
User-Centered Design
SWE 632 
Spring 2022

© Thomas LaToza



Administrivia

•HW1 due next Tuesday before class

2



What We Learned & Looking Ahead

• Examined human cognition


• Have 2 ways to identify usability issues (Heuristics & Principles)


• But... is HCI just identifying usability issues?


• What does design mean? 


• How do we learn about user needs?


• How do we build designs?


• How do we evaluate designs?

3



Overview of User-Centered 
Design



In Class Discussion

• Today’s question:


• What does user-centered design mean to you?

5



User-centered design

6



User-centered design

7

What problems may 
users encounter w/ 

current ways of doing 
things?

Who are the 
users?

What are the user’s 
needs?

What are the 
user’s tasks and 

goals?
What extreme 

cases may exist?

How does the product fit 
into the broader context 

of their lives?



Technology-Centered Design

8

What can this 
technology 

do?

How might 
users use it?

What features 
does it have?

8



Double Diamond Model of Design

• Question problem, expand scope, discover fundamental issues


• Converge on problem


• Expand possible solutions


• Converge on solution

9



Iterative Model of Design

10

Observation

Idea Generation

Prototype

(Re)Define the Problem

Test

Understand User Needs

Brainstorm 

what to build

Evaluate what 
you have built

Build



Iteration, Iteration, Iteration

• Repeated study and testing


• Use tests to determine what is working or not working


• Determine what the problem might be, redefining the problem


• Collect more data


• Generate new alternatives

11



Observation



Needfinding (a.k.a. design research)

• Goal: understand user’s needs


• Use of methods to gather qualitative data


• behaviors, attitudes, aptitudes of potential and existing users


• technical, business, and environmental contexts - domain


• vocabulary and social aspects of domain


• how existing products used


• Empowers team w/ credibility and authority, helping inform decisions

13



Needfinding vs. market research

Needfinding 

• What users really need


• How they will really use product


• Qualitative methods to study in depth


• Small numbers of participants

14

Market research 

• Who might purchase item


• What factors influence 
purchasing


• Quantitative studies w/ 
focus groups, surveys


• Large numbers of 
participants 



Example

• Cooper conducted a user study for entry-level video editing product


• Company built professional software, looking to move into consumer software


• Help connect those w/ computers and video cameras


• Found strongest desire for video editing was parents


• Found 1/12 had successfully connected camera, using work IT guy

15



Solving the correct problem

• Practices may sometimes mask deeper problems


• Goal: uncover layers of practices to understand how problems emerge

16



Interviews

• May include bother current users and potential users w/ related needs


• Questions


• context of how product fits into lives or work


• when, why, how is or will product be used


• what do users need to know to do jobs?


• current tasks and activities, including those not currently supported


• goals and motivations of using product


• problems and frustrations with current products or systems

17



Observations

• Most incapable of accurately assessing own behaviors


• May avoid talking about problems to avoid feeling dumb


• Observing yields more accurate data


• Capture behaviors: notes, pictures, video (if possible)

18



Contextual inquiry

• Method that includes both interviews and observations


• Next week’s lecture

19



Idea Generation



Creativity

• What's the most creative software app you've seen?


• What made it creative?

21



Ideation

• Process of generating, developing, communicating new ideas


• Guidelines and best practices


• Generate numerous ideas


• Number ideas


• Avoid premature dismissal of ideas


• Sharpen the focus - pose the right problem


• Build and jump - build to keep momentum on ideas, jump when theme tapers out

22



Prototyping



Prototyping - Building Quickly

• Build quick prototype or mock-up of each potential solution


• “Wizard of Oz” Studies


• Mainly performed to ensure the problem is well understood

24



Testing



Testing - User Centered Evaluation

• Test with population similar to target population


• Have them use prototypes as close as possible to intended


• If possible, have two people use a prototype, one guiding the other’s 
use.


• More on this in a future lecture… 

26



User-Centered Design 
Considerations



Fail Fast

• “Fail frequently, fail fast” David Kelley, founder of Ideo


• Failure is learning experience


• Crucial to understand correct problem to solve & ensure solution is 
appropriate


• Abstract requirements are invariably wrong


• Requirements produced by asking people what they want are wrong

28





Flexibility-usability tradeoff

30



Flexibility-Usability Tradeoff

• Jack of all trades, master of none


• Better understanding needs enables specialization and 
optimization for common cases


• System evolution over time: 


• flexibility —> specialization

31



Examples of flexibility / usability tradeoff?

32



Navigating Design Space

• What are key decisions in interaction design?


• What alternatives are possible?


• What are tradeoffs between these alternatives?

3333



Hierarchy of Design Decisions

• What are you (re)designing?


• The width of the text input


• The maximum length of a valid username


• When in the signup process users enter their username


• If the user must create a username when signing up


• Whether users are anonymous or have a login


• If users can interact with other users in your application

34



Picking the Right Level of Redesign

• Where are the user’s pain points


• What are the underlying causes


• What would be the value to the user of addressing issue


• What do you have time to build (or change)

35



Example - iPod

• Supports entire activity of listening to music


• discovering music


• purchasing music


• getting it into music player


• developing playlists


• sharing playlists


• listening to music


• ecosystem of external speakers and accessories

36



Example of a Design Process

• How do you get from let's make listening to music better to designing an iPod??


• Iterative design...


• But what does that actually look like more concretely?


• What insights into activity help inspire design?


• How does watching users help lead to these insights?


• How do insights translate into an actual real design?


• How do know the new design is actually better?

37



In-Class Activity

• Redesign PatriotWeb


• Consider: at what level are you redesigning it? What's the problem (at this 
level)? How are you making it better?

38



Example



Domain: Debugging

• Design goal: how do we better support activity of debugging in large, 
complex codebases?


• Build a better debugging tool (?)


• What should it do? How would it help? 


• Design a better watch window? Support new types of breakpoints?


• What's really the key steps in debugging that lead users to struggle the 
most?

40



Domain: Debugging

41



Observing Developers

42

Participants Tasks
~90 minutes 

picked one of their own coding 
tasks involving unfamiliar code17 professional developers

Transcripts

(386 pages)

Interesting.	This	looks	like,	this	looks	like	the	code	is	approximately	the	same	but	it’s	refactored.	But	the	other	code	
is.	


Changed	what	flags	it’s	???


He	added	a	new	flag	that	I	don’t	care	about.	He	just	renamed	a	couple	things.


Well.


So	the	change	seemed	to	have	changed	some	of	the	way	these	things	are	registered,	


but	I	didn’t	see	anything	that	talked	at	all	about	whether	the	app	is	running	or	whether	the	app	is	booted.	So	it	
seems	like,	this	was	useless	to	me.	

(annotated with observer notes about goals and actions)

Activities

42



Coding Activities

43

Circle size:   % of time Edge thickness:   % of transitions observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

43



Longest Activities: Control Flow

4444

4	out	of	the	5	longest	investigation	activities

5	out	of	the	5	longest	debugging	activities

Primary question Time (m) Related control flow question

How is this data structure being mutated in this code? 83 Search downstream for writes to data structure

“Where [is] the code assuming that the tables are already 
there?” 53 Compare behaviors when tables are or are  not loaded

How [does] application state change when m is called denoting 
startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be non-zero?” 11 Find statements through which values flow into status

Where is method m generating an error? 66 Search downstream from m for error text

What resources are being acquired to cause this 
deadlock? 51 Search downstream for acquire method calls

“When they have this attribute, they must use it 
somewhere to generate the content, so where is it?” 35 Search downstream for reads of attribute

“What [is] the test doing which is different from what my 
app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread pools
44



Longest Debugging Activities

454545

Rapidly found method m implementing command 
Unsure where it generated error


 
Statically traversed calls looking for something that 
would generate error


Tried debugger


 
Did string search for error, found it, but many callers 

Stepped in debugger to find something relevant 

Statically traversed calls to explore 

Went back to stepping debugger to inspect values 
Found the answer

(66 minutes)

Where	is	method	m	
generating	an	error?

Debugger

Static call traversal

Grep

Debugger

Static Call Traversal

Debugger

3

So	we’ll	go	there	and	we’ll	just	crawl	through	this	code	and	we’ll	try	to	understand	that.	So	this	code	has	some	other	options	in	it.	


So,	I’m	just	scanning	through	to	just	understand	what	this	is	doing.	Typically	these	functions	look	for	subcommands	for	the	main	command.	So	u	has


[looking	case	statement	looking	at	character	entered	by	the	user	to	dispatch	on	what	command	to	execute]


one	functionality.	And	ub	has	another,	and	uf	has	another.	So	that’s	what	this	code	is	actually	doing,	hence	parse.	


4

And	the	guy	that	wrote	most	of	this	code	was	pretty	consistent	with	his	code	patterns	for	how	he	does	stuff.	So,	again	the	function	names	are	idicative	of	what	is	going	on.	And	he	makes	heavy	use	of	flags	passing	
around.	So	more	precisely,	what	I’m	looking	for,	I’m	looking	for	who	is	actually	returning	this	memory	access	string.	So	I	don’t	see	anything	just	scrolling	through	this	function,	clearly	it’s	not	this	function,	but	this	
function	calls	a	bunch	of	other	functions,	so	I	could	walk	through	all	of	the	calls	to	try	to	isolate	that,	but	I’m	going	to	see	first	if	I	can	get	lucky	and	narrow	it	down	from	the	other	end	and	look	at	where	the	output	is	
coming	from.


5

Searching	the	entire	project	and	we’re	just	going	to	do	a	string	search	for	all	of	the	project	and	see	if	that	comes	up	with	any,	with	basically	where	that	output	comes	from.	


[doing	source	insight	search]


So,	luckily	this	doesn’t	seem	to	be	a	piece	of	output	that	gets	spewed	everywhere	which	is	nice,	but	it	seems	pretty	sparse.	And	in	fact	searching	the	project	didn’t	actually	find	that	at	all.	So	I’m	really	not	going	to	be	able	
to	work	backwards	from	the	error	string.


6

So	we’ll	go	back	to	the	source	file	itself,	so	we’ll	go	back	to	the	original	parse	file,	so	we	have	no	options.	No	modes,	so	we’re	in	the	default	mode,	so	we’re	going	into	this		instruction,	this	is	just	flags.	I’m	just	trying	to	get	
a	feel	for	the	parameters	that	we	are	dragging	along	here.	


I	don’t	know	if	you	want	editorial	comment	on	code	or	code	tools	while	I’m	walking	through	this.


“Ah,	whatever,	it’s	mostly	just	whatever	you’re	thinking	about	while	your	working	on	the	task,	if	that’s	what	you’re	thinking	about	that’s	fine.”


7

[laughing]	Yeah,	it	would	be	nice	if	looking	at	this	function	on	the	parameters	themselves	were	overlaid	with	the	type.	So	this	has	a	mouse	over	that	is	something,	but	it	doesn’t	actually	tell	me	what	the	type	is.	So	again	
looking	at	the	function	declaration	again	???	So	what	I	really	want	to	know	is	which	one	is	the	address	that	I’m	actually	going	to	disassemble	and	be	on	that.	So


So	right	now	I’m	mostly	just	reading	the	code	and	trying	to	understand	stuff.	But	a	few	things	I	do	noticie	is	a	lot	of	the	lack	of	the	initialization.	So	some	of	that	I	might	change	is	I	ultimately	do	edit	this	function.


[looking	at	the	method	that	is	called	from	dispatch	and	that	does	the	actual	work	for	the	subcommand	of	interest]


8

Just	because	it’s	annoying.	


So	scanning	thorugh	here,	I’m	just	looking	for	the	calls	are	and	where	we	go	next,	or	where	the	output	is,		because	again	I’m	interested	in	who	is	putting	that	output	in	there.	So	here	is	this	function	call,	machine	
disassemble.	Here’s	a	place	where	source	insight	falls	short,	it’s	showing	me	the	wrong	preview	for	the	dissasmeble	function.


[little	preview	window	in	bottom	of	source	insight	window	for	callee]


I	know	that	because	this	is	a	member	function	and	this	one	is	not.	This	is	the	wrong	number	of	parameters,	blah,	blah,	blah.	So	again	we	have	to	go	back	to	browse	the	project	symbols	for	the	disassemble	function.	


9

So	again,	lots	of	different	ones,	but	I	have	which	object	this	is.	So	if	I	go	back	here,	we	are	looking	at	the	machine	is	our	object	here,	and	it	is	a	machine	info	struct,	so	we	can	go	back	here	to


[figuring	out	type	of	object	to	reason	about	dynamic	dispatch	for	manually	going	to	callee]


go	to	the	machine	info	version	of	disassemble.	So	this	is	interesting	because,	now	we’re	outside	of	what	the	debugger	itself	is	doing	and	we’re	now	in	the	debugger	APIs.	So	that	makes	the	risk	of	a	change	higher.	There’s	
more	of	a	regression	risk,	because	it’s	not	just	the	debugger	that’s	using	it,


10

it’s	all	the	debugger	including	ones	that	are	not	ours.	So	I’m	just	scanning	through,	typically	looking	at	stuff	like	this	I’m	just	interested	in	how	big	the	function	is,	how	many	different	branches	it	could	take,	how	complex	
it	is	going	to	be	to	find	out	where	we	are	going,	just	from	reading	the	code.	Of	course	I	can	attach	the	debugger	to	the	debugger	and	walk	through	that	which	is	probably	what	I’m	going	to	do	here	in	a	minute.


11

Yeah,	so	this	will	be	a	little	easier	to	understand	if	I	actually	walk	through	the	code.	So	I’ll	just	open	another	debugger	session	and	attach	it	to	this	first	one.


[starts	a	second	windbg]


So	we	started	with	parse	unassemble,	which	is	going	to	be	in	dbg	eng.	


12

Might	have	to	line	up	symbols	for	this.	So	we’ll	wait	on	that,	we’ll	go	back	here.

[to	source	insight]


Decode.


So	just	scrolling	through	the	function	and	looking	at	the	first	actual	function	call	that	we	will	make	goes	to	this	decode	function.	And	again	I’m	just	looking	for	where	that	output	comes	from	or	if	we	would	set	a	different	
set	of	brnaches.	The	comments	are,	this	is	nicely	commented	code	which	is	rare	to	say	the	least,	so	it’s	actually	a	little	easier	to	try	and	throw	out	pieces	of	code	that	are	probably	not	related	to	what	I’m	looking	for.	
Because	I	have	some	innate	knowledge	as	to	what	I’m	looking	for,	and	this	error


[again	thinking	about	reading	source	code	as	a	filtering	/	search	task]


is	actually	most	likely	coming	from,	we’re	reading	an	address	that	is	not	in	the	dump	file.	So	I’m	looking	specifically	for	read	memory	or	read	pointer	or	stuff	like	that.


[he’s	right	–	it	does	end	up	being	from	one	of	these	calls]


But	since	this	entire	codebase	calls,	so	I	know	that	that	is	going	to	be	something	like	read	ptr	or	read	virtual,	but	I	also	know	that	there’s	a	bazillion	calls	to	that	function,	and	it’s	not	very	easy	to	narrow	it	down	that	
way,	so	I	can’t	go	about	it	that	way.


[wants	do	string	search	of	callee	tree	identifiers]


14

So	the	debugger	over	here	came	back,	so	now	I	can	go	get	symbols	for	this	version.	


So	I	can	pick	the	symbol	path	in	the	debugger	so	that	I	can	walk	through	the	code,	and	again	we	wait	a	little	bit	so	we’ll	go	back	over	here.

[to	source	insight]


15

This	part	of	the	code	is	actually	taking	apart	the	instructions,	so	by	this	point	we	already	have	the	data,	so	the	read	data	would	have	already	occurred,	and	we	would	have	failed	by	the	point	that	we	got	to	this	code.	


So	we’ll	go	back	here,	we	need	to	go	back	to	the	write	disassemble,	I	believe	this	is	the	right	one.


[source	insight	symbol	browser	for	it]


16

So	we’ll	assume	that	decode	failed,	but	if	we	do	that,	if	it	fails	totally	then	we	would	just	exit,	which	doesn’t	seem	to	be	what’s	happening.


Because	otherwise	this	function	wouldn’t	have	this	text	output	that	we’re	interested	in.


17

So	the	other	things	that	I	noticed	when	I	was	looking	at	the	defintions	for	unsassemble	when	we	called	disassemble,	there’s	a	bunch	of	machine	specific	implementations	of	disassemble.	So	it	could	be	that	we’re	not	
actually	calling	the	machine	info,	there	could	be	an	x86	one	that	we	are	actually	calling	since	this	is	debugging	x86	code.	So	my	ia64	version,	which	apparently	I	don’t	have	code	for	or	maybe	it	was	removed	from	the	
project,	same	thing,	so	there’s	clearly,	so	there	might	be	something	wrong	with	my	project	which	is	why	there’s	so	many	definitions	ffor	this.	


18

Ok,	so	the	debugger	over	here	came	back	so	I	can	just	set	a	breakpoint	on	parse	unassemble	and	then	walk	back	through	the	code,	oh	we	actually	don’t	that	one	bececause	that	one	is	going	to	succeed,	we	want	the	
failure	case	which	is	this	one.


[demonstrated	some	behavior	and	got	a	call	into	it	twice]


Ok,	so	we	are	at	parse	unassembled,	so	we’ll	make	the	debugger	look	at	the	same	source	code	that	we	are	looking	at	in	source	insight	over	here.	


And	the	debugger	should,	if	it	can	find	the	code,	maybe	it	doesn’t	like	this	code	path.	That	will	definitely	make	it	harder	to	walk	through	the	code.


19

So	we’ll	go	back	into	disassemble	here,	since	there’s	not	really	a	better	implementation	that	is	able	to	do	it,	we’ll	go	back	to	the	machine	info	one.	


What	would	really	be	helpful	here	is	to	know	what	code	paths	are	most	common,	like	the	metadata	that	prefix	provides,	or	some	tracing	tools.	If	that	was	somehow	overlaid	with	the	source	code,	then	you	could	see	
what	code	


20

was	dead	effectively,	or	what	code	gets	run	in	certain	environments,	we’ll	just	put	that	in	the	pipe	dream	pile.


“So	you	just	want	to	see	what’s	always	executed?”


So	it	would	be	nice	to	see,	so	like	prefix	only	does	a	set	number	of	paths,	but	like	Ben	Liblit	has	a	project,	you’re	familiar	with	him?


“He’s	from	wisonsin”


Yeah,	he’s	a	researcher	from	Wisconsin,	his	statistical	debugging	is	his	thing,	and	he	has	all	this	tracing	stuff	that	comes	up	and	back	and	forth.	So	that,	the	thing	about	looking	at	failure	data,	because	we	have	failure	data	
too,	we	can	see	what	code	path	executes	when	things	fault,	what	code	executes	commonly	when	stuff	works,	so	if	we	had	some	way	to	say	in	the	source	code,	because	I	can	do	it	from	the	debugger,	


21

but	I	had	some	way	to	say	in	the	source	code,	ok,	if	I	give	you	these	values,	what	paths	will	execute.	Which	I	guess	is	effectively	debugging	the	code.


“So	you’d	want	to	specify	those	values	at	function	entry	rather	than	just	randomly	end	up	with	the	values	from	playing	with	the	UI?”


I	think	what	I’m	saying	is	that,	given	a	function	defintion,	I	fill	in	a	set	of	values,	so	what	happens	if	this	guy	is	null,	and	this	guy	is	also	null,	


[writing	asserts	on	params]


“Make	a	bunch	of	asserts	essentially”


Yeah,	it	would	basically	highlight	in	the	code	which	paths	are	going	to	execute,	something	like	that.


“What	would	you	use	that	information	for,	how	would	that	change	how	you	are	looking	at	this	method,	it	would	help	you	rule	out	pieces?”


22

Yeah,	it	would	help	me	rule	out	which	paths	were	going	to	execute,	so	commonly	when	I’m	looking	at	code,	either	code	that	I’m	familiar	with	in	the	project	that	I	worked	on	commonly	or	because	my	job	is	partially	to	
debug	everybody	else’s	code,	so	a	lot	of	the	time	I	have	crash	dumps	that	say	what	the	state	at	the	time	of	the	failure	was,	and	I	have	the	source	code,	but	I	have	to	do	a	lot	of	either	qualification	of	values	in	the	debugger	
itself	or	a	bunch	of	guessing	whatever	in	my	head	to	try	and	figure	out	which	paths,	because	we’re	looking	at	a	static	point	of	time	in	the	debgugger	and	a	static	piece	of	code.	And	the	2	won’t,	you	can	overly	the	two,	but	
you	won’t	necessarily	know	which	paths	executed,	so	you	have	to	kind	of	walk	through	backwards.	So,	but	I	do	have,	in	general	I	do	have	the	parameters,	this	is	null,	this	is	not	null,	this	is	this	static	value,	this	is	static	
value.


23

So	if	I	could	overlay	with	the	source,	so	that	might,	for	some	of	these	significantly	longer	functions,	it	would	help	me	understand	what’s	going	on	there.	


The	other	thing	that	I	do	a	lot	when	I	look	at	code	that	I	own,	I’m	typically	looking	for	places	that,	this	is	for	stuff	that	I	much	more	familiar	with,	I’m	always	interested	in	what	sort	of	things	could	be	refactored.	Where	I	
could	I	make	a	function	smaller,	where	could	I	reduce	the	number	of	parameters.	So	having	a	refactoring	mode	in	the	source	editor	would	be	helpful.	Slickedit	has	some	interesting	things	where	you	can	highlight	a	
section	of	code	and	slickedit	will,	if	you’re	going	to	refactor	this,	then	you	also	need	to	drag	along	these	locals	and	these	parameters,	and	they	have	to	be	passed,	and	it	makes	your	function	definition	for	you.


24

So	that’s	very	interesting.	


So,	anyway,	we’re	back	to	this.	It	doesn’t	like	my	source	path,	oh	because	I’m	giving	it	the	wrong	one.


[still	trying	to	load	symbols	in	debugger]


25

[waiting	on	it	to	try	to	load	symbols	again,	back	to	source	insight]


Ok,	again	the	comments	are	helpful,	because	I	can	basically	ignore	this	branch	because	I’m	pretty	sure	that	the	decoder	didn’t	fail	and	I	don’t	see	this	output.

[reasoning	about	what	branches	were	taken	based	on	output	behavior]


But	this	is	interesting	to	see	this	output	in	the	context	of	that,	I	was	looking	for	a	piece	of	output,	because	this	output	is	split	across	2	source	lines	as	if	someone	had	a	significantly	more	narrow	source	editor	view.	So	
that	might	mean	that	one	of	the	reasons	that	I	couldn’t	find	the	string	I	was	looking	for	before	was	because	it	was	wrapped.	So	maybe	if	I	go	back	to	my	search,	I	was	searching	for	the	entire	string	“memory	


26

space	access	space	error”	so	maybe	if	I	just	make	it	memory	access	and	let	it	search	along,	and	that	finds	significantly	more	entires,	including	one	in	utils	dot	cpp,	in	a	table	of	error	strings.


[goes	to	that	reference]


So	wherever	that	guy	was,	there	you	go.	So	this	is	like	an	interesting	search	problem	in	general.	Actually,	I	don’t	think	google	or	live	search	do	this,	but	if	you	give	a	set	of	4	individual	search	terms,	usually	you	get	all	or	
nothing	from	a	search	engine.	So	you	get	the	set	of	results	that	get	all	4	terms,	or	in	this	case	all	3	terms,	or	no	terms.	


27

But	you	don’t	typically	get	a	treed	set	of	terms,	here	are	the	set	of	results	that	have	all	of	your	terms,	here	is	the	set	of	results	that	have	all	minus	1,	all	minus	2,	all	the	way	down	to	0.	But	in	that	case,	this	would	have	
been	very	helpful,	this	would	have	potentially	saved	me	a	good	bit	of	time.


So	I’m	looking	for	a	call	to	error	string	with	the	error	value	memory.


[wants	the	caller	to	this	method	with	a	particular	parameter	–	the	enum	that	forces	the	case	where	it	prints	the	string]


So	we	can	see	how	many	callers	there	are	here,	ok,	so	there’s	a	pretty	large	number	of	callers	of	this.	Maybe	we	can	look	at	where	those	callers	are	and	narrow	that	down	based	on	what	we	know.


So	there	are	a	lot	in	typed	data,	a	lot	in	system.


28

Specifically	we’re	looking	for	calling	error	string	with	the	first	parameter	of	memory,	but	this	is	another	case	where	search	generally	fails	in	general	because	of	spacing.	So	this	is	error	string	open	paren,	and	then	the	
word	in	all	caps	memory	[(MEMORY)].


But	there’s	all	sorts	of	permutations	of	how	that	could	be	spaced	and	still	be	legitamite	compilable	code,	so	we’ll	start	with	this	one	and	see	if	we	get	anything.	Which	we	don’t.	So	we’ll	go	back	here


29

a	lot	of	spaces,	error	space,	open	paren	space,	and	the	word	memory,	and	we’ll	search	for	that.	


[still	nothing]


So	I’m	done	trying	to	do	that.	So	let’s	look	at	callers	of	error	string.


[back	to	other	strategy	of	looking	through	callers]


So	maybe	if	we	just	parse	through	here,	or	step	through	here,	we	can	see	which	ones	are	calling	with	the	parameter	of	memory.


But	unfortunately,	many	of	these	are	calling	with	the	first	parameter	as	a	variable.	So	that	would	mean	that	what	we	were	looking	at	before	is	not	a	search	problem,	it’s	a	variable	interpretation	problem.	


30

So,	I’m	just	kind	of	stepping	through	these	values,	and	in	my	head,	I’m	just	trying	to	remember	which	ones	are	legitimate	and	which	ones	might	not	be.	So	it	would	be	nice	if	I	could	just	take	this	whole	list	of	result	
values	and	select	them	all	out	of	this	combobox,	and	then	paste	them	into	notepad,	so	I	could	then	remove	them	from	my	list.	So	I	wouldn’t	have	to	just	worry	about	remembering	them.	


31

I	think	that’s	something	that	I	tend	to	do	a	lot	when	debugging	as	well	as	reading	code,	is	that	I	end	up	with	lots	of	clipboard	items,	but	not	clipboard	in	the	sense	of	you’re	sharing	text	between	applications,	but	
clipboard	in	the	sense	of	these	are	little	hints	on	which	paths	I	went	down	and	which	paths	I	didn’t.


“So	you	want	to	make	sure	you’re	not	repeating	paths,	and	that	you’re	pursuing	all	the	paths	that	you	might	want	to	reasonably	pursue?”


And	more	what	I	was	thinking	at	the	time	when	I	omitted	a	path	or	considered	a	path.	So	sometimes	when	I	am	actually	editing	the	code,	I	will	go	through	an	output	not	likely	to	be	the	path	because	of	this,	and	then	a	
lot	of	those	comments	I	would	then	clip	out	before	the	code	gets	submitted	because	they	are	mostly	just	code	reviewer	comments.	And	typically,	that’s	something	that	we	see	in	collaborative	word	docs.


32

It’s	pretty	typical	that	you’ll	collaborate	on	a	word	doc,	and	people	will	put	comments	in	line	with	stuff,	but	it’s	a	little	less	typical	for	source	code,	source	code	comments	tend	to	be	missing	in	total	or	the	comment	by	
the	actual	developer	or	the	maintainer.	There’s	not	really	a	place	for	comments	for	readers.	This	may	have	been	perfectly	clear	for	the	developer	who	wrote	it,	the	source	code	maintainer	might	understand	it,	but	the	
thousands	of	other	people	who	are	going	to	read	it	for	debugging,	for	customers,	for	the	developers	themselves,	there’s	really	no	place	for	them	to	put	comments,	and	maybe	there	should	be.


“What	stops	people	like	from	just	checking	the	comment	into	the	source	depot?	There’s	just	too	much	overhead	and	you	don’t’	have	the	authority	to	do	that,	or	you	don’t	own	that	code?”


33

I	think	it’s	not	necessarily	authority,	it’s	respect	for	one.	Because	this	is	somebody	else’s	code,	so	unless	you	are	going	to	make	a	net	positive	change,	I	wouldn’t	effect	a	piece	of	code.	And	I	wouldn’t	consider	comments	
to	be	a	net	positive	change,	although	maybe	I	should.	Usually	it’s	not	permissions,	its	usually	this	change	doesn’t	need	to	be	persisted.	Or	in	my	opinion,	it	doesn’t	need	to	be	persisted.	


You	could	end	up	with	a	very	interesting	source	tree	if	you	just	opened	it	up	to	ad	hoc	comments	by	any	reviewer.	


34

First	you’d	have	to	assume	that	people	do	it.	But	then	you	get	into	a	tool	such	as	a	compiler	that	will	decide	if	you	are	correct	or	not.	So	if	you	put	a	comment	in	there	that	says	that	this	is	going	to	do	this	in	this	case	and	
you’re	wrong,	there’s	no	checking	for	that.	


“You	need	some	sort	of	authority	about	who	this	person	is	who	is	making	the	comment”


Maybe	that	would	help.	Or	maybe,	just	like	you	do	for	changes,	that	change	is	effectively	a	suggestion	that	you	send	for	review	to	the	code	owner.	Maybe	we	do	that	with	comments	to.	But	then	that	puts	an	additional	
constraint	on	the	developers	which	is	already	an	overused	resource,	or	a	busy	resource	if	we’re	expecting	developers	to	do	this.	So,


35

none	of	these	are	clearly	what’s	not	going	on	here.	A	lot	of	these	are	clearly	unrelated,	but	very	generic.	So	this	error	here	is	being	used	by	a	lot	of	very	generic	functions.	Which,	I	guess	is	pretty	typical	for	c++	code.	I	
guess	any	object	based	code,	because	you	see	it	in	C#	and	see	it	in	jave	as	well,	so	you	have	lots	of	classes	and	members	that	overriding	???,	so	you	end	up	with	lots	of	wrappers,	around	wrappers,	around	other	
wrappers.	And	it’s	a	puzzle	in	itself	to	figure	out	which	one	is	actually	of	interest.


36

So	we’ll	go	back	to	the	debugger	to	see	if	I	can	actually	walk	through	some	of	this	code.


So	it	looks	like	I’m	not	actually	going	to	get	source	in	here,	which	is	unfortunate.	So	we’ll	just	have	to,	we’ll	have	to	kind	of	guess	what	is	going	on	here.


[looking	through	assembly	to	see	function	calls	amidst	lots	of	other	assembly]


So	some	of	these	functions	I	don’t	remember	seeing	in	the	parse	function	where	we	started,	so	I’m	going	to	go	look	for	those.	


37

So	there’s	get	range.	


So	the	other	thing	that	I	know	about	this	is	that	I’m	relatively	certain	that	the	output	will	come	from	one	of	two	functions.	So	we’ll	set	a	breakpoint	on	those,	and	we’ll	see	who	the	caller	of	those	is,	but	clearly	I’m	wrong,	
because	we	didn’t	call	either	of	those	functions,	so	we’re	going	through	some	other	output	routine.	


38

So	again,	back	to	the	original	function,	let’s	walk	through	this	a	little	more	carefully.


[back	to	source	insight]


So	that’s	going	to	be	true,	that	is	false,	that	is	false,	so	is	that,	as	well	as	that.	[picking	guards	and	paths	to	follow]


That’s	where	that	annoying	error	comes	from.


39

That	one	is	false	and	so	is	this	one.	So	we’re	just	going	to	go	in	here,	so	the	first	one	that	we’ll	do	is	call	get	range,	and	set	???	to	false,	so	now.	


So	maybe	we’re	not	making	it	as	far	as	the	unassembled	itself,	maybe	we’re	stuck	in	this	get	range	function.	So	here’s	another	case	where	the	editor	is	providing	me	what	it	think	could	be	the	implementation	that	I’m	
calling,	but	I’m	second	guessing	that	based	on	experience.	So	we’ll	look	for	other	ones.


[browsing	list	of	source	insight	symbols	for	that	method]


But	that’s	probably	the	correct	one,	so	let’s	go	into	get	range	and	walk.


40

Ok,	so	this	one	goes,	skips	that	next	character,	and	that’s	not	going	to	do	anything	in	there

[reasoning	about	call	–	won’t	have	this	effect	in	it	–	based	on	identifer	and	domain	knowledge]

and	then	were	going	to	call	get	???	address	most	likely.


No,	we’re	going	to	call	evaluate	address	and	here	the	source	code	editor	doesn’t	give	me	a	preview	of	which	one	it	is.	So	we’ll	see	if	we	even	have	this	at	all,	so	now	we	have	to	guess	which	of	these	implementations	we	
are	actually	going	to	call.	


41

The	c++	one	or	the	masm	one,	or	these	are	all	prototypes.	But	it	may	be	that	we	only	want	this	one.


So	we’ll	go	into	that	one	and	see	if	we	see.	


Another	fucniton	calling	a	function	where	we	don’t	see	this	at	all.	Now	the	source	code	editor	is	telling	me	that	this	is	a	macro,	but	it	doesn’t	seem	to	be	able	to	find	the	macro	definition.	


42

So,	we’ll	just	ignore	that	for	the	time	being.	Here’s	another	one	that	looks	like	a	macro,	but	it	doesn’t	seem	to	like	that,	so	we’ll	go	over	here	and	search	for	it	in	a	different	way,	because	that	finally	finished.	


So	now	I’m	in	a	razzle	window	trying	to	search	for	the	same	thing,	since	my	source	code	editor	is	failing,	I	‘ll	go	look,	I’ll	go	lower.


[fixed	a	typo	in	search]


43

Well	that’s	iterating,	it’s	not	finding	anything.	


I	always	find	macros	very	difficult	to	deal	with	and	I’m	unsure	if	that	is	just	general	unfamiliarity	or	the	lack	of	good	tools	or	something	else	I	don’t		know.	But	it	always	seem	that	when	looking	at	code	in	a	source	code	
editor,	it	would	be	helpful	to	have	an	instance	macro	expander	inline,	so	it	would	just	show	you	what	


44

is	actually	going	to	happen.	Because	macros	are	there	for	the	code	writer,	and	makes	it	difficult	for	everything	else.	


So	while	this	is	searching	and	we’re	spending	a	whole	lot	of	time	walking	through	this	code	with	minimal	results.


45

So	we’ll	go	back	here	to	the	debugger.	And	what	are	we	looking	for,	we’re	looking	for	that	function,	whatever	that	function	was.	Yeah,	probably	get	address	expression.	


So,	we’ll	set	a	breakpoint	there,	and	sure	enough	we	call	that	guy.	


So	in	some	ways	this	is	cheating	because	I	can	basically	repro	what	I’m	doing.	

[can	repro	and	step	through	code	rather	than	just	getting	static	snapshot]


46

But	debugging	postmortem	failures,	I	don’t	get	a	chance	to	do	that,	so	that’s	why	I	have	this	dichotomy	of	what	the	tools	should	do,	because	on	the	one	hand	I’m	reading	the	code	and	maybe	editing	it,	and	on	the	other	
hand	I	spend	as	much	time	if	not	more	reading	code	and	trying	to	understand	what	it’s	doing	without	necessarily	having	to	interact	with	it	at	all.	


Everyting	very	slow	today.


[still	waiting	on	file	system	search	and	debugger]


So	I’ll	switch	over	here	and	do	a	totally	unrelated	task	while	I’m	waiting.


47

Ok,	so	the	debugger	came	back	so	I	can	walk	thorugh	here.


Well,	it’s	got	to	be	this	call	here.	Yep.	So	here’s	what	I	was	loking	for	in	the	source	code	before,	and	I	didn’t	have	any	way	to	tell	other	than	walking	through	???,	but	here,	walking	through	the	debugger,	


48

I	can	clearly	see	that	the	implementation,	this	particular	eval	holder	local	variable,	what	type	it	is.	So	I	can	go,	basically	grab	this	and	go	back	to	the	code	and	find	the	masm	eval	expression	and	look	for	eval	address	in	
there.


But,	again,	my	handy	dandy	code	editor	is	not	very	helpful	today.	


Wait,	do	I	know?	


Ok.	


The	symbols	say	this	should	be	in	ee	masm,	and	there’s	ee	masm,	but	its	not	there.	So	that’s	odd,	maybe	there’s	something	wrong	with	the	project,	so.


50

[trying	to	add	file	to	rpoject,	but	not	in	filesystem]


So,	no	ee	masm.	So,	clearly	that	file	is	not	here.


Well,	that’s	because	it’s	not	there.	My	client	view	is	messed	up.


51

[edits	sd	client	config	file]


Oh,	because	when	I	changed	that	before	I	broke	it.	So	in	doing	something	else	totally	different	today	I	basically	deleted	a	bunch	of	source	files	from	my	machine.	


So,	we’ll	have	to	fix	that.	


[adding	several	extra	directory	lines	to	his	sd	client	config	file	to	restore	it	to	normal	state]


52

And	magically	all	the	files	will	reappear,	which	probably	explains	why	my	source	debugging	wasn’t	working.


[does	sd	sync	to	get	all	the	files	he	didn’t	have	before]

[wasn’t	getting	symbols	in	debugger]


53

Or	maybe	not,	but	alas,	maybe	I	have	the	file	I’m	looking	for	now,	and	low	and	behold	there	it	is.

[source	insight	scans	file	system	and	updates	index,	and	now	can	navigate	to	that	file]


So	what	are	we	looking	for,	eval	address.	


54

So	if	I	would	have	to	edit	this	file,	I	would	probably	fix	some	of	the	spacing	issues,	these	tabs	not	replaced	with	spaces	etc.


45



Why was this Hard to Answer?

46464646

Hard to pick the control flow path that leads from starting point to target 
      Guess and check: which path leads to the target?

m

error



Why are Control Flow Questions Common?

474747

	 	 	 	 	 What does this do?   What causes this to happen?


 	 	 	 	 	 Does A happen before B?


 	 	 	 	 	 Does x always occur? In which situations does x occur?


•

47

Causality

Ordering

Choice

47

                          Helps answer questions about:

When scattered across a codebase, finding statements to answer 
these questions can be hard.




48
48

Defect-related	false	assumptions	
&	incorrectly	answered	questions	
related	to	control	flow

(common	characteristics	of	evidence	sought)
Reachability	Questions

lab	observations field	observations

Primary	questions	from	longest	
investigation	&	debugging	
activities	related	to	control	flow



feasible	
paths

statements	matching	
search	criteria∩

Defect-related	false	assumptions	
&	incorrectly	answered	questions	
related	to	control	flow

(common	characteristics	of	evidence	sought)

.

downstream upstream

search	criteria
identifier 
statement	type	(field	
write/read,	library	call)

feasible	paths
filter compare

Reachability	Questions

A	search	along	feasible	
paths	downstream	or	
upstream	from	a	
statement	for	target	
statements	matching	
search	criteria

lab	observations field	observations

Primary	questions	from	longest	
investigation	&	debugging	
activities	related	to	control	flow



Reachability Question Example

5050505050

feasible	
paths

statements	matching	
search	criteria∩

m

e

A	search	along	feasible	
paths	downstream	or	
upstream	from	a	
statement	(m)	for	target	
statements	matching	
search	criteria	(calls	to	 
method	e)



Longest Activities: Control Flow

5151

4	out	of	the	5	longest	investigation	activities

5	out	of	the	5	longest	debugging	activities

Primary question Time (m) Related control flow question

How is this data structure being mutated in this code? 83 Search downstream for writes to data structure

“Where [is] the code assuming that the tables are already 
there?” 53 Compare behaviors when tables are or are  not loaded

How [does] application state change when m is called denoting 
startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be non-zero?” 11 Find statements through which values flow into status

Where is method m generating an error? 66 Search downstream from m for error text

What resources are being acquired to cause this 
deadlock? 51 Search downstream for acquire method calls

“When they have this attribute, they must use it 
somewhere to generate the content, so where is it?” 35 Search downstream for reads of attribute

“What [is] the test doing which is different from what my 
app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread pools
51



Insights

5252

‣ Developers can construct incorrect mental models of control flow, leading 
them to insert defects


‣ The longest investigation & debugging activities involved a single primary 
question about control flow


‣ Found evidence for an underlying cause of these difficulties 
       Challenges answering reachability questions

52





Paper Prototype Study

• Built mockups of interface for task from lab study


• Asked 1 participant to complete lab study task with Eclipse & mockup of 
Reacher


• Paper overlay of Reacher commands on monitor


• Experimenter opened appropriate view


• Asked to think aloud, screen capture + audio recording

54



Study results

• Used Reacher to explore code, unable to complete task


• Barriers discovered


• Wanted to see methods before or after, not on path to origin or destination


• Switching between downstream and upstream confusing, particularly 
search cursor


• Found horizontal orientation confusing, as unlike debugger call stacks


• Wanted to know when a path might execute

55



Find Statements Matching Search Criteria

56

Examples of observed reachability questions Reacher supports Steps to use Reacher

What resources are being acquired to cause this deadlock? Search downstream for each method which might acquire a resource, 
pinning results to keep them visible

When they have this attribute, they must use it somewhere to generate 
the content, so where is it?

Search downstream for a field read of the attribute

How are these thread pools interacting? Search downstream for the thread pool class
How is data structure struct being mutated in this code (between o and 
d)?

Search downstream for struct class, scoping search to matching 
type names and searching for field writes.

How [does] application state change when m is called denoting startup 
completion?

Search downstream from m for all field writes



Help Developers Understand Paths

57

Goal:	help	developers	reason	about	control	flow	by	
summarizing	statements	along	paths	in	compact	
visualization

Challenges:	 
control	flow	paths	can	be													


													complex


													long


													repetitive


developers	get	lost	and	
disoriented	navigating	code

Approach:


									
		visually	encode	properties	of	path

hide	paths	by	default
coalesce	similar	paths

use	visualization	to	support	
navigation



Example

5858



Evaluation

5959

 

Method	 
						12	developers																									15	minutes	to	answer	reachability	question		x	6 
						 
						Eclipse	only	on	3	tasks										Eclipse	w/	REACHER	on	3	tasks


Tasks


					Based	on	developer	questions	in	lab	study.


					Example:


					When	a	new	view	is	created	in	jEdit.newView(View),	what	messages,	in		 
					what	order,	may	be	sent	on	the	EditBus	(EditBus.send())?


Does	REACHER	enable	developers	to	answer	reachability	questions	faster	or	more	successfully?



Developers	with	REACHER	were	5.6	times	more	
successful	than	those	working	with	Eclipse	only.


Results

60
Task	time	includes	only	participants	that	succeeded.




More Results

6161

When	not	using	REACHER,	participants	often	reported	being	lost	and	confused.

Participants	with	REACHER	used	it	to	jump	between	
methods.

“Where	am	I?	I’m	so	lost.”

“These	call	stacks	are	horrible.”

“There	was	a	 call	 to	 it	here	 somewhere,	
but	I	don’t	remember	the	path.”

“I’m	just	too	lost.”

“It	seems	pretty	cool	 if	you	can	navigate	
your	way	around	a	complex	graph.”

“I	like	it	a	lot.	It	seems	like	an	easy	way	to	navigate	the	code.	And	the	view	
maps	to	more	of	how	I	think	of	the	call	hierarchy.”

“Reacher	was	my	hero.	…	It’s	a	lot	more	fun	to	use	and	look	at.”

“You	don’t	have	to	think	as	much.”

Participants	reported	that	they	liked	working	with	REACHER.



Reflection on Design Process

• Started with a goal: make debugging in large, complex codebases better


• Observed users to build insight into what key challenge was


• Rather than address usability challenges of existing debugging tools, 
designed new way to debug


• Gathered evidence that it worked better

62



10 Minute Break



In-Class Activity
• Form groups of 2 or 3


• A venture capitalist just gave your group $5M to build a new consumer software product 
(mobile, web, desktop, etc.) 


• Brainstorm an idea: what's the product? how will it help?


• Deliverables. Answer the following questions:


• What do you know now


• Who are the users? What are their tasks and goals? What problems do they encounter? 
How will your tool help?


• What would like to learn through needfinding that you don't already know?


• How would you use an interview / survey / observations / or other method to answer these 
questions?

64


