
Crowdsourcing
Software Engineering

SWE 795, Fall 2019
Software Engineering Environments

LaToza GMU SWE 795 Fall 2019

Today

• Part 1 (Lecture)(~80 mins)

• Break!

• Part 2 (Discussion)(~60 mins)
• Discussion of readings

2

LaToza GMU SWE 795 Fall 2019

Open	Source	So+ware	Development

3

Linux	 Firefox	

4

5

Games	with	a	Purpose	(Pipejam)

6
Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Nathaniel Mote, Brian Walker, Seth Cooper, Timothy Pavlik, and Zoran Popović. 2012. Verification games: making verification fun.
In Proceedings of the 14th Workshop on Formal Techniques for Java-like Programs (FTfJP '12). ACM, New York, NY, USA, 42-49. DOI=http://dx.doi.org/10.1145/2318202.2318210

PipeJam

7

Crowdsourcing	-	defini;on

The act of a company or institution taking a function once
performed by employees and outsourcing it to an undefined
(and generally large) network of people in the form of an
open call.

 [Howe 2006]

8

Crowdsourcing	for	so=ware	engineering	-	defini;on

The act of undertaking any external software
engineering tasks by an undefined, potentially large group
of online workers in an open call format.

 [Mao+ 2015]

9

LaToza GMU SWE 795 Fall 2019

Some crowdsourcing models

10

Wisdom	of	the	crowds	(e.g.,	predic;on	markets)	
aggrega9ng	informa9on	from	diverse	par9cipants	

Peer	produc9on	(e.g.,	Wikipedia)	
decentralized	goal	seAng	

Microtasking	(Mechanical	Turk)	
short,	self	contained	parallelizable	tasks		

Human	computa;on	/	Games	with	a	purpose	
dual-sided	value	crea9on	through	play	

Online	labor	markets	
fluid	labor	forces,	recrui9ng	specialists	

10

LaToza GMU SWE 795 Fall 2019

Dimensions of software crowdsourcing

11

Dimension Explanation Range

crowd	size size	of	the	crowd	necessary	to	effectively	
tackle	the	problem

small	to	large

task	length amount	of	time	a	worker	spends	completing	
an	individual	task

minutes	to	weeks

expertise	demands level	of	domain	familiarity	required	for	a	
worker	to	make	a	contribution

minimal	to	
extensive

locus	of	control ownership	over	the	creation	of	new	
(sub)tasks	

client	to	workers

incentives motivational	factors	that	cause	workers	to	
engage	with	the	task

intrinsic	to	
extrinsic

task	interdependence degree	to	which	tasks	within	the	overall	
work=low	build	on	each	other

low	to	high

task	context amount	of	system	information	a	worker	
must	know	to	contribute		

none	to	extensive

replication the	number	of	times	the	same	task	may	be	
redundantly	completed

none	to	many

LaToza	and	van	der	Hoek.	Crowdsourcing	for	So+ware	Engineering:	Models,	Opportuni9es,	
Challenges.	IEEE	So+ware,	Jan/Feb	2016.

LaToza GMU SWE 795 Fall 2019

Dimensions of PipeJam

Crowd size: medium
Task length: minutes
Expertise demands:
minimal
Locus of control: client
Incentives: intrinsic
Task interdependence:
medium
Task context: none
Replication: none

12

Locus	of	control	&	incen;ves

Crowd & Intrinsic

OSS

Q&A sites (StackOverflow)

Gamified programming

13

Client & Extrinsic

Competitions

Labor markets

Replica;on

14

Whole project (OSS)

Derivative projects (OSS)

Work items (Competitions)

Design decisions (Q&A sites)

Task	length	&	Task	context

15

Long (hours - weeks) & High

OSS

Competitions

Labor markets

(Software development work)

Short (minutes) & Low

Gamified programming

Q&A sites

Labor markets for testing

(Tasks w/ clear goals)

Examples	of	so=ware	crowdsourcing	plaOorms

16

Dimension Open source TopCoder UserTesting.com

crowd size small – medium small medium

task length hours – days days - week minutes

expertise demands moderate extensive minimal

locus of control workers client client

incentives intrinsic extrinsic extrinsic

task
interdependence

moderate low low

task context extensive minimal none

replication none several many

Programming	is	becoming	more	social	and	fluid

17

share	hard-earned	exper9se	 learn	programming	through	
structured	examples	

reputa9on	made	visible compe99ve	programming	duels
>100K users>8M users

>24M users>7M monthly visits

Extreme	specializa;on	-	more	effec9vely	match	workers	to	work	
							Worker	might	choose	microtasks	they	most	enjoy	or	most	experienced.	
									

Increase	par;cipa;on	by	reducing	contribu9on	barriers	
									Expert	developer	might	do	a	key	microtask	and	contribute	key	insight.	
									Microtask	design	might	enable	non-programmer	to	do	work.	

Let	developers	learn	while	working	
									Novice	selects	microtasks	related	to	learning	objec9ve.	

Reduce	;me	to	market	
									Decomposing	tasks	into	parallel	microtasks	reduces	9me.	

More	fluid	so+ware	teams	
									Enable	teams	to	hire	experts	for	short	engagements	

PlaZorm	for	data-driven	SE	research	
		 Produces	archival	data	on	structure	of	work	inside	tasks	 18

Crowdsourcing	SE	opportuni;es

(similar	microtask,	
done	for	many	tasks)

LaToza GMU SWE 795 Fall 2019

Crowdsourcing SE topics today
• Peer production on Q&A sites (Stack Overflow)

• Sharing expertise

• Increasing parallelism in programming

• Replication & competition in software design

• Crowdsourcing systems for software design

19

Commons-Based	Peer	Produc;on

• Community with
distributed control where
contributors, rather than a
paying client, make
decisions about scope
and goals of project.

• Contributors may be
motivated by opportunity
for experience, reputation,
altruism.

20

LaToza GMU SWE 795 Fall 2019

Mechanisms for soliciting contributions

• Key requirements
• Output is decomposable into separate

contribution units
• Contributions are sufficiently fine-grained to

capture contributions from those whose
motivation will only sustain short efforts

• Low cost mechanism defends against
incompetent and malicious contributions

21

Y. Benkler and H. Nissenbaum, “Commons-based Peer Production and Virtue*,” J. Polit. Philos., vol. 14, no. 4, pp. 394– 419, 2006.

LaToza GMU SWE 795 Fall 2019

Stack
Overflow

• >100M monthly
unique visitors

• >3.9B yearly visits
• >3.7M questions

asked

22

LaToza GMU SWE 795 Fall 2019

Questions are answered quickly
• Median first answer 11 mins, accepted answer 21

mins

23

Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hartmann. 2011. Design lessons from the
fastest q&a site in the west. Conference on Human Factors in Computing Systems, 2857-2866.

LaToza GMU SWE 795 Fall 2019

What makes StackOverflow work?

• Make competition productive
• Tight focus on technical answers & voting system

offered strong alternative to conversational forums
• Game mechanisms through a reputation system led to

intense participation
• Credibility in the community

• Founders were thought leads that enabled them to
gain a critical mass

• Evolutionary approach to design
• Continuous feedback loop with users, helped

prioritize feedback

24

Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hartmann. 2011. Design lessons from the
fastest q&a site in the west. Conference on Human Factors in Computing Systems, 2857-2866.

LaToza GMU SWE 795 Fall 2019

Coverage of APIs
• Googled for all methods in jQuery API, examined

top 10 links for type of result

25

Chris Parnin and Christoph Treude. 2011. Measuring API documentation on the web. International Workshop on
Web 2.0 for Software Engineering, 25-30.

LaToza GMU SWE 795 Fall 2019

Sharing expertise
• Many developers do similar tasks everyday

• Write similar code —> code reuse
• Fix similar defects —> ???
• Do similar performance optimizations —> ???
• ….

• Can solve with StackOverflow, but requires developers to share
knowledge & developer to find it

• Goals:
• Increase breadth & quantity of expertise shared
• Decrease time to access expertise
• Increase probability that relevant expertise is found

26

LaToza GMU SWE 795 Fall 2019 27

Y. Chen, S. Oney, W.S. Lasecki. (2016) Towards Providing On-Demand Expert Support for Software Developers. In Proceedings of the
ACM Conference on Human Factors in Computing Systems.

On Demand
Expert Assistance

https://web.eecs.umich.edu/~wlasecki/pubs/devhelp_chi2016.pdf

LaToza GMU SWE 795 Fall 2019

On Demand Expert
Assistance

28

Y. Chen, S. Oney, W.S. Lasecki. (2016) Towards Providing On-Demand Expert Support for Software Developers. In Proceedings of the
ACM Conference on Human Factors in Computing Systems.

https://web.eecs.umich.edu/~wlasecki/pubs/devhelp_chi2016.pdf

LaToza GMU SWE 795 Fall 2019

HelpMeOut

29

Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010. What would other programmers
do: suggesting solutions to error messages. Conference on Human Factors in Computing Systems, 1019-1028.

LaToza GMU SWE 795 Fall 2019

Codex

30

Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt, and Michael S. Bernstein. 2014. Emergent, crowd-scale
programming practice in the IDE. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2491-2500.

https://www.youtube.com/watch?v=jAIWXbygKuc

https://www.youtube.com/watch?v=jAIWXbygKuc

Build	a	large	applica;on	in	a	day?

31

>24 million users x 1 day = ???

Increasing parallelism in programming

LaToza GMU SWE 795 Fall 2019

Reduce joining barriers
• OSS imposes joining barriers that dissuade casual

contributions
• Identifying appropriate contacts & receiving timely

feedback
• Identifying appropriate tasks and corresponding

artifacts
• Understanding project structure, complex code,

setting up a workplace
• Unclear documentation & info overload
• Learning project practices, domain knowledge,

technical expertise

32

I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles, “A systematic literature review on the barriers faced by newcomers to open source
software projects,” Inf. Softw. Technol., vol. 59, pp. 67–85, 2015.

Costs	&	challenges

• Task context & interdependence

• Handoffs — Specification often implicit through
interpretation of requirements & domain, rather than
explicitly represented in artifacts.

33

Key	ques;ons

To	what	extent	can	so+ware	development	work	be	
decomposed	at	a	granularity	smaller	than	commits?	

What	task	context	would	such	tasks	require?	

How	could	such	work	be	coordinated	and	organized?	

34

LaToza GMU SWE 795 Fall 2019

Collabode

• Micro-outsourcing
• Enables “original programmer” to describe custom microtasks in

prose
• Each microtask completed by workers
• Workers may discuss microtasks with original programmer for

clarification
• Original programmer responsible for feedback

35

Max Goldman, Greg Little, and Robert C. Miller. Real-Time Collaborative Coding in a Web IDE. UIST '11.
Max Goldman, Greg Little, and Robert C. Miller. Collabode: Collaborative Coding in the Browser. CHASE '11.

http://up.csail.mit.edu/collabode/UIST11-Collabode.pdf
http://dx.doi.org/10.1145/1984642.1984658

LaToza GMU SWE 795 Fall 2019

Collabode Evaluation

• Was possible to use the workflow for programming
• But…

• Managing the crowd imposed large overhead on
requestor to answer questions & eval
contributions

• Code often had subtle bugs, which were time
consuming to find and identify

• Anonymous workers led to low responsibility for
work

36

Microtask	programming	model

• Programming tasks

• are short (< 10 minutes)

• are completed by pool of transient workers

• are automatically generated by system

• iteratively update artifacts

37

38

39

40

41

42

Enabling	fine-grained	contribu;ons

Local changes to a single function or test

Type system, request functionality through pseudocalls

Preconfigured environment

Tutorial system introducing microtasks

Encourage mass parallelism

Collective ownership of code

Time & space box contributions

43

Automa;c	microtask	genera;on

Exis9ng	microtask	workflows	enumerate	microtasks	sta9cally	(e.g.,	map-reduce)	

Programming	work	cannot	be	sta9cally	enumerated	upfront.	
—	Work	created	in	response	to	work	completed.

44

Map	/	Reduce	Workflow

Inputs

Output

Map

Reduce

Output

…

…

…

Func;on	state	machine	-	example

45

Write
Function
Description

!described described
!written

testRun

described
written
buggy

described
written
!buggy

46

!described described
!written

testRun

described
written
buggy

described
written
!buggy

Edit a Function

47

!described described
!written

testRun

described
written
buggy

described
written
!buggy

Edit a Function

48

!described described
!written

testRun

described
written
buggy

described
written
!buggy

49

!described described
!written

testRun

described
written
buggy

described
written
!buggy

Debug
a Test Failure

50

!described described
!written

testRun

described
written
buggy

described
written
!buggy

Edit a Function

51

!described described
!written

testRun

described
written
buggy

described
written
!buggy

52

!described described
!written

testRun

described
written
buggy

described
written
!buggy

Coordina;ng	work

• One	microtask	in	progress	per	ar9fact

53

func;on	f	 func;on	add(Number	a,	Number	b)	

test1	 test2	 test3	 test4	 test5	

microtask2

microtask1	

microtask3	

Edit	a	Func9on	

54

func;on	f	

test1	 test2	 test3	 test4	 test5	

microtask2

microtask1	

microtask3	
func;on	add(Number[]	numbers)	

Number	a,	Number	b

Edit	a	Func9on	

55

func;on	f	

test1	 test2	 test3	 test4	 test5	

microtask2

microtask1	

func;on	add(Number[]	numbers)	

		microtask4	

[microtask5]	

[microtask6]	

Ensure	quality	through	itera;ve	work

• Key principle: any crowd authored content can be
revised by crowd

• Sketch & revision w/ small contributions

• Report issues w/ dependent artifacts that can’t be
directly edited

• Review & test

56

Workflow

57

client request

API

API function

API function

API function

function

microtask

implemented library

!described described
!written

testRun

described
written
buggy

described
written
!buggy

!described described
!written

testRun

described
written
buggy

described
written
!buggy

!described described
!written

testRun

described
written
buggy

described
written
!buggy

!described described
!written

testRun

described
written
buggy

described
written
!buggy

function

!described described
!written

testRun

described
written
buggy

described
written
!buggy

microtask microtask

crowd microtask queue

Results	-	Automa;cally	genera;ng	microtasks

• Implemented 22 functions (490 lines of code), including 14 new functions

• Created 149 unit tests (2920 lines of code)

58

Microtask type Completed Skipped Reissued Median time
(m.s)

Total time
(hh.mm.ss(m:s) (h:m:s)

Session A B A B A B A B A B
Review 260 227 22 22 - - 1:27 1:14 9:29:32 6:43:43

Write test 158 102 22 7 40 41 1:29 1:21 6:35:41 3:15:12
Write function 44 56 25 21 16 22 4:57 2:31 3:59:28 3:40:03

Write test cases 40 30 9 4 11 13 3:50 2:28 2:57:02 2:05:53
Debug test failure 14 18 5 6 1 4 2:32 4:00 0:57:22 1:21:21

Write function 8 16 3 0 0 10 3:12 2:44 0:30:21 1:03:58
Write call 7 9 2 2 0 3 1:37 2:28 0:15:02 0:36:49

Reuse search 9 10 3 0 - 3 0:42 1:35 0:06:37 0:22:33
Total 540 468 91 62 68 96 24.51.0 19:09:32

Overall total 1008 153 16 44:00:37

Results	-	Small	contribu;ons

59

Results	-	Fixing	bugs

60

S;ll	a	need	for	coordina;ng	crosscudng	informa;on

• Much of the crosscutting information related to decisions

• Interpretation of requirements & specifications

• Representation of state in data structures

• Building good interface often as much work (or more) than doing implementation

• Need for global view for the crowd to be more involved in crafting API
61

Scaffolding	coordina;on	and	knowledge	sharing

Idea

 make design decisions explicit

 link artifacts to design decisions

 enable developers to coordinate by discussing
 design decisions

62
LaToza,	Di	Lecce,	Ricci,	Towne,	van	der	Hoek.	Ask	the	crowd:	Scaffolding	coordina9on	and	
knowledge	sharing	in	microtask	programming.	VL/HCC	2015.

Extended	environment	w/	Q&A	system	directly	connected	to	code

63

Developers	can	search	for	exis;ng	answers

64

Developers	can	search	ques9ons	
with	full	text	filter	

Ques9ons	marked	as	closed	(yellow)	
or	open	(gray)	

Ques9ons	marked	as	relevant	to		
current	ar9fact	(top)	and	all	other	
ques9ons		

If	no	answer,	can	ask	new	ques9on.	

Developers	can	discuss	ques;ons	and	answers

65

Any	worker	may	at	any	;me	discuss	
ques9on.	

Threaded	into	answers	&	comments.	

Up	vote	&	down-vote.	

Discussion	synchronous	(real	9me	
updates)	&	asynchronous		
(no9fica9ons	on	issues	developers		
follows)	

Ques9on	9tle,	text,	tags,		
open/closed	collabora;vely	editable.

Organizing	discussion	around	decisions	helps	structure	
coordina;on

Workers used Q&A to ask questions on variety of topics
— crosscutting decisions
— clarify function descriptions
— state decisions already made, indicating convention
— ask questions about using CrowdCode environment
— explicit coordination

Compared to unstructured global chat, several preferred Q&A
— “easier to transmit and spread the information” (P2)
— easier to “find relevant issues very easily” (P5)
— better than “tutorials and documentation” (P18)
— less distracting, easier to reach agreement, easier to get
up to speed

66

Some	limita;ons

• Lots of work for client to craft the right API

• Only for code, not UI

• No independent consideration of alternatives

• Independence important for generating diverse ideas

• Valuable for important design decisions?

67

68

https://www.youtube.com/watch?v=Urh-TQk4ebQ&feature=youtu.be

Alex C. Williams, Harmanpreet Kaur, Shamsi Iqbal, Ryen W. White, Jaime Teevan, and Adam Fourney. 2019. Mercury: Empowering
Programmers' Mobile Work Practices with Microproductivity. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (UIST '19). ACM, New York, NY, USA, 81-94. DOI: https://doi.org/10.1145/3332165.3347932

https://www.youtube.com/watch?v=Urh-TQk4ebQ&feature=youtu.be

Consider	alterna9ves	separately	created	by	many,	itera9vely	selec9ng	and	
recombining	the	best	ideas

So=ware	design	recombina;on

69

UX	and	architectural	design	compe;;ons

70

12	UX	par9cipants 10	AD	par9cipants

Designs	independently	scored	on	1-7	scale	by	4	expert	panelists		
Evaluated	on	elegance,	clarity,	and	completeness	

LaToza,	Chen,	Jiang,	Zhao,	van	der	Hoek.	Borrowing	from	the	crowd:	A	study	of	
recombina9on	in	so+ware	design	compe99ons.	ICSE	2015.

Designs	increased	in	quality

71

User	experience	designs:								+1.8	points	out	of	21	(p	=	.03)			
																																																				75%	of	designs	improved	

Architectural	designs:														+1.6	points	out	of	21	(p	=	.009)	
																																																					80%	of	designs	improved	

LaToza,	Chen,	Jiang,	Zhao,	van	der	Hoek.	Borrowing	from	the	crowd:	A	study	of	
recombina9on	in	so+ware	design	compe99ons.	ICSE	2015.

Designers	borrowed	features	and	presenta;on	elements

72

Source design Revised design

LaToza,	Chen,	Jiang,	Zhao,	van	der	Hoek.	Borrowing	from	the	crowd:	A	study	of	
recombina9on	in	so+ware	design	compe99ons.	ICSE	2015.

All	designers	borrowed

73

bo
rr
ow

in
g	
de

sig
ne

r	(
be

st
	fi
rs
t)

source	designer	(best	first)

User	experience Architecture	&	design
Co

nt
ro
l

w
/	
ra
nk

in
g

LaToza,	Chen,	Jiang,	Zhao,	van	der	Hoek.	Borrowing	from	the	crowd:	A	study	of	
recombina9on	in	so+ware	design	compe99ons.	ICSE	2015.

LaToza GMU SWE 795 Fall 2019

Microtasking software design work

74

Edgar R. Q. Weidema, Consuelo López, Sahand Nayebaziz, Fernando Spanghero, and André van der Hoek. 2016. Toward
microtask crowdsourcing software design work. International Workshop on CrowdSourcing in Software Engineering (CSI-SE
'16), 41-44.

LaToza GMU SWE 795 Fall 2019

Apparition

75

Walter S. Lasecki, Juho Kim, Nick Rafter, Onkur Sen, Jeffrey P. Bigham, and Michael S. Bernstein. 2015. Apparition:
Crowdsourced User Interfaces that Come to Life as You Sketch Them. CHI, 1925-1934.

https://www.youtube.com/watch?v=tBCB6P7FwWY

https://www.youtube.com/watch?v=tBCB6P7FwWY

LaToza GMU SWE 795 Fall 2019 76

SketchExpress: Remixing Animations For More Effective Crowd-Powered Prototyping Of Interactive Interfaces.(paper) Lee, S. W.,
Zhang, Y., Wong, I., Yang Y., O’Keefe, S., Lasecki, W.S., In Proceedings of the ACM Symposium on User Interface Science and Technology
(UIST). Quebec City, Canada.

https://www.youtube.com/watch?time_continue=34&v=A_Pngz1mbDs&feature=emb_logo

https://doi.org/10.1145/3126594.3126595
https://www.youtube.com/watch?time_continue=34&v=A_Pngz1mbDs&feature=emb_logo

LaToza GMU SWE 795 Fall 2019

Flash teams

77

Daniela Retelny, Sebastien Robaszkiewicz, Alexandra To, Walter Lasecki, Jay Patel, Negar Rahmati, Tulsee Doshi, Melissa Valentine, Michael Bernstein. Expert
Crowdsourcing with Flash Teams. UIST 2014: ACM Symposium on User Interface Software and Technology.

https://www.youtube.com/watch?v=IVgTZEpHOzc

http://www.acm.org/uist/uist2014/
https://www.youtube.com/watch?v=IVgTZEpHOzc

