Preventing Error

SWE 632
Spring 2022

Administrivia

 HWS due today
* HW6 due In 2 weeks

Class Overview

1. Human Error: Understanding why Humans Make Mistakes

2. Designing for Error: Designing to Help Prevent Error

3. Direct Manipulation: Acting “Physically” upon objects

4. Group Activity: Designing a Direct Manipulation App

5. Iwo Tech Tlalks

Human Error

What Causes Disasters?

e Mechanical malfunction?
* Poor design?

e Human error?

Swiss Cheese Model

* Accidents must penetrate levels of system defenses

 Reduce accidents by

 Adding more layers

e Reduce the size and number of holes

* Alert users when holes line up

Root Cause Analysis

 Keep asking why to determine causes for erroneous actions, and the causes
of these causes

 Example
e 2010 F-22 crash that killed pilot
» Official cause: pilot error - pilot failed to take corrective action
 Why did the pilot not take the action?

* Pilot was not receiving oxygen and was probably unconscious.

Psychological Types of Unsafe Acts

b D = p—
\ &
~ EeeNe
B A" LYY L '
S L e kiR
N
[}
|

ACTIONBASED EULEBASED

MEMOEY-LAFPSE KENOWLEDGEBASED

Psychological Types of Unsafe Acts

Basic error
types

Unsafe
acts

Unintended
action

Slip

l

Attentional failures
Intrusion
Omission
Reversal
Misordering
Mistiming

| 2 |

Memory failures
Omitting planned items
Place-losing
Forgetting intentions

Intended
action

Mistake

Rule-based mistakes
Misapplication of good rule
Application of bad rule

Knowledge-based mistakes
Many verbal forms

Violation

Routine violation
Exceptional violations
Acts of sabotage

Psychological Types of Unsafe Acts

Deliberate Violations

* Error occurred because user intended the erroneous output
* Routine violation - user always intends to do it
 Noncompliance is so frequent it is ignored
 E.g., running a red light
 Exceptional - only In some cases

» Sabotage - intended destruction

Psychological Types of Unsafe Acts

Basic error
types

Unsafe
acts

Unintended
action

Slip

l

Attentional failures
Intrusion
Omission
Reversal
Misordering
Mistiming

| 2 |

Memory failures
Omitting planned items
Place-losing
Forgetting intentions

Intended
action

Mistake

Rule-based mistakes
Misapplication of good rule
Application of bad rule

Knowledge-based mistakes
Many verbal forms

Violation

Routine violation
Exceptional violations
Acts of sabotage

Psychological Types of Unsafe Acts

H Rule-based mistakes
m Misapplication of good rule

Application of bad rule

Knowledge-based mistakes
Many verbal forms

Mistakes

* User formulated the wrong goal or plan

* Executing action will not achieve goal
 Rule based: appropriately diagnosed situation, but chose erroneous course of action

 Example: Night club attendees blocked from leaving during fire because bouncers
thought they were breaking rules

 Knowledge based: does not have correct information

 Example: Skidding driver feels brake vibrations, believes indicates malfunctioning
breaks and takes foot off break, stopping ABS

Psychological Types of Unsafe Acts

Basic error
types

Unsafe
acts

Unintended
action

Slip

l

Attentional failures
Intrusion
Omission
Reversal
Misordering
Mistiming

| 2 |

Memory failures
Omitting planned items
Place-losing
Forgetting intentions

Intended
action

Mistake

Rule-based mistakes
Misapplication of good rule
Application of bad rule

Knowledge-based mistakes
Many verbal forms

Violation

Routine violation
Exceptional violations
Acts of sabotage

Psychological Types of Unsafe Acts

Memory Lapse

* Failing to do all steps of a procedure, repeating steps, forgetting the outcome
of an action, forgetting the goal or plan

» Often caused by interruption

 Time between when plan was formulated and plan was executed leads to
forgetting plan

 Jake a pen out to sign form, get interrupted talking to someone, leave it on
desk rather than put it back in bag

Psychological Types of Unsafe Acts

Basic error
types

Unsafe
acts

Unintended
action

Slip

l

Attentional failures
Intrusion
Omission
Reversal
Misordering
Mistiming

| 2 |

Memory failures
Omitting planned items
Place-losing
Forgetting intentions

Intended
action

Mistake

Rule-based mistakes
Misapplication of good rule
Application of bad rule

Knowledge-based mistakes
Many verbal forms

Violation

Routine violation
Exceptional violations
Acts of sabotage

Psychological Types of Unsafe Acts

Slips

» Attentional failure - user intended to do correct action, but did not actually
execute action

 Example: | poured some milk into my coffee and then put the coffee cup into
the refrigerator. This is the correct action applied to the wrong object.

Error & the Seven Stages of Action

MISTAKES

I} ﬂn h TP TT I T T

® Novices are more likely to make mistakes than
slips, and experts are more likely to make slips.

Potential Underlying Causes

e Strong Habit Intrusion
 Omissions

* Perceptual Confusion

e Mistimed Checks

Strong Habit Intrusion

* Performance of some well-practiced activity in familiar surroundings
* |ntention to depart from custom
* Failure to make an appropriate check

 Example: start trip to frequent destination, forget going somewhere else

Omissions

 May be interrupted, forgetting intention to act

* “| picked up my coat to go out when the phone rang. | answered it and then
went out of the front door without my coat.”

Perceptual Confusion

* Take frequent action very often, leading to high System 1 automation

 Don’t perform perceptual check to verify that System 1 action is the correct
one to take

 Example: “l began to pour coffee into the sugar bowl”

Mistimed Checks

* Highly automated System 1 activity that is interrupted
* Error in resuming activity because usually unconscious.

 Example - interrupted in the middle of tying shoes

Activity
* Think of the last unsafe act you performed in a piece of software.

 What was the underlying cause”

Designing for Error

Designing for Error

e Humans are not automatons and will never behave like automatons
» Easy to design for the situation in which everything goes well

 But important to think about what might go wrong and how the interaction
design can ameliorate issues

Information Foraging Theory Perspective

* Information Foraging Theory (IFT) perspective
» User exploring patches topology in search of prey

* Always making a decision about whether a patch is the right place
to hunt and changing as new information arrives

 Breaks down when user actions transform the state of the application

 Patches and topology no longer fixed

 Visiting a configuration of the system by clicking "Send" on the
email editor is a not an undoable action

Some Strategies for Designing for Errors

 Understand the cause, and fix it
 Make It possible to reverse errors
o Offer feedback that enables users to discover and correct errors

 Don't treat actions as errors, but as manipulations

Understand the Causes of Errors

 What errors occur? What type are they”? How can they be prevented?
* Frequent contributing factors

 Ambiguous or unclear information about the state of the system

| ack of an effective conceptual model

* |nappropriate procedures

 Must design for users as they exist, rather than users as you'd like them to
behave

Interruptions

* |nterruptions are a frequent cause of error

* User may be using your interface perfectly, with the correct plan to get to their
goal

 What happens if, in the middle of the task, they answer a phone call?

* Or if they run out of time, and come back the next day?

Designing for Interruptions

* Help user resume task, by remembering where they were Iin task, what steps
have been completed, and what steps remain

 Reduce the number of steps

» Use forcing functions to force users to do forgettable action (e.g., take card
from before picking up cash)

Brief Activity: Interruptions

* |n your project groups
* |magine a user was interrupted while using one of your project apps
 What errors might this create?

 What challenges might users experience when resuming?

 How could you change your design to address these issues?

Offer Feedback for User Actions

 Feedback helps keep users on track in accomplishing goals
* Provide feedback early
* Provide feedback consistently

 Make feedback visible, noticeable, legible, located w/ in users focus of
attention

* Requesting confirmation can be used to prevent costly errors (but use
sparingly)

Tone of Feedback

e Establishes relationship with user

* |mportant not to take user feel “stupid”
 Make the system take blame for errors

 Be positive, to encourage

* Provide helpful messages, not cute messages

* Avoid violent, negative, demeaning, threatening terms (e.g., illegal, invalid)

System Response Times

* 0.1second - reacting instantaneously

* requiring no special feedback except displaying result
 |imit for direct manipulation of objects in Ul

* 1.0 second - freely navigating commands

* noticeable delay, limit for keeping user’s flow of thought uninterrupted

* 10 seconds - keeping users attention

 |imit for keeping user’s attention focus in Ul
* longer delays create task breaks

* [Nielsen, Usability Engineering, 1993]

Show Users How to Fix Errors

 (Good: detecting user errors
» Better: directly showing how errors can be fixed

» (Best: using constraints to prevent errors from ever occurring)

ﬁ_ Problems &8 (@ Javadoc E{ Declaration [l Console ,; Search & Progress Q\ Error Log 2*9 Call Hierarchy

2 errors, 1 warning, O others
Description ~ Resource
v €9 Errors (2 items)
¥x Project 'CrowdCoding' is missing required library: ‘war/WEB-INF/lib/objectify-4.0a4.jar'
€9 The project cannot be built until build path errors are resolved CrowdCoding
» & Warnings (1 item)

Adding Constraints to Block Errors

 Add specific constraints on actions
* e.g. forcing formatting in form fields
o Separate controls/fields so that those which are easily confused are far apart

e Separate items into different screens or modules

Undo

 Having an option to undo actions is one of the most powerful
mechanisms to mitigate errors.

 However, this Is not always possible, e.g. sending an email.

Norman’s Key Design Principles

1. Put the knowledge required to to operate the technology in the world
2. Use the power of natural and artificial constraints

3. Bridge the two Gulfs: the Gulf of Execution and the Gulf of Evaluation

 Execution: Make options readily available

« FEvaluation: Provide Feedback

Direct Manipulation

Motivation

* User is trying to do a task, manipulating a
Imodel] of world

 Hard to plan out long sequence of actions In
advance

 Gulf of execution: hard to know if took correct
action

o Gulf of evaluation: hard to understand if
successfully manipulated world

 Hard to compare hidden world to desired world

feedforward
choosing an action)

perceived
affordances
or “signifiers”

.

Intention to act
—t 1

Sequence of actions

l

> Execution of the
action sequence

v

THE WORLD

Evaluations of
interpretations

|

Interpreting the
perception

|

Perceiving the state
of the world

A

— feedback

Key Questions

« \What is the cost of an error?
* |s it low cost or high cost?
e |s it undoable?

 What feedback is necessary for user to realize the system is not in the desired
state?

Direct Manipulation

 “Rapid incremental reversible operations whose impact on the objects of
interest is immediately visible” (Shneiderman, 1982)

A ¢ @

Direct Manipulation Characteristics

e Continuous Representation of the Object of Interest
* Physical Actions instead of complex syntax

e Continuous feedback and reversible, incremental actions

Benefits

e Supports exploration

 Don’t plan long sequence of actions: pick an action, try it, can change mind
If want to do something else instead

* Provides immediate feedback
* Can quickly see what outcome of actions are in manipulating the world

 Easy to compare desired state of the world to actual state of the world

Drawbacks

* Only a small Number of Objects on screen at once
* |t can be physically demanding on the user

e Can be relatively slow

* |f the user needs to perform a large number of actions, it may be impractical

 Repetitive tasks are not well supported

* e.g. can be better for novices to learn, but harder to experts to exploit

» Some gestures can be error prone

Example - Kayak
LMW DCA « CHI Dec 16 _, Dec 19 Economy
108 of 1115 flights Friday Monday cabin travele

Advice: BUY | @

Create a price alert Sort by: Price Round-trip

Stops Show all

v nonstop 27 $207 JustFly, Experience world-class service
1 stop 4 Click "View Deal" to find our cheapest flights

2+ stops 30! jUStfly. com

$207 nonstop View Deal
Times Show all

[ake-off W : \
Fri 2:41p - 10:30p n
AW
N 8:12p DCA

o 3:25p ORD

Mon 5:30a - 10:00p

$227
Show details

Show landing times v
$227 |
Airports Show all 8:12p DCA

Depart/Return same 11:55a ORD

View Deal Show details

v DCA: Reagan-Nati... 5127
BWI: Baltimore/Wa... $207

Example - Google Maps

NETT6th'St NE 116th St

3N @AY YirZ L

132nd Ave NE

Willows Run
Golf Complex

199

18th Ave

[
AV Y

N

NE 95th St

s 1EN

S
>

> NE 90th'St
Kirkland

NE 85th St

NE 80th St

redmond Way

3N 2AY H10¥ 1

NE 60th St

o

o

o

A

>

>

<

e a
oy z
% m

IYSEN

Bellevue Golf Course ;

Jy pAIG LOIDY

Bridle Trails
State Park

Yarrow Point

Hunts Point

3N 3AY Yrel

3N 2aY WOEL

NE 28th St
NE 24th St

Clyde Hill NE 24th St

1
|

3N 2AY Yit8

N @AY 19|

L

O
2413

AV U

IN AV YIZLL

IN @AY W00 L

4
o

N

Example - GUI Builder

>

Eile Edit

E’; validators.ui - Qt Creator

Suld Debug Analyze Tools Window Help
"B RBENT

validators.ui®

@® Radio Button

B Check Box

Q Comman...Button
1_;] Button Box

4 Ttem Vie...I-Based)

= List View

[9:] Tree View

Table View
Column View

4 Ttem Wi...-Based)

List Widget
%8 Tree Widget
Table Widget

P~ Type to locate (Ctrl...

Fllter W e W e
4 Layouts S | W PR R R R R R R
§VerticalLayout - QIntvalidator -~
uu[Horizontal Layout ‘.. '.A
923 . . Min:| 0 52 R
4% Grid Layout | | @ +V—Hor—o s
3 Form Layout Max:| 1000 = | | editingFinished()
— Spacers = SR
| m Horizontal Spacer ...
§VerticaISpacer s
4 Buttons . QDoubleValidator
a —TT T e -..
(2] Push Button m Min:| 0.00 || Format:/|[Standard v || = @y
& Tool Button | | | e s
Max:| 1000.00 < Decimals:| 2 %1 | editingFinished()

Object
P — ValidatorsForm

4 ||| <noname>
<noname:>

4 ||| <noname>
<noname:>
pushButton

<noname:>
e
4 — groupBox

localeSelector

4 ||| <noname>
4 33 <noname>

Class

QWidget

1] QHBoxLayout
§ed Spacer
Local...ector —
11l QHBoxLayout
§ed Spacer

@ QPushButton

§éd Spacer

=) QGroupBox

1] QHBoxLayout
443 QGridLayout

11

= Gecmetty

Sende;
pushButton

Signal
clicked()

Action Editor

Receiver Slot
Valid...sForm close()

Signals & Slots Editor

C1()
4 issues |l Search R... JE} Applicatio... JE3 compile ... i3] omi/3s C... Ji3] To-Do Ent... {7

label T Qlabel g
labal 0 N A
[Fieer -
ValidatorsForm : QWidget
Property Value n
objectName ValidatorsForm
QWidget
enabled
[(0, 0), 526 x 409]
X 0
Y 0
Width 526
Height 409
4 sizePolicy [Preferred, Preferred,...
izontal Policy Dreferred -

version C... JE General M...JiG .

Example -

preadsheets

© FiyCalc - WIG2004.X1S =), X
File EOt View Inset Format Tools ?
D8R8 &R Y *t B «» o~ T f2s X8 [00%]| suppet Fenstorrd X
[t o= » 7 8 FEAE s » masaa OO
Fororeda © l
- B C 0 E F G H | [L M N 0 o
1{ 788 188 564 399 413 897 114 523 413 | ! -
2 800 923 233 307 B64 385 S0 877 864
3 657 700 755 444 455 470 932 0% 455
4 599 86 233 201 113 361 55 233 413 Sep Oct MNov Dec Jam Feb
4 899 758 673 311 780 400 614 754 780 2008 2008 2008 2008 2000 2000
6 134 253 e0o0 214 644 709 361 970
7 233 644 764 444 23 o7 T LS 847 455 507 %0 700 788 80
3 577 533 968 897 41 977 475 388 97% 3% 478 a1 400 3%% 923
el 742 27 £ 00 Sod 753
10 | B r s 245 33 08 564 344 7S 3% T 2 25 836 Iv 207
11 | Keokx) 670 «“7 233 €40 980 544 613 523 877 405 233 754 413 84
12 | e " 85% a2 908 556 as2 ns 635 413 84 455 413 790 897 ass
13 |1 07 244 il 08 S61 555 4 @7 200 378 753 382 a4 w0
14 | Lockhar 222 645 ¥ 182 388 9085 814 444 190 2 455 614 523 877
15 , a 756 600 481 39 &7 144 39 207 444 1) | a 413 B4
1%
17 bect
18
19 UK Fachorles
20
2 . 8ss 318 908 £56 352 556 6358 413 864 4155 113 780 980 964
22 506 605 860 222 459 222 521 897 155 478 361 400 670 800
23 NEoeT 670 %44 2 046 00 046 61) L 077 405 2 754 2242 154
24 | Worcester Pa 44 489 £00 181 339 181 144 399 307 144 201 $11 899 900
%5 85s 118 08 556 3s2 556 635 413 864 455 413 780 600 650
2% ting Be 506 603 060 232 4959 222 521 087 155 470 361 400 600 670
27) 222 P08 990 182 388 182 814 444 20 432 455 d14 97 6é8
P 670 44 233 2846 &0 846 613 523 877 405 233 754 800 796
29 JAshbyd } 05s 115 00 556 182 556 635 413 064 455 412 780 412 700
30 607 (113 641 208 561 208 314 467 200 378 723 1.5 3é1 400
3 = 144 489 €00 181 339 181 144 3199 307 144 201 311 458 614
K 2] inthornpe 674 677 790 €50 666 679 677 566 756 567 €85 432 900 780
3
34 becs £073 1761 S982 S078 4750 5078 4433 1478 442 3896 5233 5086 7167 7021
K]
B | Canadian Factoaies
¥
38 | Deception Ba 144 489 €00 €00 181 339 521 897 158 478 361 233 846 613
39 | Mussissauzea ass 15 00 €00 481 239 401 8s5s 315 08 556 Is2 401 144 ~
20 | [weo] <« | ;J’J
FiyCak 1.1 - Copyright Natum 2003-2006 (wWECN s}

le: Live Programming

()) (% History

JS

Ooo~NOOUVLSH WN =

HTML CSS

helloWorld(-1);
function helloWorld(x) {
if (x > 0)
console.log('hello world');

var y = X + 1;

0@

[-11C @]

Output

Debug

(2 Share

2 Users W Chat

© Help

¢ Contact Us

®O@®
function hello(){

}

alert("Hello")

| MON

Hello

© About

Example: Edit Constants by Editing Output

)’ sketch-n-sketch v0.4.2

(def [] 3 Boxes PLDI ~

(81 124 20 90 65! 3))

(def O\
(let (+ x0 (* 1 sep))
(rect 'lightblue’ xi y@ w h))))

1
2
3
4
5
6
7
8
9

(svg (map boxi (zeroTo n)))

rect3 Interior
124{y0)} 81{x0)

Chugh et al. [PLDI "16]

10 Minute Break

In-Class Activity

In Class Activity: Direct Manipulation Programming

No Code Programming Environments

* |In groups of 2 or 3
* Design a system for writing code through direct manipulation

* Pick an application domain where your system will apply (e.g., banking, shipping, Android
games)

* Create sketches showing key screens

e Should support

« Standard programming language features (variables, conditionals, loops, functions)
 Should make it faster and easier to make code changes

 Should make it easier to get feedback on if program exhibits intended behavior

Deliverable: Sketches with annotations explaining application behavior

