
Program Synthesis
SWE 795, Fall 2019

Software Engineering Environments

LaToza GMU SWE 795 Fall 2019

Today
• HW4 is due next week in class!

• Part 1 (Lecture)(~45 mins)

• Break!

• Part 2 (Discussion)(~60 mins)
• Discussion of readings

• Part 3 (In class activity)(~20 mins)
• Project work

2

LaToza GMU SWE 795 Fall 2019

Main idea
• Developers describe a desired behavior,

environment synthesizes code that provides this
behavior

• Many applications have been explored
• Intelligent macro recorders
• Deobfuscation
• Autocomplete
• Bug fixing
• New algorithm discovery

3

LaToza GMU SWE 795 Fall 2019

Generate & Validate approach

• Generate code
• Validate if code satisfies constraints

• If yes, stop

4

LaToza GMU SWE 795 Fall 2019

Characterizing generate & validate
techniques

• Developer intent: how do developers describe the
desired behavior?

• Search space: what programs can possibly be
synthesized?

• Search technique: how does the technique
enumerate candidate programs within the search
space?

5

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP ’10), 13-24.

LaToza GMU SWE 795 Fall 2019

Expressing developer intent with
constraints

• Input / output examples
• Unit tests
• Logical relations between inputs and outputs (specifications)
• User demonstrations
• Keywords describing intent
• Partially complete programs with “holes”

• Key considerations
• How specific are the constraints?
• How long does it take to evaluate if candidate program

satisfies constraint? (e.g, specification for expression vs.
test suite for program)

6

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP ’10), 13-24.

LaToza GMU SWE 795 Fall 2019

Specifications: example

7

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP ’10), 13-24.

LaToza GMU SWE 795 Fall 2019

Search space
• Competing goals

• Expressive: include all programs of interest
• Restrictive: smaller search space

• Often expressed in terms of what language constructs are or
are not allowed

• Examples
• Expressions only with arithmetic operators
• Expressions with function invocations & operators
• Expressions, guarded by one of a specific set of conditionals
• Loop-free programs with conditionals
• Expressions with depth a maximum node depth of 4
• Arbitrary programs

8

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP ’10), 13-24.

LaToza GMU SWE 795 Fall 2019

Some methods of reducing search space

• Expressing programs in less expressive domain
specific language
• e.g,. method invocations & conditionals

controlling when they exist; control

• Assembling code from existing code snippets
• Plastic surgery hypothesis: high redundancy in

code, so existing code snippets can often be
found (and perhaps slightly adapted)

9

LaToza GMU SWE 795 Fall 2019

Search techniques
• Brute force

• Enumerate all programs in the search space
• Version spaces

• Maintain list of satisfying boolean functions
• Order from most general to least general
• Refine as more constraints are added

• Probabilistic inference
• Estimate distribution elements in search space from data, use to bias search
• e.g., toString() is far more frequent than xizo(100032)

• Genetic programming
• Maintain population of programs, use selection, mutation, crossover to

evolve
• SAT solvers

• Represent constraints as logical formula, generate program that satisfies
constraint

10

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP ’10), 13-24.

LaToza GMU SWE 795 Fall 2019

Techniques we’ll examine today
• Genetic programming

• Probabilistic inference

• Keyword constraints

• Execution trace constraints (programming by
demonstration)

• Synthesizing transformations

11

LaToza GMU SWE 795 Fall 2019

Genetic programming
• One of the oldest approaches, based on genetic

algorithms

• Uses analogy with biology
• DNA —> programs
• Keep population of programs
• Select highest scoring programs (e.g., best

satisfy constraints) for replication
• Use crossover & mutation to evolve programs

towards better solution

12

LaToza GMU SWE 795 Fall 2019

Defect Repair: GenProg
• 1. What is it doing wrong?

• We take as input a set of negative test cases that characterizes a fault. The
input program fails all negative test cases.

• 2. What is it supposed to do?
• We take as input a set of positive test cases that encode functionality

requirements. The input program passes all positive test cases.
• 3. Where should we change it?

• We favor changing program locations visited when executing the negative
test cases and avoid changing program locations visited when executing
the positive test cases.

• 4. How should we change it?
• We insert, delete, and swap program statements and control flow using

existing program structure. We favor insertions based on the existing
program structure.

• 5. When are we finished?
• We call the first variant that passes all positive and negative test cases a

primary repair. We minimize the differences between it and the original
input program to produce a final repair.

13

Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. 2010. Automatic program repair with
evolutionary computation. Commun. ACM 53, 5 (May 2010), 109-116.

LaToza GMU SWE 795 Fall 2019

Example

14

LaToza GMU SWE 795 Fall 2019

Example

15

LaToza GMU SWE 795 Fall 2019

Example

16

LaToza GMU SWE 795 Fall 2019

Promising results?
• GenProg: fixed 55 of 105 considered bugs
• RSRepair: 24 of 105 GenProg bugs
• AE: 54 of 105 considered bugs

• The test suite is a set of novice programming
mistakes, likely to contain more obviously atypical
erroneous code that is perhaps easier to fix
• But this is still a start?

17

C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each. In
34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pages 3–13, 2012.

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random search on automated program repair. In ICSE, pages 254–265, 2014.

W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence for adaptive program repair: Models and first results. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, pages 356–366. IEEE, 2013.

LaToza GMU SWE 795 Fall 2019

A second look…
• What were these fixes?

• 104 of 110 considered fixes were deleting code
selected by fault localization algorithms.

• This removed relevant functionality.
• Because of weak tests that checked for errors rather

than correct output, appeared to fix defect
• What happens with better tests?

• Only generates patch for 2 of 105 considered
defects (!?!), which were already best possible case

• Somewhat less promising…

18

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch plausibility and correctness for
generate-and-validate patch generation systems. International Symposium on Software Testing and Analysis (ISSTA
2015), 24-36.

LaToza GMU SWE 795 Fall 2019

Synthesis with
Prophet

19

Fan Long and Martin Rinard. 2016. An
analysis of the search spaces for
generate and validate patch generation
systems. In Proceedings of the 38th
International Conference on Software
Engineering (ICSE '16), 702-713.

LaToza GMU SWE 795 Fall 2019

Prophet mutation operators

20

Fan Long and Martin Rinard. 2016. An analysis of the search spaces for generate and validate patch generation
systems. In Proceedings of the 38th International Conference on Software Engineering (ICSE '16), 702-713.

LaToza GMU SWE 795 Fall 2019

Prophet results

21

LaToza GMU SWE 795 Fall 2019

Keyword constraints

22

Greg Little and Robert C. Miller. 2007. Keyword programming in java. International conference on Automated software
engineering (ASE ’07), 84-93.

• Explore space of expressions, scoring by match of
identifiers in expression to provided keywords

• Use in scope variables as leafs in exploration

LaToza GMU SWE 795 Fall 2019

User study

23

Greg Little and Robert C. Miller. 2007. Keyword programming in java. International conference on Automated software
engineering (ASE ’07), 84-93.

LaToza GMU SWE 795 Fall 2019

Programming by demonstration
• Program is a set of operations with effects recorded by

the user
• e.g., click a button, enter String in textbox

• User expresses constraints by recording multiple traces
• Goal is to generate program that has same output on

demonstrated examples but also work on other similar
situations

• Example
• User selects the first entry from Google search result,

pastes that into a form field on another website
• User demonstrates doing this once (or twice)
• Want a program that will work for all search results

returned by Google

24

LaToza GMU SWE 795 Fall 2019

Example: Flashfill

25

Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet data manipulation using examples. Commun. ACM 55, 8 (August 2012), 97-105. DOI: https://doi.org/
10.1145/2240236.2240260

LaToza GMU SWE 795 Fall 2019

Challenge: ambiguity

26

ways to extract 706 from 425-706-7709

LaToza GMU SWE 795 Fall 2019

Programming with constraints

• What happens if the specification is underspecified
(ambiguity) or there are multiple conflicting
specifications (over specification)

• Key idea: communicate ambiguity to user to offer
choices and prevent conflicts when users to create
them

27

Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming by manipulation for layout. In Proceedings
of the 27th annual ACM symposium on User interface software and technology (UIST ’14), 231-241.

LaToza GMU SWE 795 Fall 2019

Demo

28

https://www.youtube.com/watch?v=EDS82S9QMaM

Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming by manipulation for layout. In Proceedings
of the 27th annual ACM symposium on User interface software and technology (UIST ’14), 231-241.

https://www.youtube.com/watch?v=EDS82S9QMaM

LaToza GMU SWE 795 Fall 2019

Approach

29

LaToza GMU SWE 795 Fall 2019

Approach

30

Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming by manipulation for layout. In Proceedings
of the 27th annual ACM symposium on User interface software and technology (UIST ’14), 231-241.

LaToza GMU SWE 795 Fall 2019

Synthesizing transformations
• Let developers specify a change in behavior

• e.g., corrections made to fix a bug

• Cluster code snippets
• Edit code snippet to fix defect
• Try to generalize to transformation that can be

applied to other similar code snippets

31

LaToza GMU SWE 795 Fall 2019

Clustering mistakes

32

Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis,

A Head, EL Glassman, G Soares, R Suzuki, L Figueredo, L D'Antoni and B Hartmann, ACM Learning at Scale, 2017.

http://eglassman.github.io/papers/glassmanLatS17.pdf

LaToza GMU SWE 795 Fall 2019

Authoring transformations

33

Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis,

A Head, EL Glassman, G Soares, R Suzuki, L Figueredo, L D'Antoni and B Hartmann, ACM Learning at Scale, 2017.

http://eglassman.github.io/papers/glassmanLatS17.pdf

LaToza GMU SWE 795 Fall 2019

Further Challenges
• Are synthesized programs as good as a human

solution?
• Is it as efficient?
• Does it violate style rules?
• Does it violate hidden design constraints?

• May depend on how synthesis is used
• If humans are inspecting the code anyway

(autocomplete), does it matter, since they correct it
• If goal is to automate bug fixing, will they trust it?

34

LaToza GMU SWE 795 Fall 2019

Does synthesis help developers?

• If a synthesis suggests a snippet, can a developer
judge if it is the right one?

• Brandt model suggests that might be most useful
for reminding cases where developers knows API
already

• May be less useful where developers are trying to
learn API

35

