Problem Solving

SWE 795, Fall 2019
Software Engineering Environments

(A
m

UNIVERSIT

<

LaToza

Today

Part 1 (Lecture)(~75 mins)
Sreak!

Part 2 (Discussion)(45 mins)
* Discussion of readings

Pa

't 3 (Project group work)(30 mins)

ime to work In groups, ask questions

GMU SWE 795 Fall 2019

LaToza

Logistics

e HW1 due next week

 No readings next week, will have project
presentations instead

GMU SWE 795 Fall 2019

A few minutes in the life of a developer

- - . 7R -
g T R e o AR e 1D S U antew 337 @ wveww sncs (8 - [
» B owloadwiines A Eoip | A S rvanl) p= T e 7017 Fhe o0 R o IS TR v
> B heefincy ’- Tes Eoienpdl
Limieg Fo— - " iz edt
» Lanbaran eriasa | Strivg retesl - ere. stcelapat gl 25 comp - 1" s n
N AL E LT SRR jutiteapny Jmeasupe”) urgs) » O RN
e]l-dln prriras vle)
' AR Mo 1ariere, OV
¥ SdsrhD T 1
S st 3
Qe (Frenvul (o mull)]
PR cordraners (Mol venial)
ranure ret
«- bty $ Ul deshoip
.y pu o
v { . v R L U TCL T Y
e A e al
» M warmn £ bptend s WADONY L FTE_O0n
- a 4 - - 3 r ' T 1
- c 3 t:0lag 3 tares " pe e =" gt st
A e tetls ™ " . - tia M Rnpetral
e " ' T . ‘
» 33 wammen s ieees ' x . ’) ’ o s ieT et mmer it e Bucangs
o . - v . watIge (a)
» Lreazoaiams < te o t to & tve dralsg ’ A sherndshayNoyar
PISTSYEN ' e ') @ " b e e
T AT Pregeire ey . [| o'wmuv bl
verw Tea * - ' & oM tesLe
. pa tuttars The testavs %o duapiay o sewpls o’ wor, St (ol o alo neet
ey
v Pasve. *RS_ M0 LaM " ' ™ Srbas it ’ gt
YiEYaah e etr b ‘ q o @ yeCaiortinciming Clor
¥ Atree see - ¥ g 50 $ " pelrvormarfees. Lavpnnsad, Cusl
¥ ane .
B e KA R Lt 1. 1p- ° - — ' -
b J) Ardze Corvaat, 20 . Aoty i
o e > »
b N At Ly artha wrs L R T B T LT TR - &7 pr ey vl Mo ety
> r fhoert[] arge, 1ot Burtare, 10t typs @} pSnprang S e mesiar
v O -
g U Mstielastsereanl) .
m .
' hooarenuates ate remure JOatcePave s enfs a0t alagl sew
-
A s ~apertAnare + ".resaags” args) =
b LU N Te e e vt are tesie’) hwttoss e). ', =
b owhem sy * * rpurirtge maAl vy pedes Sy
- ¢
b) BCavparwen ses * " rpufizgenpCorporert, 1
» 1) 2aiens ,,; { stlontora mathed [T TE T T T P e — ve
4 R T
) WG e e
v J) decize g o< pencgall e o ' s Neast mppa e o .
! - Pe title of the 4 < . w the o huwrrranieen
R . « periy. B Tt chue ICavTCaregcrers. Svirg. Srwgl] Oment Irerncparng
- » s ¢
b) e 3 ™ . ——— praser b deoley s o
BT ' . ¢ by 0 oy & " setGanre e g
’ e N
H-l‘ » 0 o Dmtee pms " poranate 2 ¥ vasweenur
‘ » T)ﬂ“lllu..n et ¢ Jpral ® ¥ catWerciies ceCaruaz, Seing
- Ll Al P R N @ " sarveraiyang
v 4 X '3 ~ -
: 3 IR Daksess e sadl e stonte Lan Vi Cenr?i mdCramoners we., Nelom nwe, Sovleg™ we o' W r b A ceerer Ymee (Veoob
13 Pxbagsbeze X 2 Tyos Merach ®ol) h48.nes ezt 1 11 etsndel) e =
> | » J| ‘atree v - - (vara e Sing
ald 4, ~femvenre ‘ -)) " wervara it
Ll Vet ow jene L e o L 1B
= efereaks J3 » N » * * cazWerchur Zering x
o . ’ “yr
) seslalesgtaend v o ooect | mesacps ~ v '-.. L
P Ot eea e s PR putitagare, essage’ ugs) . Tpepheraserag
» S| Sxdeelrsaz vm B9 FreTIINKTIN) - It lung e '
1 L v S abn Dby o8, leadnad
L asielevenne 3 parTreR C s
o, ¥
P) SO e e reture Ooticefione. shonCunfisalivlep(tew, . tu-u m;lru avwar, St)
B oy !
b AN AR e . coisay 4 {Syrmr— . o Witielee ?
v 4 I T . WAL get?rapertinwe + " 11087 v L P hattnareemmeis oty ¢ o
3 as (& e] -
£ rootbeens @ dwwten |1 Duttaraion @ Puascwe | B Cannste 50 G ity 4 Seen IS IR L GCIR AN Y Al ~ B =

A LT retwennins I aartipees 27 remsches P Yar Awe
¥ OOPRITRIITET A, Dot s

IR L p
Hamsahrane 031 . than
¥ U vadlias 2

¥ arAuoioe

'
nr TR AW M) A"
AzAretLpthayure

Mbeew wiine

= ~, — Awander T raimes
Comcie & i Fu——
(E8r Td pue Azzlazzon (Spnew) Uiy Tare o wrbel
N Seavibelicton - necta
NI W 26T
T [
3 @ 16-9)
50503 14.59 baParatiang
N1 VA Deaag
L0 2459 EIVE en bor aend mand
B9 160y “Faehen 1o
B 1N (215 TR T
Ny 1w tie
W e g e Yo
B A T "
A1-99 1¢-3% ST T
20" 10049 14:%8 LR

o ‘et s Sring aket] o et 2 mveten

» "srenCoregorent, Saieg, Ctisct)12 vardns

@ “enpntd conniemt Sieny Ghan] ey nleh

o YirpurtasemCeenzenn Urtag, Dbgect], S rgt 14 ranthee
e Sty Sroegll SRl D v
e N

L

A few hours in the life of a professional software developer

collaboration
programming

collaboration

programming
collaboration

design
collaboration

Developer assigned bug by team
Reproduces error

Browser hits error message (500 internal error)
Attaches debugger

Browse to page again, hit null reference exception
Hypothesize from call stack which function might be responsible
Browse through code
Uses debugger to change values & experiment
Make change, recompile, check, doesn’t work
Navigates slice, wrong values came from objects

In complicated code doesn’t understand
Walks to B’s office and asks where data comes from

B working on high profile feature in area
Tries to make change, still doesn’t work
Walks back to B, realize related to C’s feature, C at lunch
After lunch, A and B walk to C’s office,

A, B, C change design to work with new feature

Bug passed from A to C to change feature

LaToza, Venolia, and Deline. Maintaining Mental Models: A Study of Developer Work Habits. ICSE 2006.

Problem solving

Goal: where am | trying to go”
Operators: what actions can | take _
to get closer to the goal? B

Apply operator, look at new state,
apply another operator

Newell, A.; Shaw, J.C.; Simon, H.A. (1959). Report on a general problem-solving program. Proceedings of the International Conference on Information
Processing. pp. 256—264. 6

http://bitsavers.informatik.uni-stuttgart.de/pdf/rand/ipl/P-1584_Report_On_A_General_Problem-Solving_Program_Feb59.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/rand/ipl/P-1584_Report_On_A_General_Problem-Solving_Program_Feb59.pdf

Problem solving is recursive

task Investigate and fix a design problem

questionl Why is an event being issued by forcing a cache update?

How is BufferHandler using its buffer field? Are there any other mutations on it?

action Read methods of BufferHandler

Why is there a buffer member variable that is never used?

Investigate references to BufferHandler.buffer

Why is doDelayedUpdate() a member of BufferHandler?

Reads methods along path, concludes that BufferHandler tracks update delays

Why wouldn’t isFoldStart() call getFoldLevel()

Reads isFoldStart(), getFoldAtLine()
Concludes isFoldStart() doesn’t call because of short circuit evaluation

Implement fix

Assure correctness

Set conditional break point
Check that jEdit still appears to work correctly

Repro original bug by reinserting

LaToza and Myers. Designing useful tools for developers. PLATEAU 2011.

Problem solving is recursive

Problem solving involves answering questions

-

Problem solving involves strategies

——

10

Problem solving involves taking actions to answer questions and

follow strategies
.

11

High)

Effectiveness (1 = Low, 7

()]
1

Developers use a variety of techniques for obtaining information

and answering questions

Unplanned meetings
L
Planned meetings
External docs * Ergai

Webe ¢ Igtemal docs

IM®
Phone ® Bug database
Ot%er
0 5 10 15 20 25 30

% communicating about code time

=Low, 7=High)

Effectiveness (1

()]
1

(%]
1

NN
1

W
1

N
1

Debugger Reading code
Trace statements) ¢
. . % eCheckin messages
igh level viewsRunning code
®
Other
0 10 20 30 40

% understanding code time

12

LaToza, Venolia, and Deline. Maintaining Mental Models: A Study of Developer Work Habits. ICSE 2006.

Problem solving involves formulating hypotheses

—/-\

13

Problem solving involves choices between strategies

W
-

14

LaToza

Problem solving in programming

Developers have tasks (e.g,. fix this defect, implement this feature)
which they work to complete

Developers ask questions reflecting information they need in order
to complete tasks.

e e.g., What's the best design for implementing this?

Developers may formulate hypotheses representing answers to
guestions.

Developers select strategies to gather evidence answer questions
and to support or reject hypotheses.

e From code, from external resources, from teammates

Developers often have multiple strategies to answer questions

GMU SWE 795 Fall 2019

15

Program comprehension as fact finding

> SEEK
> Read relevant methods looking for facts

|

CRITIQUE
Fact A is bad design

LEARN > EXPLAIN
Fact Ais true Fact A is true to make fact B true

P

PROPOSE
Change facts A1, B1 to facts A2, B2

v

IMPLEMENT
Change code to reflect facts A2, B2

LaToza, Garlan, Herbsleb, Myers. Program comprehension as fact finding. FSE 07. 10

Supporting programming activities

—f\-
-/ -\-

 Many potential points of intervention, supporting
subgoals / strategies / question answering /
testing hypotheses

LaToza GMU SWE 795 Fall 2019

Useful interventions solve important problems

- ‘ -

quality impact duration

LaToza and Myers. Designing useful tools for developers. PLATEAU 2011.

18

Percent of time

What percentage of the last week have you spent...

100—
25-
80— " * *
!
» w 20+
. * * a
60 " * * E * :
*
* * N ¥ T * - * § 15-
w -
40— * * - o
* t
- * @ 104
. * §
ol []
- 5-
[— —
o T T T L =EL
o 1 1 1 1 1 1 1 1
I l | I I I | I 2 3 4 5 6 7 8 9
e 2 -§ e 2 2 g 2 -§ Number of Activities in Past Week
4 -— S —_
S 2 O ©® £ 5 £ @ o
c -Ag c i g) Q - -
S 7 2 8 6 = b
E 3 5 O
o =
S S

LaToza, Venolia, and Deline. Maintaining Mental Models: A Study of Developer Work Habits. ICSE 2006. 19

Example: Activities in fixing a defect

14%
28% *
50% f
Reproducse
P - Sompile ‘._,@est
50% B o,
/ 57 %
Circle size: % of time Edge thickness: % of transitions observed

For tasks in code in your own codebase that you haven’t seen recently

LaToza and Myers. Developers ask reachability questions. ICSE 2010. 20

Pseudo-initial Product
title, years on team customers

A Communication tool
SDE, 2 end users and devs
B Development tool
SDE, 1 developers
C File metadata
SDE, 3 developers
D Mobile device tool
SDE, 4 end users
E Service packs
SDE, 2 developers
F Build automation
SDE, <1 developers
G Mobile device tool
SDE, 1 end users
H Discussion boards
SDE, 1 end users
J Communication tool
SDE, 4 end users and devs
K Education tool
Lead, 5 end users
L Development tool
SDE, 10 end users and devs
M Input device Ul
SDE, 3 end users
N Data processing tool
SDE, 4 end users
R Communication tool
SDE, 3 end users
T Office application
SDE, 1 end users
U Office application
SDE, 3 end users
vV Content protection
Lead, <1 end users and devs

Work
months in phase

Investigated two bugs
12 in bug fixing

Fixed generated code
6 in development

Interpreted spec
6 in bug fixing

Wrote internal tool
8 in development

Reproduced failures
2 in bug fixing

Diagnosed build failure
6 in development

Prepared build config
6 in development

Read unfamiliar code
1 in bug fixing

Triaged 7 bug reports
6 in bug fixing

Wrote feature code
5 in development

Triaged w/ coworker
2 in bug fixing

Investigated two bugs
2 in bug fixing

Prepared check in
5 in development

Triaged and fixed bugs
1.in bug fixing
Investigated two bugs
5 in bug fixing

Waited for build & test
12 in bug fixing

Debated fix with team
5 in bug fixing

[(}] resumed _] done _1 blocked 3 interruption ¢ code s submit bbug triage rreproduce u understand d design a awareness - non-work

source

10 min 20 min

0 min

30 min 40 min 50 min 60 min 70 min 80 min 90 min

email emall

r | . Ib Ir

ld <a

| E B

sl , IO o 1 1) 61 o R ry € ry £ gy R 1y 2

self im emall self visitor

—

u I [u 1 IR ey [u T e
phone i visitor phone visitor
| | |
3 g B gy O 1y O 2 CHE g T f o T I

visitor

CS— o Co—

[a Ib I r— O mmmug
visitor phone

g O 3 12 K5 b |-
r - Ir I3 [CX G vy ey gy (3 CO Ju
visitor |
s E!s Elc [{s e Ir |c = clu
| | m m
b T Jb lu l"Eu_Du le : EErzea Al Gledr lu gab
: : visma" \'pT'\one phone
b Ir | e r r b I IL':!“ 15 u T {uld
b IUEUI | 5_ == z:;—'_ za—'__‘!r u {a
wr 5 e =
i © o e
email ! email visitor
0 min 10 min 20 min 30 min 40 min 50 min 60 min 70 min 80 min 90 min

Figure 2. The backgrounds and task structures of the 17 observed developers. The right edge of each task block indicates the
reason for the task switch (thin line for done, thick line for blocked, jagged line for interrupted). When a task gets broken up by
interruptions or blocking, we draw its fragments at the same vertical level to show resumption.

Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th international conference on Software Engineering (ICSE '07). IEEE Computer Society,
Washington, DC, USA, 344-353. DOI: https://doi.org/10.1109/ICSE.2007.45

21

Some methods for supporting problem solving

Find an important question, build tool that makes it easier
to answer

Find an action that helps developers answer questions,
Make It easier to take

Find a new strategy that helps developers answer
guestion more effectively

22

Many other factors influence difficulty answering questions

expertise
time to market

development environments
effort to answer

| guestions
programming languages

code quality software quality

team practices

Interventions might also target these factors

23

Some methods for supporting problem solving

Find an important question, build tool that makes it
easler to answer

Find an action that helps developers answer questions,
Make It easier to take

Find a new strategy that helps developers answer
question more effectively

24

LaToza

Making questions easier to answer

e Jools help developers be more productive by
reducing the time to answer questions, increasing
Ikelihood of success

* [his requires

e understanding precisely the information
required and context avallable to developers

* Insight into a mechanism to make a question
easier to answer

GMU SWE 795 Fall 2019

25

Example: Questions about object structure

Is a

Navigability

Part of

How to get

Is in tier

Cardinality

Questions and beliefs about object structure

Points to

Isa
Navigability
Part of

How to get
Isin tier
Cardinality
Has a

Is owned

May (not) alias

Has label

Object merging |

0

10

Who implements type X? [who can be an object or a type]

Let's say | am in the StandardDrawing class and | want the JavaDrawApp object
which is a DrawingEditor [...]. What would save me a lot of time is to say now | am
at the Drawing and | want to go to the DrawingEditor, show me my options.

Maybe | would start with the Drawing object and that should have a list of listeners?

How | will get hold of the DrawingEditor object? [...] Basically | need to know the
instance of the current window.

| know | need to get the view from here; so how do | do that?

What | would be interested in is looking in the code to try to understand where are
the view and model

The class diagram says that the DrawingEditor has one DrawingView and the
StandardDrawingView may or may not have a Drawing.

| would like to know the cardinality: so Window has one or more
StandardDrawingViews?

Maybe | would start with the Drawing object and that should have a list of listeners

[...] the window itself has a reference to the UndoManager but you can’t tell from
this diagram whether each window has its own UndoManager, or whether it is just
one global manager.

So | have different selections in the different views.

Both of them are two views on the same Drawing, but if there are two windows...

Marwan Abi-Antoun, Nariman Ammar, and Thomas LaToza. 2010. Questions about object structure during coding activities.
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE '10). ACM, New York, NY, USA, 64-71.

___Has a
—
Is owned
May alias
20 30 40 50

Beliefs

Questions

DOI=http://dx.doi.org/10.1145/1833310.1833321

GMU SWE 795 Fall 2019 26

Example: Programming questions

information type

s1 Did | make any mistakes in my new code?
a2 What have my coworkers been doing?

u3 What code caused this program state?

r2 In what situations does this failure occur?

d2 What is the program supposed to do?

a1 How have resources | depend on changed?
u1 What code could have caused this behavior?
c2 How do | use this data structure or function?
d3 Why was this code implemented this way?
b3 Is this problem worth fixing?

d4 What are the implications of this change?

d1 What is the purpose of this code?

u2 What's statically related to this code?

b1 Is this a legitimate problem?

s2 Did | follow my team's conventions?

r1 What does the failure look like?

$3 Which changes are part of this submission?
¢3 How | can coordinate this with this other code?
b2 How difficult will this problem be to fix?

c1 What can be used to implement this behavior?
a3 What information was relevant to my task?

min mid max
0 1 6
0 1 1
0 2 21
0 2 49
0 1 21
0 1 9
0 2 17
0 1 14
0 2 21
0 2 6
0 2 9
1 1 5
0 1 7
0 1 2
0 7 25
0 0 2
0 2 3
1 1 4
2 2 4
2 2 2
1 1 1

search times

% agreed info is...
import. unavail. inacc.

| 59
17
- 90
. 80
. 03
4
|73
-, 71
Hm 61
B 44
I 85
| 56
M 66
B 49
4
i 38
. 61
|75
41
. 61
., 59

7

1
49

15

12
10
32
20
29
15
22
29
39
20
49
29
27
34
15
23

5
30
32
22
13

frequency and outcome of searches frequency of sources
acquired » deferred © gave up» beyond obs.- br = bug report, dbug = debugger
minnnnnouuaaeaaaaoaassnn 00Ug 10 compile 26 intuition 6 unit test 4
vinnnnnnnnnennnncccos coworker 20 email 13 tool 4 bug alert 4 im 2
sensnnnnnnnocconoococosancees- (fbug 16 br 3 intuition 3 log 3 tools 3 code 2 coworker 1
0000000000 br 8 coworker 8 inference 5 tools 3 dbug 2 comment 1
EREERRERRRRRN RN RRRO000 Spec 13 coworker 9 docs 5 email 1

EERRERRRERRRRRRRRRRDO000) tools 12 coworker 6 email 4 br 2 code 1

ssnsnnnnnnnnnoooooo- coworker 5 intuition 4 log 4 br 4 dbug 2 im 1 code 1 spec 1
wmmnnnnnnnny J0cS 11 code 5 coworker 4 spec 1

RR0000000N "= code 4 intuition 4 history 3 coworker 2 dbug 2 tools 2 comment 1 br 1

SERRERRRERRRRND coworker 12 email 2 br 1 intuition 1
LTI T coworker 13 log 1

TTLLLLILERN intuition 5 code 2 dbug 2 tools 2 spec 1 docs 1
wennnnns {00l 8 intuition 2 email 1

o br 5 coworker 1 log 1

00 docs 2 tools 2 memory 1

wane Ppr 3 screenshot 2

weo fools 2 memory 2

w- docs 2 code 1 coworker 1

w code 1 coworker 1 screenshot 1

w memory 1 docs 1

w memory2

Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th international conference on
Software Engineering (ICSE '07). IEEE Computer Society, Washington, DC, USA, 344-353. DOI: https://doi.org/10.1109/ICSE.2007.45

GMU SWE 795 Fall 2019

LaToza

27

LaToza

; This is a serious problem for me

% agree

Code Understanding

Understanding the rationale behind a piece of
code

Understanding code that someone else wrote
Understanding the history of a piece of code
Understanding code that I wrote a while ago
Task Switching

Having to switch tasks often because of requests
from my teammates or manager

Having to switch tasks because my current task
gets blocked

Modularity

Being aware of changes to code elsewhere that
impact my code

Understanding the impact of changes I make on
code elsewhere

Links between Artifacts
Finding all the places code has been duplicated

Understanding who “owns” a piece of code

66%

56%
51%
17%

62%

50%

61%

55%

59%
50%

LaToza, Venolia, and DelLine. Maintaining Mental Models: A Study of Developer Work Habits. ICSE 2006.

GMU SWE 795 Fall 2019

28

Questions developers report as hard to
answer span many topics

Rationale (42)

Why was it done this way? (14) [15][7]

Why wasn t it done this other way? (15)

Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Debugging (26)

How did this runtime state occur? (12) [15]

What runtime state changed when this executed? (2)
Where was this variable last changed? (1)

How is this object different from that object? (1)
Why didn t this happen? (3)

How do I debug this bug in this environment? (3)

In what circumstances does this bug occur? (3) [15]
Which team's component caused this bug? (1)

Intent and Implementation (32)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Refactoring (h2 5)

Is there functionality or code that could be refactored? (4)

Is the existing design a good design? (2)

Is it possible to refactor this? (9)

How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)

Are the benefits of this refactoring worth the time investment? (3)

History (23)

When, how, by whom, and why was this code changed or
inserted? (13)[7]

What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]

Has this code always been this way? (2)

What recent changes have been made? (1)[15][7]

Have changes in another branch been integrated into this

branch? (1)

Implications (21)

What are the implications of this change for (5) API clients (5),
security (3), concurrency (3), performance (2), platforms (1), tests
(1), or obfuscation (1)? (21) [15][24]

LaToza and Myers. Hard-to-answer questions about code. PLATEAU 2010.

Testing (20)

Is this code correct? (6) [15]

How can [test this code or functionality? (9)

Is this tested? (3)

Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Implementing (19)

How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
What's the best design for implementing this? (7)

Control flow (19)

In what situations or user scenarios is this called? (3) [15][24]

What parameter values does each situation pass to this method? (1)

What parameter values could lead to this case? (1)

What are the possible actual methods called by dynamic dispatch
here? (6)

How do calls flow across process boundaries? (1)

How many recursive calls happen during this operation? (1)

Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)

What is catching this exception? (1)

Contracts (17)

What assumptions about preconditions does this code make? (5)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)

What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)

What is responsible for updating this field? (1)

Performance (16)

What is the performance of this code (5) on a large, real dataset (3)? (8)

Which part of this code takes the most time? (4)

Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)

How many of these objects get created? (1)

Teammates (16)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)

Policies (15)
What is the policy for doing this? (10) [24]

Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)

Type relationships (15)

What are the composition, ownership, or usage relationships of this
tpe? (5) [24]

What is this type's type hierarchy? (4) [24]

What implements this interface? (4) [24]

Where is this method overridden? (2)

Data flow (14)

What is the original source of this data? (2) [15]

What code directly or indirectly uses this data? (5)

Where is the data referenced by this variable modified? (2)

Where can this global variable be changed? (1)

Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Location (13)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Building and branching (11)

Should I branch or code against the main branch? (1)

How can I move this code to this branch? (1)

What do I need to include to build this? (3)

What includes are unnecessary? (2)

How do I build this without doing a full build? (1)

Why did the build break? (2)[59]

Which preprocessor definitions were active when this was built? (1)

Architecture (11)

How does this code interact wilgv libraries? (4)
What is the architecture of the code base? (3)

How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Concurrency (9)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Dependencies (5)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Method properties (2)
How big is this code? (1)
How overloaded are the parameters to this function? (1)

29

Many of these already have tools that support them

Debugging
Refactoring

Design Rationale

- S0 If there's already a tool designed to support this,
why is it still so hard??

30

LaToza

Supporting information needs

 Debugging is hard.
* Jool x claims to make debugging easier!

e Does tool x help?

 Depends...

Does tool x apply in the situations that make
debugging challenging?

Do developers have the context they need to invoke
tool x

Does tool x reliably produce the information required
Are the interactions for using tool x usable

GMU SWE 795 Fall 2019

31

Debugging (26)

% How did this runtime state occur? (12) KA Where was this variable
data, memory corruption, race last changed? (1)
conditions, hangs, crashes, failed API o Why didn’t this
calls, test failures, null pointers happen? (3)

Record execution history
Provide interactions for browsing or searching

: - g—
graphics text excep@ ’ _\
. properties of this line » why did x1 =887

R, oo | objects rendering this ¥ why did y1=1857
...... : | why did x2 =937
. | Windows ¥ why did y2 = 1697
WhyLine [1] NG - AWO
reen (0 why did font = Dialog 12 pt?

why did stroke = 5.0 pixel stroke?

directly supports all 3 questions _ - E——— —
1n some situations . |

omniscient debuggers

|
r
o 'y - >
¥ 4 9 9V v S . showng a Vo events
before this window repanied

[1] Ko, AJ., and Myers, B.A. (2008). Debugging reinvented: asking and answering why and why not questions about
program behavior. In Proc. of the Int’l Conf. on Soft. Eng. (ICSE).

LaToza GMU SWE 795 Fall 2019

Debugging (26)

How do I debug
® this bug in this
environment?(3)
statistical debugging [1] No need to
_ reproduce
-Sample execution traces :
environment on
on user computers developer
-Find correlations between computer

crashes and predicates

LaToza

In what
KA circumstances

does this bug
occur? (3)

Examine
correlations
between crashes
and predicates

[1] Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. 1. 2003. Bug isolation via remote program sampling. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation.

GMU SWE 795 Fall 2019

33

LaToza

X

Debugging (26)

How is this object different
from that object? (1)

Which team’s component

caused this bug? (1)
Which team should 1

assign this bug to?
What runtime state changed

when this executed? (2)

GMU SWE 795 Fall 2019

34

Rationale (42)

Why wasn’t it done this Why was it done this way? (14
X other way? (15) x d e

naming, code structure, inheritance relationships, where resources freed,
code duplication, algorithm choice, optimization, parameter validation
visibility, exception policies

Was this intentional,
R accidental, or a

hack? (9)

% How did this ever
work? (4)

LaToza GMU SWE 795 Fall 2019 35

Refactoring (25)

o Is the existing design KA Is there functionality or code
a good design? (2) that could be refactored? (4)
smell detectors [1], metrics clone detectors [2]

Detects syntactically similar code

Look for bad design idioms Suggests developer refactor

Suggests developer refactor
ComponentUI mui = new MultiButtonUI();

: turn MultiLookAndFeel.createUIs(mui
data clumps instanceot / "~ : . ’
: (MultiButtonUI) mui);
feature envy magic number clone
refused bequest long method \ ComponentUT mui = new MutilColorChooserUI();
typecast]arge class return MultiLookAndFeel.createUIs(mut,

(MultiColorChooserUI) mui);

obsolete code, duplicated functionality, redundant data
between equally accessible data structures

[1] Murphy-Hill, E. and Black, A. P. (2008). Seven habits of a highly effective smell detector. In Proc of Recommendation
Systems for Software Engineering at FSE.

[2] Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: a multi-linguistic token-based code clone detection
system for large scale source code. In TSE, 28(7).

LaToza GMU SWE 795 Fall 2019 36

LaToza

X

Refactoring (25)

Should I refactor
this? (1)

% Are the benefits of this refactoring
worth the time investment? (3)

GMU SWE 795 Fall 2019

37

Refactoring (25)

Is it possible to Ja How can I refactor this (2) without
refactor this? (9) breaking existing users(7)?

IDE refactoring automation
rename

move

pull up

push down

encapsulate field

convert local variable to field

changing a method’s scope, moving functionality between layers,

¥ changing semantics of config values, making operations more data
driven, generalizing code to be more reusable

higher-level refactorings

LaToza GMU SWE 795 Fall 2019 38

FInd a new strategy that makes question easier to
answer

Example of a programming strategy

This Strategy helps you merge 2 branches in githup and resolve conflicts
#Required Tools and Environments
Installing git
Github account
Ongoing project which is progressing in at least 2 branches
Git repository that is not associated with Github
#Required Knowledge
Basic git command knowledge
Knowledge of how to work with terminal and run commands
STRATEGY GitMerge()
Open the teminal, and use cd(change directory) command to move to the
local git project directory
Open the terminal and navigate to your git project directory
IF you are not in the master branch
Run the command git checkout master
checkout to the master branch
IF you are in the master branch
To merge the second branch with the master branch run the command
"git merge secondBranch", which secondBranch is the name of your git
second branch
Merge the two branches
IF the merge has a conflict
SET 'conflictedFiles’ TO the project files that have a conflict
FOR EACH 'file' IN 'conflictedFiles'
DO fixConflict('file')
Run GIT STATUS to see the latest changes
Run GIT ADD
Run GIT COMMIT -m ""
Run GIT PUSH
Commit and push the changes
RETURN nothing

40

Developers often have choices between strategies

Question Can | remove this call?

Strategy: Implement & test VS. Strategy: Understand

Remove the call & test Understand implications before
behavior change editing by investigating callees

41

Guess and check debugging

1.Describe in words how the program is failing
2.Brainstorm a list of possible causes of this failure

3. For each possible cause:

1. Read the potentially defective code.
2. Gather data about program execution to verify that it is the defect.

3. If it is the defect, repair it.

4.1f you didn’t find the defect, return to 2

42

1.STRATEGY debug()

2 # Is the faulty output you're investigating printed to a command line?

3 IF the faulty output is logged to a command line

4. # To find print statements, try searching for keywords related to 'log' or 'print'
5 SET outputLines TO the line numbers of calls to console logging functions

6 # Graphical output includes things like colored lines and rectangles

7 IF the faulty output is graphical output

8 # To find these lines, try searching for keywords related to graphical output, like

9. # draw' or 'fill'. Focus on lines that directly render something, not on higher-level
10. # functions that indirectly call rendering functions.
11. SET outputLines TO the line numbers of function calls that directly render graphics to the screen

12. # Now that you have some lines that could have directly produced the faulty output, you're
13. # going to check each line, see if it executed, and then find the cause of it executing. If
14. # you're lucky, you only have one output line to check.

15. FOR EACH 'line' IN 'outputLines'

16. IF the program executed 'line’

17. Analyze the line to determine its role in the overall behavior of the program

18. # Check for errors such as the wrong function being called, the wrong argument being
19. # passed to a function, the wrong variable being referenced, or a wrong operator being
20. # used.

21. IF any part of 'line' is inconsistent with its purpose

22. # You found the bug

23. RETURN 'line'’

24. # If the output statement is not wrong, perhaps the line was not supposed to execute at all?
25. IF 'line' was not supposed to execute at all

26 # The conditional might be in the same function as the output statement, or it might
27 # have been a conditional in a function that called this function. Check the call

28 # stack if necessary by setting a breakpoint. Find the conditional that led this line
29 # to being executed

30. # Some value in the conditional's boolean expression must have been wrong. Which

31 # value was it?

32. SET 'wrongValue' to the value in the conditional's boolean expression that ultimately
33. allowed the faulty output to execute

34. # We'll use another strategy to find the source of the incorrect value.

35. RETURN localizeWrongValue('wrongValue')

36. # If the line was supposed to execute, but it executed with an incorrect value, find
37. # that value.

38. IF 'line' executed with an incorrect value

39. SET 'wrongValue' TO the incorrect value

40. # We'll use another strategy to find the cause of the incorrect value.

41. RETURN localizeWrongValue('wrongValue')

42. # If you made it to this line, then you must have missed something. Is it possible you
43. # made a mistake above? If so, go back and verify your work, because something caused the
44, # faulty output.

45. RETURN nothing

Many factors influence the effectiveness of a strategy in a situation

Influencing factor

Strategy: Implement & test vs.

Strategy: Understand

Work style [Clarke+04]

Opportunistic

Systematic

Development process

Test-driven development

Few unit tests

Cost of bugs

Low

High

Time to implement

Easy to implement

Hard to implement

Difficulty of testing

An easily tested property
(e.g., performance)

Non-functional property
(e.g., testing usability)

Test execution time

Short-running test suites

Long-running test suites

44

Developers often rapidly switch between alternative actions or

strategies
Where is method m generating an error?

Rapidly found method m implementing command
Unsure where it generated error

Statically traversed calls looking for something that
would generate error

static call traversal

debugger Tried debugger
grep Did string search for error, found it, but many callers
debugger Stepped in debugger to find something relevant
static call traversal Statically traversed calls to explore
debugger Went back to stepping debugger to inspect values

Found the answer

(66 minutes) 45

Developers often rapidly switch between alternative actions or

strategies

Lacks knowledge to determine
how these lines influence program
behavior

Tries to recover rationale, but no
explanation in check-in message

Tests might have identified a bug, but
don't prove absence.

Teammates remembered another
scenario.

Strategy 1. Guess the answer.

— This was a quick hack, not a reasoned changea
because otherwise they would have been removed. Bul
what would break if they were here?

Strategy 2. Check code history.
— | commented these out 2 years ago along with many
other changes. But why?

Strategy 3. Implement & test.
— Removed comments, all tests still pass.
But did | break anything?

Strategy 4. Ask my teammates.
— Sent an email. Teammates replied with a description of
a rare input which causes it to break. Success!

46

Some strategies are more effective than others in a specific
situation

e

—

retrieveRelationships

NPE

getStartContext

Strategies can make a large difference in task performance

e

—

retrieveRelationships

NPE

getStartContext

Teaching strategies

f some strategies are more effective, maybe we could
just teach them?”/

-+ Write down lots of expert strategies.
- Give developers the written version of the strategy?

Developers are habitual, solve problems as they always
have

Read it once, try to follow It, return to prior strategy

49

Scaffolding novel strategy use

Please select your Strategy ->

Variables

Previous B[4
Please separate multiple inputs with a comma

possibleCauses 17 24 <

Find what your program is doing that you do not want it to do cause 5

set '‘possibleCauses’ to any lines of the program that might be responsible for
causing that incorrect 'behavior
N IF Statement Steps
for each 'cause’ in '‘possibleCauses
'\Jii‘v"?!fifﬂ"» to ‘cause 4 Step 1. Find the value of the variable using the
behavio variables pane on the right.
Iifcausa’ls ithe cause of the probiem - L Step 2. Inspect the condition in the statement. If the
to stop 'cal condition is true, click True. Otherwise, click False.
2 1ange tne proare to stop the Iincorrect 13[‘,;".2‘;‘3(,!' .
Chang rogram to stop the in ‘ ©® Step 3. The computer will go to the next statement.
Mark the task as finished
..... n ng
u ' find the cause
\SK {) finding otl ssibl juses
Restart the strategy

Andrew J. Ko, Thomas D. LaToza, Stephen Hull, Ellen Ko, William Kwok, Jane Quichocho, Harshitha Akkaraju and
Rishin Pandit. Teaching Explicit Programming Strategies to Adolescents. SIGCSE 2019.

Teaching Strategies to Developers

- Recruited 28 participants with JS experience and varying
levels of industry experience (mean 2.5 years)

- Asked participants to debug a defect and complete a
code design task, compared natural strategies against
strategy shared through Strategy Tracker

- Most participants with Strategy Tracker switched strategy
-+ Design: Decompose or Template --> TDD
- Debugging Forwards search --> backwards search

- Enabled debugging participants to make more progress

51

What's next: Supporting information needs

- Many of the next lectures will focus on information needs in specific programming
activities

- Editing code
- Debugging
-+ Navigating code
- Refactoring
-+ Code reuse
- Some will focus on specific tool approaches
- Visualization
- Crowdsourcing
+ Program synthesis

- Next week: Programming as communication

52

