. So I wouldn’t have to just worry about remembering them. 	

31	
I think that’s something that I tend to do a lot when debugging as well as reading code, is that I end up with lots of clipboard items, but not clipboard in the sense of you’re sharing text between applications, but
clipboard in the sense of these are little hints on which paths I went down and which paths I didn’t.	

“So you want to make sure you’re not repeating paths, and that you’re pursuing all the paths that you might want to reasonably pursue?”	

And more what I was thinking at the time when I omitted a path or considered a path. So sometimes when I am actually editing the code, I will go through an output not likely to be the path because of this, and then a
lot of those comments I would then clip out before the code gets submitted because they are mostly just code reviewer comments. And typically, that’s something that we see in collaborative word docs.	

32	
It’s pretty typical that you’ll collaborate on a word doc, and people will put comments in line with stuff, but it’s a little less typical for source code, source code comments tend to be missing in total or the comment by
the actual developer or the maintainer. There’s not really a place for comments for readers. This may have been perfectly clear for the developer who wrote it, the source code maintainer might understand it, but the
thousands of other people who are going to read it for debugging, for customers, for the developers themselves, there’s really no place for them to put comments, and maybe there should be.	

“What stops people like from just checking the comment into the source depot? There’s just too much overhead and you don’t’ have the authority to do that, or you don’t own that code?”	

33	
I think it’s not necessarily authority, it’s respect for one. Because this is somebody else’s code, so unless you are going to make a net positive change, I wouldn’t effect a piece of code. And I wouldn’t consider comments
to be a net positive change, although maybe I should. Usually it’s not permissions, its usually this change doesn’t need to be persisted. Or in my opinion, it doesn’t need to be persisted. 	

You could end up with a very interesting source tree if you just opened it up to ad hoc comments by any reviewer. 	

34	
First you’d have to assume that people do it. But then you get into a tool such as a compiler that will decide if you are correct or not. So if you put a comment in there that says that this is going to do this in this case and
you’re wrong, there’s no checking for that. 	

“You need some sort of authority about who this person is who is making the comment”	

Maybe that would help. Or maybe, just like you do for changes, that change is effectively a suggestion that you send for review to the code owner. Maybe we do that with comments to. But then that puts an additional
constraint on the developers which is already an overused resource, or a busy resource if we’re expecting developers to do this. So,	

35	
none of these are clearly what’s not going on here. A lot of these are clearly unrelated, but very generic. So this error here is being used by a lot of very generic functions. Which, I guess is pretty typical for c++ code. I
guess any object based code, because you see it in C# and see it in jave as well, so you have lots of classes and members that overriding ???, so you end up with lots of wrappers, around wrappers, around other
wrappers. And it’s a puzzle in itself to figure out which one is actually of interest.	

36	
So we’ll go back to the debugger to see if I can actually walk through some of this code.	

So it looks like I’m not actually going to get source in here, which is unfortunate. So we’ll just have to, we’ll have to kind of guess what is going on here.	

[looking through assembly to see function calls amidst lots of other assembly]	

So some of these functions I don’t remember seeing in the parse function where we started, so I’m going to go look for those. 	

37	
So there’s get range. 	

So the other thing that I know about this is that I’m relatively certain that the output will come from one of two functions. So we’ll set a breakpoint on those, and we’ll see who the caller of those is, but clearly I’m wrong,
because we didn’t call either of those functions, so we’re going through some other output routine. 	

38	
So again, back to the original function, let’s walk through this a little more carefully.	

[back to source insight]	

So that’s going to be true, that is false, that is false, so is that, as well as that. [picking guards and paths to follow]	

That’s where that annoying error comes from.	

39	
That one is false and so is this one. So we’re just going to go in here, so the first one that we’ll do is call get range, and set ??? to false, so now. 	

So maybe we’re not making it as far as the unassembled itself, maybe we’re stuck in this get range function. So here’s another case where the editor is providing me what it think could be the implementation that I’m
calling, but I’m second guessing that based on experience. So we’ll look for other ones.	

[browsing list of source insight symbols for that method]	

But that’s probably the correct one, so let’s go into get range and walk.	

40	
Ok, so this one goes, skips that next character, and that’s not going to do anything in there	
[reasoning about call – won’t have this effect in it – based on identifer and domain knowledge]	
and then were going to call get ??? address most likely.	

No, we’re going to call evaluate address and here the source code editor doesn’t give me a preview of which one it is. So we’ll see if we even have this at all, so now we have to guess which of these implementations we
are actually going to call. 	

41	
The c++ one or the masm one, or these are all prototypes. But it may be that we only want this one.	

So we’ll go into that one and see if we see. 	

Another fucniton calling a function where we don’t see this at all. Now the source code editor is telling me that this is a macro, but it doesn’t seem to be able to find the macro definition. 	

42	
So, we’ll just ignore that for the time being. Here’s another one that looks like a macro, but it doesn’t seem to like that, so we’ll go over here and search for it in a different way, because that finally finished. 	

So now I’m in a razzle window trying to search for the same thing, since my source code editor is failing, I ‘ll go look, I’ll go lower.	

[fixed a typo in search]	

43	
Well that’s iterating, it’s not finding anything. 	

I always find macros very difficult to deal with and I’m unsure if that is just general unfamiliarity or the lack of good tools or something else I don’t know. But it always seem that when looking at code in a source code
editor, it would be helpful to have an instance macro expander inline, so it would just show you what 	

44	
is actually going to happen. Because macros are there for the code writer, and makes it difficult for everything else. 	

So while this is searching and we’re spending a whole lot of time walking through this code with minimal results.	

45	
So we’ll go back here to the debugger. And what are we looking for, we’re looking for that function, whatever that function was. Yeah, probably get address expression. 	

So, we’ll set a breakpoint there, and sure enough we call that guy. 	

So in some ways this is cheating because I can basically repro what I’m doing. 	
[can repro and step through code rather than just getting static snapshot]	

46	
But debugging postmortem failures, I don’t get a chance to do that, so that’s why I have this dichotomy of what the tools should do, because on the one hand I’m reading the code and maybe editing it, and on the other
hand I spend as much time if not more reading code and trying to understand what it’s doing without necessarily having to interact with it at all. 	

Everyting very slow today.	

[still waiting on file system search and debugger]	

So I’ll switch over here and do a totally unrelated task while I’m waiting.	

47	
Ok, so the debugger came back so I can walk thorugh here.	

Well, it’s got to be this call here. Yep. So here’s what I was loking for in the source code before, and I didn’t have any way to tell other than walking through ???, but here, walking through the debugger, 	

48	
I can clearly see that the implementation, this particular eval holder local variable, what type it is. So I can go, basically grab this and go back to the code and find the masm eval expression and look for eval address in
there.	

But, again, my handy dandy code editor is not very helpful today. 	

Wait, do I know? 	

Ok. 	

The symbols say this should be in ee masm, and there’s ee masm, but its not there. So that’s odd, maybe there’s something wrong with the project, so.	

50	
[trying to add file to rpoject, but not in filesystem]	

So, no ee masm. So, clearly that file is not here.	

Well, that’s because it’s not there. My client view is messed up.	

51	
[edits sd client config file]	

Oh, because when I changed that before I broke it. So in doing something else totally different today I basically deleted a bunch of source files from my machine. 	

So, we’ll have to fix that. 	

[adding several extra directory lines to his sd client config file to restore it to normal state]	

52	
And magically all the files will reappear, which probably explains why my source debugging wasn’t working.	

[does sd sync to get all the files he didn’t have before]	
[wasn’t getting symbols in debugger]	

53	
Or maybe not, but alas, maybe I have the file I’m looking for now, and low and behold there it is.	
[source insight scans file system and updates index, and now can navigate to that file]	

So what are we looking for, eval address. 	

54	
So if I would have to edit this file, I would probably fix some of the spacing issues, these tabs not replaced with spaces etc.	

45

Why was this Hard to Answer?

46464646

Hard to pick the control flow path that leads from starting point to target 
 Guess and check: which path leads to the target?

m

error

Why are Control Flow Questions Common?

474747

	 	 	 	 	 What does this do? What causes this to happen?

 	 	 	 	 	 Does A happen before B?

 	 	 	 	 	 Does x always occur? In which situations does x occur?

•

47

Causality

Ordering

Choice

47

 Helps answer questions about:

When scattered across a codebase, finding statements to answer
these questions can be hard.

48
48

Defect-related false assumptions
& incorrectly answered questions
related to control flow

(common characteristics of evidence sought)
Reachability Questions

lab observations field observations

Primary questions from longest
investigation & debugging
activities related to control flow

feasible
paths

statements matching
search criteria∩

Defect-related false assumptions
& incorrectly answered questions
related to control flow

(common characteristics of evidence sought)

.

downstream upstream

search criteria
identifier	
statement type (field
write/read, library call)

feasible paths
filter compare

Reachability Questions

A search along feasible
paths downstream or
upstream from a
statement for target
statements matching
search criteria

lab observations field observations

Primary questions from longest
investigation & debugging
activities related to control flow

Reachability Question Example

5050505050

feasible
paths

statements matching
search criteria∩

m

e

A search along feasible
paths downstream or
upstream from a
statement (m) for target
statements matching
search criteria (calls to 	
method e)

Longest Activities: Control Flow

5151

4 out of the 5 longest investigation activities

5 out of the 5 longest debugging activities

Primary question Time (m) Related control flow question

How is this data structure being mutated in this code? 83 Search downstream for writes to data structure

“Where [is] the code assuming that the tables are already
there?” 53 Compare behaviors when tables are or are not loaded

How [does] application state change when m is called denoting
startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be non-zero?” 11 Find statements through which values flow into status

Where is method m generating an error? 66 Search downstream from m for error text

What resources are being acquired to cause this
deadlock? 51 Search downstream for acquire method calls

“When they have this attribute, they must use it
somewhere to generate the content, so where is it?” 35 Search downstream for reads of attribute

“What [is] the test doing which is different from what my
app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread pools
51

Insights

5252

‣ Developers can construct incorrect mental models of control flow, leading
them to insert defects

‣ The longest investigation & debugging activities involved a single primary
question about control flow

‣ Found evidence for an underlying cause of these difficulties 
 Challenges answering reachability questions

52

Paper Prototype Study

• Built mockups of interface for task from lab study

• Asked 1 participant to complete lab study task with Eclipse & mockup of
Reacher

• Paper overlay of Reacher commands on monitor

• Experimenter opened appropriate view

• Asked to think aloud, screen capture + audio recording

54

Study results

• Used Reacher to explore code, unable to complete task

• Barriers discovered

• Wanted to see methods before or after, not on path to origin or destination

• Switching between downstream and upstream confusing, particularly
search cursor

• Found horizontal orientation confusing, as unlike debugger call stacks

• Wanted to know when a path might execute

55

Find Statements Matching Search Criteria

56

Examples of observed reachability questions Reacher supports Steps to use Reacher

What resources are being acquired to cause this deadlock? Search downstream for each method which might acquire a resource,
pinning results to keep them visible

When they have this attribute, they must use it somewhere to generate
the content, so where is it?

Search downstream for a field read of the attribute

How are these thread pools interacting? Search downstream for the thread pool class
How is data structure struct being mutated in this code (between o and
d)?

Search downstream for struct class, scoping search to matching
type names and searching for field writes.

How [does] application state change when m is called denoting startup
completion?

Search downstream from m for all field writes

Help Developers Understand Paths

57

Goal: help developers reason about control flow by
summarizing statements along paths in compact
visualization

Challenges: 	
control flow paths can be 	

 complex	

 long	

 repetitive	

developers get lost and
disoriented navigating code

Approach:	

 visually encode properties of path

hide paths by default
coalesce similar paths

use visualization to support
navigation

Example

5858

Evaluation

5959

	

Method 	
 12 developers 15 minutes to answer reachability question x 6	
 	
 Eclipse only on 3 tasks Eclipse w/ REACHER on 3 tasks	

Tasks	

 Based on developer questions in lab study.	

 Example:	

 When a new view is created in jEdit.newView(View), what messages, in 	
 what order, may be sent on the EditBus (EditBus.send())?	

Does REACHER enable developers to answer reachability questions faster or more successfully?

Developers with REACHER were 5.6 times more
successful than those working with Eclipse only.	

Results

60
Task time includes only participants that succeeded.	

More Results

6161

When not using REACHER, participants often reported being lost and confused.

Participants with REACHER used it to jump between
methods.

“Where am I? I’m so lost.”	
“These call stacks are horrible.”	
“There was a call to it here somewhere,
but I don’t remember the path.”	
“I’m just too lost.”

“It seems pretty cool if you can navigate
your way around a complex graph.”

“I like it a lot. It seems like an easy way to navigate the code. And the view
maps to more of how I think of the call hierarchy.”	
“Reacher was my hero. … It’s a lot more fun to use and look at.”	
“You don’t have to think as much.”

Participants reported that they liked working with REACHER.

Reflection on Design Process

• Started with a goal: make debugging in large, complex codebases better

• Observed users to build insight into what key challenge was

• Rather than address usability challenges of existing debugging tools,
designed new way to debug

• Gathered evidence that it worked better

62

10 Minute Break

Tech Talk

In-Class Activity
• Form groups of 2 or 3

• A venture capitalist just gave your group $5M to build a new consumer software product
(mobile, web, desktop, etc.)

• Brainstorm an idea: what's the product? how will it help?

• Deliverables. Answer the following questions:

• What do you know now

• Who are the users? What are their tasks and goals? What problems do they encounter?
How will your tool help?

• What would like to learn through needfinding that you don't already know?

• How would you use an interview / survey / observations / or other method to answer these
questions?

65

