Detecting Defects

SWE 795, Fall 2019
Software Engineering Environments

LaToza

Today

 Part 1 (Lecture)(~80 mins)

e Break!

 Part 2 (Discussion)(~60 mins)
* Discussion of readings

GMU SWE 795 Fall 2019

LaToza

Detecting Defects

 \Where do defects come from?
» How can defects be prevented?

 How should potential defects be communicated to
developers?

GMU SWE 795 Fall 2019

Where do
defects come
from?

10.

1",
[Glass TSE81]

12.
LaToza

Omitted logic

Failure to reset data

Regression error

Documentation in error

Requirements inadequate

Patch in error
Commentary in error

IF statement too simple

Referenced wrong data variable

Data alignment error

Timing error causes data loss

Failure to initialize data

Code is lacking which should be present.
Variable A is assigned a new value in logic

path X but is not reset to the value required
prior to entering path Y.

Reassignment of needed value to a variable omitted.
See example for "omitted logic."

Attempt to correct one error causes another,

Software and documentation conflict; software
is correct. User manual says to input a value in

inches, but program consistently assumes the value
is in centimeters. '

Specification of the problem insufficient to
define the desired solution,.

See Fiqure 4. If the requirements failed to
note the interrelationship of the validity
check and the disk schedule index, then

this would also be a requirements error,

Temporary machine code change contains an error.
Source code is correct, but “jump to 14000"
should have been "jump to 14004."

Source code comment is incorrect.

Program says DO I=1,5 while comment says
“loop 4 times."

Not all conditions necessary for an IF
statement are present.

IF A<B should be IF A<B AND B<C.

Self-explanatory
See Figure 3. The wrong queues were referenced.

Data accessed is not the same as data desired due
to using wrong set of bits.

Leftmost instead of rightmost substring of

bits used from a data structure.

Shared data changed by a process at an
unexpected time.

Parallel task B changes XYZ just before task A
used it.

Non-preset data is referenced before a value
is assiqgned.

Where do defects come from?

Gould [14]
Novice Fortran

Assignment bug

Iteration bug

Array bug
Eisenberg [15] Visual bug
Novice APL

Naive bug

Logical bug
Dummy bug

Inventive bug
Illiteracy bug

Gestalt bug

LaToza

Software errors in assigning
variables’ values

Software errors in iteration
algorithms

Software errors in array index
expressions

Grouping related parts of
expression

Iteration instead of parallel
processing

Omitting or misusing logical
connectives

Experience with other
languages interfering
Inventing syntax
Difficulties with order of
operations

Unforeseen side effects of
commands

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Fall 2019

Requires understanding of
behavior
Requires understanding of
language
Requires understanding of
language

‘...need to think step-by-step’

‘...seem to be syntax
oversights’

“...failure to see the whole
picture’

LaToza

Where do defects come from?

Knuth [18] While
writing TeX in
SAIL and Pascal

Algorithm awry

Blunder or botch

Data structure
debacle
Forgotten
function

Language liability

Module mismatch

Robustness

Surprise scenario

Trivial typos

Improperly implemented
algorithms

Accidentally writing code not
to specifications

Software errors in using data
structures

Missing implementation

Misunderstanding language/
environment

Imperfectly knowing
specification

Not handling erroneous input

Unforeseen interactions in
program elements

Incorrect syntax, reference, etc.

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Fall 2019

‘proved...incorrect or
inadequate’
‘not...enough brainpower’

‘did not preserve...invariants’

‘I did not remember everything’

‘I forgot the conventions I had
built’

‘tried to make the code bullet-
proof™

‘forced me to change my ideas’

‘my original pencil draft was
correct’

Where do defects come from?

Clobbered
memory

Eisenstadt [19]
Industry experts
COBOL, Pascal,
Fortran, C

Vendor problems
Design logic
Initialization
Variable

Lexical bugs
Language

Overwriting memory, subscript
out of bounds

Buggy compilers, faulty
hardware

Unanticipated case, wrong
algorithm

Erroneous type or initialization
of variables

Wrong variable or operator
used

Bad parse or ambiguous syntax
Misunderstandings of language
semantics

Adapted from Ko & Myers, JVLC0O5

LaToza

GMU SWE 795 Fall 2019

Also identified why software
errors were difficult to find:
cause/effect chasm; tools
inapplicable; failure did not
actually happen; faulty
knowledge of specs;
“spaghetti” code.

Where do defects come from?

Ko & Myers proposed a model for understanding
the cognitive causes of defects

 |[atent errors becomes active errors when they
oreach defenses of system
+

Requirements

alty

ns U“c\'\on
Runtime
O Failures
rem
6 l et T
o
ola

>< n pgo 1

@\ prog*? 2 SO

Problematic iRl Va(\jab\e:
Specifications f. - ovje i
""‘.1" p - y C\asse ‘

i ne a

Runtime Faults

Cognitive & O O (et ce
Breakdowns O
| | Usability
Layers and their latent errors Issues
\’ Trajectories of failure Softwaiv

Errors

Adapted from Ko & Myers, JVLC0O5

LaToza GMU SWE 795 Fall 2019

LaToza

Skill / Rule / Knowledge

James Reason proposed a taxonomy of cognitive
breakdowns based on differences in type of cognition being
used

Skill-based activity: routine, proceduralized activity

* e.g., typing a string, opening a source file, compiling a
program

Rule-based activity: use of rules for acting in certain contexts

* e.g., starting to type a for loop in order to perform an
action on each element of a list

Knowledge-based activity: forming plans & making high-level
decisions based on knowledge of program

* e.g., forming a hypothesis about cause of runtime failure

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Fall 2019

LaToza

Types of skill breakdowns

Inattention Type Events resulting in breakdown
Failure to attend to a Strong habit In the middle of a sequence of actions — no
routine action at a critical intrusion attentional check — contextually frequent action
time causes forgotten is taken instead of intended action
actions, forgotten goals, or
inappropriate actions.

Interruptions External event — no attentional check — action

Delayed action

skipped or goal forgotten

Intention to depart from routine activity — no
attentional check between intention and action —
forgotten goal

Exceptional Unusual or unexpected stimuli — stimuli

stimuli overlooked — appropriate action not taken

Interleaving Concurrent, similar action sequences — no

attentional check — actions interleaved

Overattention Type Events resulting in breakdown
Attending to routine action Omission Attentional check in the middle of routine actions
causes false assumption — assumption that actions are already completed
about progress of action. — action skipped

Repetition Attentional check in the middle of routine actions

— assumption that actions are not completed —
action repeated

Adapted from Ko & Myers, JVLC05

GMU SWE 795 Fall 2019

10

LaToza

Types of

rule breakdowns

Wrong rule

Type

Events resulting in breakdown

Use of a rule that is successful
in most contexts, but not all.

Problematic signs
Information
overload

Favored rules

Favored signs

Ambiguous or hidden signs — conditions
evaluated with insufficient info — wrong
rule chosen — inappropriate action

Too many signs — important signs missed
— wrong rule chosen — inappropriate
action

Previously successful rules are favored —
wrong rule chosen — inappropriate action
Previously useful signs are favored —
exceptional signs not given enough weight
— wrong rule chosen — inappropriate
action

Rigidity Familiar, situationally inappropriate rules
preferred over unfamiliar, situationally
appropriate rules — wrong rule chosen —
inappropriate action

Bad rule Type Events resulting in breakdown

Use of a rule with problematic Incomplete Some properties of problem space are not

conditions or actions. encoding encoded — rule conditions are immature
— inappropriate action

Inaccurate Properties of problem space encoded

encoding inaccurately — rule conditions are

Exception proves
rule
Wrong action

inaccurate — inappropriate action
Inexperience — exceptional rule often
inappropriate — inappropriate action
Condition is right but action is wrong —
inappropriate action

GMU SWE 795 Fall 2019

11

Types of knowledge breakdowns

Bounded rationality

Type

Events resulting in breakdown

Problem space is too large to
explore because working
memory is limited and costly.

Selectivity

Biased reviewing

Psychologically salient, rather than
logically important task information is
attended to — biased knowledge
Tendency to believe that all possible
courses of action have been considered,
when in fact very few have been considered
— suboptimal strategy

Availability Undue weight is given to facts that come
readily to mind — facts that are not present
are easily ignored — biased knowledge

Faulty models of problem Type Events resulting in breakdown

space

Formation and evaluation of Simplified Judged by perceived similarity between
knowledge leads to incomplete causality cause and effect — knowledge of outcome
or inaccurate models of increases perceived likelihood — invalid
problem space. knowledge of causation

Illusory Tendency to assume events are correlated

correlation and develop rationalizations to support the
belief — invalid model of causality

Overconfidence False belief in correctness and completeness

Confirmation bias

of knowledge, especially after completion
of elaborate, difficult tasks — invalid,
inadequate knowledge

Preliminary hypotheses based on
impoverished data interfere with later
interpretation of more abundant data —
invalid, inadequate hypotheses

LaToza

GMU SWE 795 Fall 2019

12

Breakdown chain example (Part 1)

P2 has difficulty creating the
specifications for the Boolean logic to
check if all of the dots are eaten, as
evidenced by verbal utterances, also,
part of the expression was obscured,
and she though the "BigDot" reference
was off-screen.

She only forms one hypothesis about
the cause of the failure, which is
incorrect.

This causes a breakdown in modifying
the Boolean logic.

Rule breakdown creating
specifications for Boolean logic
for seeing if all dots are eaten (problematic sign)

(wrong action)
/ A/

if not (dot1.isShowing :x Missing reference to
and dot2.isShowing...) - . BigDot.isShowing

el e . “

\ v

Skill breakdown implementing
Boolean logic

C L RR
s Rl

e

bl -

1. Conditional becomes true H g:e";:tfto:ha;ck
after one dot is eaten BigDot.isShowing

\

Knowledge breakdown
understanding runtime failure
(biased reviewing)

Pac bounces before
all the dots are eaten

Rule breakdown modifying
Boolean logic
(wrong action)

Adapted from Ko & Myers, JVLC05

LaToza

GMU SWE 795 Fall 2019 13

Breakdown chain example (Part 1)

Because camera was pointing down at
Pac, she was unaware that Pac was
bouncing.

The fact that Pac doesn't seem to be
bouncing leads her to believe he is not.

After 20 minutes, P2 reorients the
camera and notices that Pac is
bouncing, but assumes it was due to
more recent changes and not the
earlier error.

if not dot1.isShowing and
not dot2.isShowing...

Conditional becomes
true immediately

Pac bounces
immediately

Rule breakdown observing
runtime failure
(problematic signs)

Knowledge breakdown
observing runtime failure
(illusory correlation)

Knowledge breakdown
understanding runtime failure
(availability)

Adapted from Ko & Myers, JVLC0O5

LaToza

GMU SWE 795 Fall 2019

14

LaToza

Causes of defects: API misuse

 Components expose APIs which have rules about
how they should be used

* \What types of rules do components impose”

GMU SWE 795 Fall 2019

15

Causes of defects: API misuse

e Based on survey of APIls, categorized directives APIls
Impose on clients

* Restrictions on when to call
* Do not call from Ul thread, tor debugging use only
e Protocols specitying ordering constraints

 Method must only be called once, method must be
called prior to other method

* Locking describing thread synchronization
e Restrictions on possible parameter values

» String.replaceAll() should not include $ or \ characters
In replacement string

Uri Dekel and James D. Herbsleb. 2009. Improving API documentation usability with knowledge pushing. In Proceedings
of the 31st International Conference on Software Engineering (ICSE '09), 320-330.

LaToza GMU SWE 795 Fall 2019 16

Causes of defects: Object protocol misuse

 Examined Java code for presence of protocols,
found 7.2% of types defined protocols & 13% of

classes used protocols
* Most frequent causes:

e [nitialization (28.1%): calls to an instance method
m without first calling initializing method /

* Deactivation (25.8%): calls to an instance
method m after calling a deactivation method d

* Type Qualifier (16.4%): object enters a state
during which method m will always fall

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. 2011. An empirical study of object protocols in the wild. In

Proceedings of the 25th European conference on Object-oriented programming (ECOOP'11), Mira Mezini (Ed.).

Springer-Verlag, Berlin, Heidelberg, 2-26.

LaToza GMU SWE 795 Fall 2019

17

Causes of defects in JavaScript

 Examined 502 bug reports from 19 repos, categorizing
the cause of each error

 Most common types of errors:

o Erroneous input validation (16%): inputs passed into
JS code are not validated or sanitized

o Error in writing a string literal (13%): incorrect CSS
selectors, regular expressions, forgetting prefixes, etc.

o Forgetting null / undefined check (10%)

* Neglecting differences in browser behavior (9%):
differences in behavior of browser AP| across
browsers

e Errorsin syntax (7%)

Ocariza et al, A Study of Causes and Consequences of Client-Side JavaScript Bugs, TSE 2016

LaToza GMU SWE 795 Fall 2019

OBJECT-INTERACTION IDIOMS

\ VALID REFERENCES DETERMINING DEFINED STANDARD OR FRAMEWORK
21% IDENTIFIERS AT COMPILE TIME OR RUNTIME
OB1 Errorful Invalid Reference:
statement generating error & error message = explanation of error message
OB2 Errorless Invalid Reference:
error message => statement generating error and error message
2@ COLLECTIONS AND FORMATS CREATING OR MANIPULATING A COLLECTION,
OR FORMATTING DATA FOR USE IN A FRAMEWORK
OB4 /teration Construct:
collection object = corresponding iteration construct
OBS Concurrent Modifications:
collection object & loop fragment = concurrent modifications of collection
OB6 Format Conversion:
object in format A = object in format B

™~ BACK-END REQUESTS SENDING STRUCTURED DATA TO A SERVER, OR
16% HANDLING SERVER RESPONSES

OB10 Back-end request configuration:
back-end request & desired behavior = modified request matching behavior

OB11 Transmission mutations:
back-end request as sent = back-end request as received

OB12 Receiving Data:
back-end request = code fragment for listening for response(s)

8 METHOD CHAINS DETERMINING THE EFFECTS OF AMETHOD INVOCATION
" WITHIN A SEQUENCE OF CONSECUTIVE CALL EXPRESSIONS

OB7 Incomplete Sequence:
o.mi(.).m2(.) .mn(..)=2omi(.).m2(.). .mk(.). .mn(.)

OB8 Incorrect Sequence:
o.mi(.).m2(.)emn(.) =2 omk(.). .mI(.).mn(.)

OB9 Overridden Effect:
o.m1(.).m2(.)..mn(..) = methods mk and m! both mutate object p

SCOPE CONTEXTS DETERMINING THE CONTEXT GIVEN TO THE KEYWORD
this WITHIN A CODE BLOCK OR A VARIABLE’S VISIBILITY

OB3 “this” Scope:
this statement = scope defining this

-

-
8%

230\BINDER CONFIGURATIONS SETTING PROPERTIES OF A CALLBACK TRIGGER,
% OR MODIFYING PARAMETERS OF ITS BINDING MECHANISM

CB4 Incorrect Parameters:

call back configuration code fragments and desired behavior = updated call
back configuration code
CB5 Misconfigured Framework:

framework configuration code fragments and desired behavior 2>updated
framework configuration code

GRAPHICAL IDIOMS

WGRAPHICAL SETTERS CHANGING GRAPHICAL PROPERTIES OF THE DOM VIA
37% API METHODS OR CSS PROPERTIES

GB5 Unidentified Setter:

visual property change > code fragment to mutate property

GB6 Unobservable Setter:

setterA and visual property change - setterB to mutate property

GB7 Indirect Setter:

setterA > elements which inherit properties from setterA or occlude

elements mutated by setter

GB8 Conflicted Setter:

setterA > setterB which overwrites setterA and code fragment with

alternative setter or sequencing

21\ GRAPHICAL QUERIES RETRIEVING DOM ELEMENTS OR SIMILAR
% REPRESENTATIONS VIA QUERY METHODS OR CSS SELECTORS

GB1 Incomplete Queries:
queryA and elements to be matched = queryB matching only elements
GB2 Live Query Results:
queryA = changes to query result set over time and alternative fragment
GB3 Overwritten Query:
queryA = queryB intersecting mutations made by queryA and queryB’
- which does not

g,, GRAPHICAL GETTERS OBTAINING GRAPHICAL PROPERTIES OF THE DOM VIA
% APIMETHODS

GB4 Unidentified Getter:
visual property = getter code fragment to retrieve

CALLBACK IDIOMS

29“ BINDING TARGETS IDENTIFYING OR CHOOSING AN EVENT, LIFECYCLE HOOK,
% OR TRIGGER TO REGISTER A CALLBACK
CB1 Unidentified Target:
desired target > target name & code fragment
CB2 Constrained Target:
binding target code fragment - framework rules making fragment invalid
CB3 Confused Target:
binding target & desired target = explanation of difference, new target
name, code fragment

250\CALL BACK CONTEXTS IDENTIFYING WHEN THE CALLBACK IS DISPATCHED,
% "USING ITS ARGUMENTS OR OTHER RELATED OBJECTS

CB6 Improper Scheduling:

call back code fragments and desired state = ordering of call backs and state
accessibility

CB7 Unidentified State:

desired state = code fragment to obtain state

CB8 Missed Call Backs:

call back code fragment = framework state required for call back to occur

GRAPHICAL IDIOMS

WGRAPHICAI. SETTERS CHANGING GRAPHICAL PROPERTIES OF THE DOM VIA
37% API METHODS OR CSS PROPERTIES
GBS Unidentified Setter:
visual property change = code fragment to mutate property
GB6 Unobservable Setter:
setterA and visual property change -» setterB to mutate property
GB7 Indirect Setter:
setterA = elements which inherit properties from setterA or occlude
elements mutated by setter
GB8 Conflicted Setter:
setterA -> setterB which overwrites setterA and code fragment with
alternative setter or sequencing

21? GRAPHICAL QUERIES RETRIEVING DOM ELEMENTS OR SIMILAR
% REPRESENTATIONS VIA QUERY METHODS OR CSS SELECTORS

GB1 /ncomplete Queries:

queryA and elements to be matched = queryB matching only elements
GB2 Live Query Results:

queryA -> changes to query result set over time and alternative fragment
GB3 Overwritten Query:

queryA => queryB intersecting mutations made by queryA and queryB’
which does not

—
g, GRAPHICAL GETTERS OBTAINING GRAPHICAL PROPERTIES OF THE DOM VIA
% API METHODS

GB4 Unidentified Getter:
visual property = getter code fragment to retrieve

CALLBACK IDIOMS

29) BINDING TARGETS IDENTIFYING OR CHOOSING AN EVENT, LIFECYCLE HOOK,
°" OR TRIGGER TO REGISTER A CALLBACK

LaToza

Some techniques for helping developers
better work with defects

 Help developers engage in better information
seeking to prevent defects from ever occurring

* Use tool to find defect, report error message to
developer

* Use tests to find detect, report test failures to
developers

GMU SWE 795 Fall 2019

21

LaToza

Preventing defects by supporting better
information seeking

1. Help programmers recover from interruptions or delays by reminding
them of their previous actions

2. Highlight exceptional circumstances to help programmers adapt their
routine strategies

3. Help programmers manage multiple tasks and detect interleaved
actions

4. Design task-relevant information to be visible and unambiguous

5. Avoid inundating programmers with information
6. Help programmers consider all relevant hypotheses, to avoid the
formation of invalid hypotheses

/. Help programmers identity and understand causal relationships, to
avoid invalid knowledge

8. Help programmers identity correlation and recognize illusory
correlation

9. Highlight logically important information to combat availability and
selectivity heuristics

10. Prevent programmer’s overconfidence in their knowledge by testing
their assumptions

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Fall 2019 22

LaToza

Tools for preventing defects

 Early work in program analysis and formal methods
made possible analyzing code to find
inconsistencies with a specification

e But...

o QOften required extensive work to write a
specification of behavior

GMU SWE 795 Fall 2019

23

LaToza

Early 2000s

Static analysis tools becoming sufficiently scalable

to be used on real-world programs

More emphasis on finding real-world defects rather

than simply focusing on improvements in

underlying analysis technology

Several tools adopted in industry, often to address
specific and important problems

GMU SWE 795 Fall 2019

24

Rules governing lock

lteratively refines
boolean abstraction
of program to
determine if there
exists path that
violates rules

Slam

state {
enum { Unlocked, Locked} s = Unlocked; // FSM states

}

AcquireSpinLock.entry {
if (s == Locked) error;
else 8 = Locked;

}

ReleaseSpinLock.entry {
if (s == Unlocked) error;
else s = Unlocked;

// Transition on lock acquire

// Transition on lock release

T. Ball and S.K. Rajamani, “The Slam Project: Debugging System Software via Static Analysis,” Proc. 29th ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages (POPL 2002), ACM Press, 2002, pp. 1-3. 55

LaToza

GMU SWE 795 Fall 2019

LaToza

(& & docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier

B Microsoft | Hardware Dev Center

Docs Windows Windows Drivers Driver Technologies Tools for Testing Drivers [] Bookmark & Feedback ¢ Edit |© Shar

Y Filter by title

Driver Development Tools
Index of Windows Driver Kit Tools
> Tools for Testing Drivers
v Tools for Verifying Drivers
Tools for Verifying Drivers
Static and Dynamic Verification Tools
Survey of Verification Tools
> Checked Build of Windows
Application Verifier
> Code Analysis for Drivers
> Driver Verifier
> DDI Compliance Rules
v Static Driver Verifier
Static Driver Verifier

Using Static Driver Verifier to Find

Defects in Windows Drivers

Static Driver Verifier commands

(MSBuild)
> Introducing Static Driver Verifier
> Using Static Driver Verifier
> Static Driver Verifier Report
> Static Driver Verifier Reference
> WDF Verifier Control Application
> WdfTester: WDF Driver Testing Toolset
> Tools for Software Tracing

> Additional Driver Tools

Explore v Docs Downloads v Events Samples Support Dashboard

Static Driver Verifier

06/13/2019 + 2 minutes to read + @ T &

Static Driver Verifier (also known as "StaticDV" or "SDV") is a static verification tool that systematically
analyzes the source code of Windows kernel-mode drivers. SDV is a compile time tool that is capable of
discovering defects and design issues in a driver. Based on a set of interface rules and a model of the
operating system, SDV determines whether the driver correctly interacts with the Windows operating
system kernel.

Installing Static Driver Verifier

Static Driver Verifier is available as part of the Windows Driver Kit (WDK) in both the full WDK experience
and in the standalone Enterprise WDK. In addition, the Visual C++ Redistributable Packages for Visual
Studio are required for SDV to run. See the following:

e Visual Studio 2019 Redistribution
e Visual C++ Redistributable Packages for Visual Studio 2017
e Visual C++ Redistributable Packages for Visual Studio 2013

For versions of SDV available in the WDK for Windows 10, Version 1809 or earlier, the Visual C++
Redistributable Packages for Visual Studio 2012 should be installed instead of the 2017 packages.

Visual Studio Integration

Static Driver Verifier is integrated into Visual Studio. You can run static analysis on your Visual Studio
driver project. You can launch, configure, and control Static Driver Verifier from the Driver menu in Visual
Studio.

Static Driver Verifier Documentation

e Static Driver Verifier Known Issues: Lists latest known issues for Static Driver Verifier

e Using Static Driver Verifier to Find Defects in Drivers: Tells you what you need to get started
analyzing your driver code in the Visual Studio environment.

e Static Driver Verifier commands (MSBuild): Lists the MSBuild commands to use to run SDV in a Visual
Studio Command Prompt window.

¢ Introducing Static Driver Verifier: Provides an overview of the static analysis tool.

e Using Static Driver Verifier: Provides the details about using and configuring the static analysis tool.

e Static Driver Verifier Report: Describes the viewer that displays the detailed trace of the static code
analysis.

e Static Driver Verifier Rules: The rules define the requirements for proper interaction between a driver
model and the kernel interface of the operating system.

e Static Driver Verifier Reference: Provides reference information about the function role types, SDV
configuration files, error, and warning messages.

GMU SWE 795 Fall 2019

26

LaToza

Rules for Audio Drivers

05/20/2018 » 2 minutestoread + @ = @

The DDI compliance rules for audio (PortCls) miniport drivers verify the DDI interface between PortCls.sys

and its miniport drivers.

In this section
Topic

PcAddAdapterDevice

PcAllocateAndMapPages

PcAllocatedPages

Description

The PcAddAdapterDevice rule specifies that a PortCls
miniport driver correctly uses the PcAddAdapterDevice

function, specifically that the DeviceExtensionSize should
be either zero (0) or no less than
PORT_CLASS_DEVICE_EXTENSION_SIZE.

The PcAllocateAndMapPages rule specifies that a PortCls
miniport driver calls the following interfaces, using the
correct parameters:

* |PortWaveRTStream::AllocatePagesForMdl|
* |PortWaveRTStream::AllocateContiguousPagesForMdI
* |PortWaveRTStream::MapAllocatedPages

The PcAllocatedPages rule specifies that a PortCls miniport
driver frees previous allocated pages by calling
AllocatePagesForMdl or AllocateContiguousPagesForMdl
methods.

The PclrglDDlIs rule specifies that a PortCls miniport driver
must call PortCls DDIs at the correct IRQL level.

The Pclrgllport rule specifies that a PortCls miniport driver
must call PortCls |Port interfaces at the correct IRQL level.

GMU SWE 795 Fall 2019

27

FindBugs

// Eclipse 3.0,
// org.eclipse.jdt.internal.ui.compare,
. / JavaStructureDiffViewer.java, line 131
Null pointer deref / :
Control c= getControl();
if (¢ == null && c.isDisposed())
return;

// JBoss 4.0.0RC1
// org.jboss.deployment.scanner
// AbstractDeploymentScanner.java, line 185

Lﬂjr](:C)r](jiti()r]Eil \A/Eiit // If we are not enabled, then wait

if (!enabled) {
try {
synchronized (lock) {
lock.wait();

David Hovemeyer and William Pugh. 2004. Finding bugs is easy. In Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications (OOPSLA '04). ACM, New York,
NY, USA, 132-136.

LaToza GMU SWE 795 Fall 2019

LaToza

Some initial Findbugs bug patterns

Code

Description

CN
DC
DE
EC
Eq
HE
IS2
MS
NP
NS
OS
RCN
RR
RV
Se
UR
UW
Wa

Cloneable Not Implemented Correctly
Double Checked Locking

Dropped Exception

Suspicious Equals Comparison

Bad Covariant Definition of Equals

Equal Objects Must Have Equal Hashcodes
Inconsistent Synchronization

Static Field Modifiable By Untrusted Code
Null Pointer Dereference
Non-Short-Circuit Boolean Operator

Open Stream

Redundant Comparison to Null

Read Return Should Be Checked

Return Value Should Be Checked
Non-serializable Serializable Class
Uninitialized Read In Constructor
Unconditional Wait

Wait Not In Loop

GMU SWE 795 Fall 2019

29

Current list of Findbugs bug patterns

BC: Equals method should not assume anything about the t f its areument

BIT: Check for sign of bitwise operation
CN: Class implements Cloneable but does not define or use clone method

CN: clone method does not call super.clone()

CN: Class defines clone() but doesn't implement Cloneable

CNT: Rough value of known constant found

Co: Abstract class defines covariant compareTo() method

Co: compareTo()/compare() incorrectly handles float or double value

Co: compareTo()/compare() returns Integer. MIN VALUE
Co: Covariant compareTo() method defined

DE: Method might drop exception
DE: Method might ignore exception

DMI: Adding elements of an entry set may fail due to reuse of Entry objects
DMI: Random object created and used only once

http://findbugs.sourceforge.net/bugDescriptions.html

LaToza GMU SWE 795 Fall 2019

http://findbugs.sourceforge.net/bugDescriptions.html

LaToza

Some challenges in preventing defects

» How do you know what is incorrect behavior?

 How do you explain to a developer the cause of
the (potential) defect?

 What happens if the tool approximates program
behavior and comes to an incorrect conclusion?

GMU SWE 795 Fall 2019

31

Use of defect prevention tools in OSS

projects (Dec 2014)

Source Projects | Use 1 ASAT | Use > 1 ASATs

GitHub 83 34% 30%

OpenHub 9 67% 22%

SourceForge 10 30% 0%

Gitorious 20 30% 5%

Total 122 36% 23%

TABLE III
DESCRIPTION OF THE ASATS FOR RQ 2 AND 3.

Tool Language | Format | Extendable | Released | # of Rules
CHECKSTYLE [41] Java XML Yes 2001 179
FINDBUGS [42] Java Text Yes 2003 160
PMD [43] Java XML Yes 2002 330
ESLINT [44] JavaScript JSON Yes 2013 157
JSCS [45] JavaScript | JSON Yes 2013 116
JSHINT [46] JavaScript JSON No 2011 253
JSL [47] JavaScript Text No 2005 63
PYLINT [48] Python Text Yes 2006 390
RUBOCOP [49] Ruby YAML Yes 2012 221

M. Beller, R. Bholanath, S. McIntosh and A. Zaidman, "Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source Software," 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Suita, 2016, pp. 470-481. doi: 10.1109/SANER.2016.105

LaToza

GMU SWE 795 Fall 2019

32

LaToza

Why developers don't use defect
prevention tools

Not integrated. The tool is not integrated into the developer’s
workflow or takes too long to run

Not actionable. The warnings are not actionable;

Not trustworthy. Users do not trust the results due to, say,
false positives

Not manifest in practice. The reported bug is theoretically
possible, but the problem does not actually manifest in
practice

Too expensive to fix. Fixing the detected bug is too expensive
or risky

Warnings not understood. Users do not understand the
warnings.

GMU SWE 795 Fall 2019 33

Challenges with customizability

 Many tools have many false positives

* \Want to have the abillity to turn on and off useful
and not useful rules

 [eams may customize settings, but then results In
iIssues when different teams use different settings
and find different issues with shared code

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why don't software developers use static analysis tools to find bugs?. In Proceedings of the 2013
International Conference on Software Engineering (ICSE '13). IEEE Press, Piscataway, NJ, USA, 672-681.

LaToza GMU SWE 795 Fall 2019 34

LaToza

Working with developer intent

« How do you know what behavior is incorrect? (i.e.,
the oracle problem)

Have developers write specifications for a
program for properties they care about

Build rules about how an APl should be used,
check that clients use it correctly

Look at lots of code, find atypical behaviors

GMU SWE 795 Fall 2019 35

LaToza

Writing specifications

Model classes should have ‘private’ fields and getters.

//CompilationUnit[PackageDeclaration/Name[@Image="com.bankapplication.model"]]//ClassOrInterfaceDeclaration[count(
ClassOrInterfaceBody/ClassOrInterfaceBodyDeclaration/FieldDeclaration[@Private="true"])=0 or count(ClassOrInterfaceBody/
ClassOrInterfaceBodyDeclaration/MethodDeclaration/MethodDeclarator[starts-with(@Image, "get")])=0]

Natural language spec and corresponding implementation in PMD

Specitying constraints on code often requires
learning and using a new language defined by tool

Often done by dedicated tool expertise with
expertise in writing necessary sSpecs

May capture company-wide policies

GMU SWE 795 Fall 2019

36

How should potential defects be
communicated to developers?

o Static analysis tools increasingly part of the build

DroOCess
e Bullds co

e |ndividua
rules

mpile code,

teams may

'un static analysis tools

oulld their own static analysis

 How should these tools communicate analysis

results to developers?

LaToza

GMU SWE 795 Fall 2019 37

Tricorder

Goals:

Low talse positives—error
reports should result in code
changes

Empower users to contribute
—let developers write their
own checkers

Make data-driven usability
improvements

Effective workflow integration
Quick fixes

- Analyzer

AffectedTargets
AndoidLint
AutoRefaster
BuildDeprecation

Builder
ClangTidy
DocComments
ErrorProne
Formatter
Golint

Govet
JavacWamings
JscompilerWamings
Linter

Unused
UnusedDeps

| Description

| How many targets are affected

Scans android projects for likely bugs
Implementation of Refaster [42]
Identify deprecated build targets

Checks if a changelist builds

Bug patterns based on AST matching
Errors in javadoc

Bug patterns based on AST matching
Errors in Java format strings

Style checks for go programs
Suspicious constructs in go programs
Curated set of warnings from javac
Warnings produced by jscompiler
Style issues in code

Unused variable detection

Flag unused dependencies

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Sdderberg, and Collin Winter. 2015. Tricorder: building a
program analysis ecosystem. International Conference on Software Engineering, 598-608.

LaToza

GMU SWE 795 Fall 2019

38

Tricorder Analysis Results

package com.google.devtools.staticanalysis;
public class Test ({

- Lint Missing a Javadoc comment.
Java
102 AM A:.‘;_} 21

Please fix Not useful

public boolean foo() {
return getString() == "foo".toString():;

« ErrorProne String comparison using reference equality instead of value equality

Jonetauatty - (see hitp:/ : le. /error-prone/wiki/Strin lity)
Please fix
Suggested fix attached: show Not useful

}

public String getString() {
return new String(“"foo");
}
}

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Sdderberg, and Collin Winter. 2015. Tricorder: building a
program analysis ecosystem. International Conference on Software Engineering, 598-608.

LaToza GMU SWE 795 Fall 2019

39

Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert Bowdidge. 2014. Programmers' build errors: a case study (at google). In Proceedings of the 36th

Communicating errors to developers

Study at Google based on 26.6 million builds
Developers frequently see error messages

» ~30% of builds fail due to compiler error

 Depende

Median resolution time i1s ~12 minutes

NCy errors are the most common

Count | Error Fix
10 Misspelled identifier Fix spelling
5) Wrong number of args to constructor call Add or remove arguments
4 Missing import Add import
2 Missing dependency Add dependency to BUILD file
2 Incorrect type parameter in arg to method | Fix type parameter
1 Called a non-existent method Removed method call
1 Accessed a non-existent field Added field
1 Removed a class but didn’t remove all uses | Removed remaining uses of class

International Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 724-734. DOI: https://doi.org/10.1145/2568225.2568255

LaToza

GMU SWE 795 Fall 2019

40

Communicating error messages

2 void m() {

3 final int x;

4 while (true) {
5 X = read();
6 }

7}

F.java:5: error: variable x might be assigned in loop
X = read();

A

1 error

VS.

F.java:5: error: The blank final variable "x" cannot
be assigned within the body of a loop that may execute
more than once.

X = read();

A

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error messages?. In Proceedings of
the 39th International Conference on Software Engineering (ICSE '17). IEEE Press, Piscataway, NJ, USA, 575-585. DOI: https://doi.org/10.1109/ICSE.2017.59

LaToza GMU SWE 795 Fall 2019 41

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error messages?. In Proceedings of
the 39th International Conference on Software Engineering (ICSE '17). IEEE Press, Piscataway, NJ, USA, 575-585. DOI: https://doi.org/10.1109/ICSE.2017.59

LaToza

Communicating errors

F.java:5: error: The blank final variable "x" cannot

be assigned within the body of Q/IGOp that may execute
more than once.

X = read();

A

Claim: there is a prgblem

Grounds: why is this a problem

The claim is the concluding assertion or
judgment about a problem in the code.

' Resolution | | .
T T Resolutions suggest concrete actions to
! the source code to remediate the problem.
Grounds > Claim
Facts, rules, and evidence to support the
claim.
Warrant Bridging statements that connect the

grounds to the claim. Provides justifica-
tion for using the grounds to support the
claim.

GMU SWE 795 Fall 2019

42

Examples

OpenJ]DK cannot find symbol
symbol: variable varnam
location: class Foo

Jikes No field named "varnam" was found
in type "Foo". However, there
is an accessible field "varname"
whose name closely matches the name
"varnam" .

 OpendDK only presents a claim. Jikes presents a
ground (there is an accessible field "varname"),
which is qualified through a rebuttal (However).

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error messages?. In Proceedings of
the 39th International Conference on Software Engineering (ICSE '17). IEEE Press, Piscataway, NJ, USA, 575-585. DOI: https://doi.org/10.1109/ICSE.2017.59

LaToza GMU SWE 795 Fall 2019 473

How do developers themselves explain
errors on StackOverflow?

! Resolutlon |
e rapuepgl
|
_______ |
I Resolutlon : Grounds > Claim
ey gpipageyagl
|
_______ |
! Resolutlon | Grounds »| Claim Warrant
eyl
~ T
l .
Claim Claim Warrant Backing
(a) Claim-only (b) Claim-resolution (c) Simple argument layout (d) Extended argument layout
(CEM = 191, SO = 0) (CEM = 10, SO = 59) (CEM = 8, SO = 49) (CEM = 1, SO = 102)
Attribute Description Extended Argument Components
Simple Argument Components BACKING Additional evidence to support the war-
Section 5.3.5 t, if th ti t ted.
CLAaMm The claim is the concluding assertion or () ratt e warrant 15 not aceepte
(Section 5.3.1) judgment about a problem in the code. QUALIFIER This is the degree of belief for a claim,
: : (Section 5.3.6) often used to weaken a claim.
RESOLUTION Resolutions suggest concrete actions to
(Section 5.3.2) the source code to remediate the problem. REBUTTAL Exceptions to the claim or other compo-
. (Section 5.3.7) nents of the argument.
GROUNDS Facts, rules, and evidence to support the
(Section 5.3.3) claim.
WARRANT Bridging statements that connect the
(Section 5.3.4) grounds to the claim. Provides justifica-
tion for using the grounds to support the
claim.

LaToza GMU SWE 795 Fall 2019

