
Preventing Error
SWE 632, Spring 2018

Today

• What causes errors?
• What design choices can help reduce the

frequency of errors?
• What design choices can help users resolve errors

more effectively?

!2

Human Error

Root cause analysis

• Keep asking why to determine causes for
erroneous actions, and the causes of these causes

• Example
• 2010 F-22 crash that killed pilot
• Official cause: pilot error - pilot failed to take

corrective action
• Why did the pilot not take the action?

• Pilot was not receiving oxygen and was
probably unconscious.

!4

What causes disasters?

• Mechanical malfunction?
• Poor design?
• Human error?

!5

Swiss cheese model

• Accidents must penetrate levels of system
defenses

• Reduce accidents by
• Adding more layers
• Reduce the size and number of holes
• Alert users when holes line up

!6

Psychological types of unsafe acts

!7

Violation
• Error occurred because user intended the

erroneous output
• Routine violation - user always intends to do it

• Noncompliance is so frequent it is ignored
• E.g., running a red light

• Exceptional - only in some cases
• Sabotage - intended destruction

!8

Mistakes
• User formulated the wrong goal or plan

• Executing action will not achieve goal
• Rule based: appropriately diagnosed situation, but

chose erroneous course of action
• Example: Night club attendees blocked from

leaving during fire because bouncers thought they
• Knowledge based: does not have correct information

• Example: Skidding driver feels brake vibrations,
believes indicates malfunctioning breaks and takes
foot off break, stopping ABS

!9

Memory Lapse
• Failing to do all steps of a procedure, repeating

steps, forgetting the outcome of an action,
forgetting the goal or plan

• Often caused by interruption
• Time between when plan was formulated and

plan was executed leads to forgetting plan
• Take a pen out to sign form, get interrupted

talking to someone, leave it on desk rather than
put it back in bag

!10

Slips

• Attentional failure - user intended to do correct
action, but did not actually execute action

• Example: forgot to turn off the gas burner on the
stove after cooking

!11

Strong habit intrusion
• Performance of some well-practiced activity in

familiar surroundings
• Intention to depart from custom
• Failure to make an appropriate check
• Example: start trip to frequent destination, forget

going somewhere else

!12

Omissions
• May be interrupted, forgetting intention to act
• “I picked up my coat to go out when the phone

rang. I answered it and then went out of the front
door without my coat.”

!13

Perceptual confusions

• Take frequent action very often, leading to high
System 1 automation

• Don’t perform perceptual check to verify that
System 1 action is the correct one to take

• Example: “I began to pour coffee into the sugar
bowl”

!14

Mistimed checks
• Highly automated System 1 activity that is

interrupted
• Error in resuming activity because usually

unconscious.
• Example - interrupted in the middle of tying shoes

!15

Activity

• Think of the last unsafe act you performed.

• What was the underlying cause?

!16

Designing for error

Designing for error
• Humans are not automatons and will never behave

like automatons

• Easy to design for the situation in which everything
goes well

• But important to think about what might go wrong
and how the interaction design can ameliorate
issues

!18

IFT perspective
• IFT perspective

• User exploring patches topology in
search of prey

• Always making a decision about
whether a patch is the right place to
hunt and changing as new
information arrives

• Breaks down when user actions
transform the state of the application
• Patches and topology no longer

fixed
• Visiting a configuration of the system

by clicking "Send" on the email editor
is a not an undoable action

!19

Some strategies for designing for errors

• Understand the cause, and fix it
• Make it possible to reverse errors
• Offer feedback that enables users to discover and

correct errors
• Don't treat actions as errors, but as manipulations

!20

Understand the causes of errors

• What errors occur? What type are they? How can
they be prevented?

• Frequent contributing factors
• Ambiguous or unclear information about the

state of the system
• Lack of an effective conceptual model
• Inappropriate procedures

• Must design for users as they exist, rather than
users as you'd like them to behave

!21

Interruptions
• Interruptions are a frequent cause of error
• User may be using your interface perfectly, with the

correct plan to get to their goal
• What happens if, in the middle of the task, they

answer a phone call?
• Or if they run out of time, and come back the

next day?

!22

Designing for interruptions
• Help user resume task, by remembering where

they were in task, what steps have been
completed, and what steps remain

• Reduce the number of steps
• Use forcing functions to force users to do

forgettable action (e.g., take card from before
picking up cash)

!23

Example: interruptions
• In groups of two or three

• Imagine a user was interrupted while using one of
your project apps

• What errors might this create?
• What challenges might users experience when

resuming?

• How could you change your design to address
these issues?

!24

Offer feedback for user actions
• Feedback helps keep users on track in

accomplishing goals
• Provide feedback early
• Provide feedback consistently

• Make feedback visible, noticeable, legible, located
w/ in users focus of attention

• Requesting confirmation can be used to prevent
costly errors (but use sparingly)

!25

Tone of feedback
• Establishes relationship with user
• Important not to take user feel “stupid”
• Make the system take blame for errors
• Be positive, to encourage
• Provide helpful messages, not cute messages
• Avoid violent, negative, demeaning, threatening

terms (e.g., illegal, invalid)

!26

System response times
• 0.1second - reacting instantaneously

• requiring no special feedback except displaying result
• limit for direct manipulation of objects in UI

• 1.0 second - freely navigating commands
• noticeable delay, limit for keeping user’s flow of

thought uninterrupted
• 10 seconds - keeping users attention

• limit for keeping user’s attention focus in UI
• longer delays create task breaks

• [Nielsen, Usability Engineering, 1993]

!27

Show users how to fix errors
• Good: detecting user errors
• Better: directly showing how errors can be fixed
• (Best: using constraints to prevent errors from ever

occurring)

!28

Direct manipulation

Motivation
• User is trying to do a

task, manipulating a
[model] of world

• Hard to plan out long
sequence of actions in
advance

• Gulf of execution: hard
to know if took correct
action

• Gulf of evaluation: hard
to understand if
successfully
manipulated world

• Hard to compare hidden
world to desired world

!30

Key questions

• What is the cost of an error?
• Is it low cost or high cost?
• Is it undoable?

• What feedback is necessary for user to realize the
system is not in the desired state?

!31

Direct manipulation
• “Rapid incremental reversible operations whose

impact on the objects of interest is immediately
visible” (Shneiderman, 1982)

!32

Benefits
• Supports exploration

• Don’t plan long sequence of actions: pick an
action, try it, can change mind if want to do
something else instead

• Provides immediate feedback
• Can quickly see what outcome of actions are in

manipulating the world
• Easy to compare desired state of the world to

actual state of the world

!33

Example - Kayak

!34

Example - Google Maps

!35

Example - GUI builder

!36

Example - Spreadsheets

!37

Example: live programming

!38

Example: edit constants by editing output

!39

In-class activity

In Class Activity: Direct Manipulation
Programming Interactions

• In groups of 2
• Design a system for writing code through direct

manipulation
• Create sketches showing key screens
• Should support

• Standard programming language features
(variables, conditionals, loops, functions)

• Should make it faster and easier to make code
changes

• Should make it easier to get feedback on if
program exhibits intended behavior

!41

