
Finding Causes of
Program Output with

the Java WhyLine

SWE 795, Fall 2019
Software Engineering Environments

Summary by Prof. Thomas LaToza

Andrew Ko & Brad Myers
CHI 2009

LaToza GMU SWE 795 Fall 2019

Finding Causes of Program Output

• Problem
• Debugging challenging because developers must map

observable symptom of failure (e.g., a button that is not
displayed) to underlying cause

• Developers must map incorrect output to responsible code
• Requires guessing cause (hypothesizing) and checking

with tools
• Most hypotheses are wrong

• Solution
• Enable developers to directly ask why and why not

questions about output, trace back to code responsible for
output

!2

LaToza GMU SWE 795 Fall 2019 !3

LaToza GMU SWE 795 Fall 2019

WhyLine

!4

LaToza GMU SWE 795 Fall 2019

Timeline visualization

!5

LaToza GMU SWE 795 Fall 2019

Evaluation
• 20 masters students did two 30 minute tasks
• Used tutorial to teach the tool to users
• Tasks: debug 2 real bug reports from ArgoUML  

 Diagnose problem & write change
recommendation

• Measured time, success, code exploration,
perception

•

!6

Results
Task 1

Task 2

LaToza GMU SWE 795 Fall 2019

Questions for discussion
• Are the claims about the benefits of WhyLine

convincing?
• How much evaluation is enough?

• In what contexts might WhyLine be more difficult to
apply?

• How much time overhead does demonstrating bug
for WhyLine add for developer?

• What challenges would there be in
commercializing WhyLine?

!7

