
Debugging
SWE 795, Fall 2019

Software Engineering Environments

LaToza GMU SWE 795 Fall 2019

Today
• Part 1 (Lecture)(~80 mins)

• Debugging
• Break!

• Part 3 (Discussion)(45 mins)
• Discussion of readings

2

LaToza GMU SWE 795 Fall 2019

Example

3

LaToza GMU SWE 795 Fall 2019

Steps in fixing bugs

• Reproduce the problem
• Find cause of defect
• Investigate fix
• Implement fix
• Test fix

• Will focus on finding cause of defect today

4

Edit	/	Debug	Cycle

5

Circle	size:			%	of	%me Edge	thickness:			%	of	transi%ons	observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

For	tasks	in	code	in	your	own	codebase	that	you	haven’t	seen	recently	

LaToza	and	Myers.	Developers	ask	reachability	ques%ons.	ICSE	2010.

Debugging	process	model

6

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

LaToza GMU SWE 795 Fall 2019

Formulate & test hypotheses
• Use knowledge & data so far to formulate hypothesis

about why bug happened  
 cogitation, meditation, observation, inspection,
contemplation, hand-simulation,  
 gestation, rumination, dedication, inspiration,
articulation

• Recognize cliche  
 seen a similar bug before

• Controlled experiments - test hypotheses by gathering
data

7

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza GMU SWE 795 Fall 2019

Resources for testing hypotheses

8

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

LaToza GMU SWE 795 Fall 2019

Definitions
• Error - discrepancy between actual behavior of system

and intended behavior

• Failure - incorrect output value, exception, etc.; an error
that has become observable

• Fault - lines in code which are incorrect

• Debugging: determining the cause of a failure
• May involve finding location (fault localization) as well

as explanation.

9

LaToza GMU SWE 795 Fall 2019

Resources used in debugging

10

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

LaToza GMU SWE 795 Fall 2019

Information needs in debugging

11

omniscient debuggers

How did this runtime state occur? (12)
data, memory corruption, race
conditions, hangs, crashes, failed API
calls, test failures, null pointers

* Where was this variable  
last changed? (1)*
Why didn’t this  
happen? (3)*

Record execution history
Provide interactions for browsing or searching

WhyLine
directly supports all 3 questions  
in some situations

LaToza	and	Myers.	Hard-to-answer	ques%ons	about	code.	PLATEAU	2010.

LaToza GMU SWE 795 Fall 2019 12

statistical debugging [1]

How do I debug
this bug in this
environment?(3)

*
In what
circumstances  
does this bug
occur? (3)

*

-Sample execution traces
on user computers
-Find correlations between
crashes and predicates

No need to
reproduce
environment on
developer
computer

Examine
correlations
between crashes
and predicates

[1] Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. I. 2003. Bug isolation via remote program sampling. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation.

LaToza GMU SWE 795 Fall 2019 13

Which team’s component  
caused this bug? (1)
Which team should I
assign this bug to?

✖

What runtime state changed  
when this executed? (2) ✖

How is this object different  
from that object? (1)✖

Informa=on	needs	in	debugging

• What code could have caused this behavior?

• What's statically related to this code?

• What code cause this program state?

14

Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th international conference on
Software Engineering (ICSE '07). IEEE Computer Society, Washington, DC, USA, 344-353. DOI: https://doi.org/10.1109/ICSE.2007.45

LaToza GMU SWE 795 Fall 2019

Activity
• What's the hardest debugging bug you've ever

debugged?
• What made it hard?

15

LaToza GMU SWE 795 Fall 2019

What makes debugging hard?

16

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

LaToza GMU SWE 795 Fall 2019

What makes hard bugs hard to debug?
• Cause / effect chasm - symptom far removed from the root cause (15

instances)  
 timing / synchronization problems  
 intermittent / inconsistent / infrequent bugs  
 materialize many iterations after root cause  
 uncertain connection to hardware / compiler / configuration

• Inapplicable tools (12 instances) 
 Heisenbugs - bug disappears when using debugging tool  
 long run to replicate - debugging tool slows down long run even more  
 stealth bug - bug consumes evidence to detect bug 
 context - configuration / memory makes it impossible to use tool

• What you see if probably illusory (7 instances)  
 misreads something in code or in runtime observations

• Faulty assumption (6)
• Spaghetti code (3)

17

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza GMU SWE 795 Fall 2019

What makes hard bugs hard to debug?

18

LaToza GMU SWE 795 Fall 2019

Activity

• What is a strategy you've used to debug a defect?

19

LaToza GMU SWE 795 Fall 2019

Some debugging strategies
• Backwards: Find statement that generated incorrect

output, follow data and control dependencies
backwards to find incorrect line of code

• Forwards: Find event that triggered incorrect
behavior, follow control flow forward until incorrect
state reached

• Input manipulation: Edit inputs, observe differences
in output

• Blackbox debugging: Find documentation, code
examples to understand correct use of API

20

LaToza GMU SWE 795 Fall 2019

Traditional debugging techniques

• Stepping in debugger
• Logging - insert print statements or wrap particular

suspect functions
• Dump & diff - use diff tool to compare logging data

between executions
• Conditional breakpoints
• Profiling tool - detect memory leaks, illegal memory

references

21

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza GMU SWE 795 Fall 2019

Debugging tools
• Make breakpoint debuggers better

• Support stepping backwards (omniscient debuggers)
• Support finding statement that generated incorrect output

• Find part of program that generated incorrect output (slicing)
• Output: subset of program

• Help developers follow data and control dependencies backwards
• Support for navigating control and data dependencies (WhyLine)

• Compare execution across different runs to guess locations that might be related
(automatic debugging)
• Output: list of potential fault locations

• Simplify input to find a simpler input that still generates failure (delta debugging)
• Output: simplified input

• Enable developers to directly answer questions about causality
• Support searching across control and data flow (Reacher)

• Help developers understand execution state
• Show visualizations which depict the current contents of memory

• Let developers experiment, editing program till they find the right one (live
programming)[editing code]

22

LaToza GMU SWE 795 Fall 2019

Program analysis building blocks

• Many tools rely on gathering an execution trace
• Record the value of every expression as it

executes (or sometimes at function boundaries)
• Challenge: scalability

• Other tools use log data
• Gives developer control over what is being logged
• More easily scalable, requires developer to control

what is logged
• Other tools use test coverage data

• Which statement executes on each test, test
passing or succeeding

23

LaToza GMU SWE 795 Fall 2019

Make breakpoint debugging better

• Debugging in a debugger is hard
• Forces developer to guess which methods to

step into
• Forces developers to guess which values to

instrument
• Changing guess requires reproing failure again

• Can be time consuming

• What if developers could debug forwards and
backwards?

24

LaToza GMU SWE 795 Fall 2019

• Forwards / backwards stepping  
through execution events

• Select graphical output, find code that drew it
•

ZStep94

25

See value of selected variables

Henry Lieberman and Christopher Fry. 1995. Bridging the gulf between code and behavior in programming. In Proceedings of the
SIGCHI conference on Human factors in computing systems (CHI '95), 480-486.

Demo: http://web.media.mit.edu/
~lieber/Lieberary/ZStep/ZStep.mov

http://dx.doi.org/10.1145/223904.223969
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov

LaToza GMU SWE 795 Fall 2019

Omniscient debugger

26

Demo	/	talk:	http://video.google.com/videoplay?
docid=3897010229726822034#

Bill Lewis. Debugging backwards in time. In Proceedings of the Fifth International Workshop on Automated Debugging
(AADEBUG 2003), October 2003.

http://video.google.com/videoplay?docid=3897010229726822034#
http://video.google.com/videoplay?docid=3897010229726822034#
http://video.google.com/videoplay?docid=3897010229726822034#
http://www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf

LaToza GMU SWE 795 Fall 2019

Associating incorrect output with
responsible code

27

Brian Burg, Andrew J. Ko, and Michael D. Ernst. 2015. Explaining Visual Changes in Web Interfaces. In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology (UIST '15). ACM, New York, NY, USA, 259-268. DOI: https://doi.org/10.1145/2807442.2807473

LaToza GMU SWE 795 Fall 2019

Find part of the program that caused
incorrect output

• Slice
• Subset of the program that is responsible for

computing the value of a variable at a program
point

• Backwards slice
• Transitive closure of all statements that have a

control or data dependency

• Originally formulated as subset of program

28

LaToza GMU SWE 795 Fall 2019

Early evidence for slicing

• BEGIN 
READ(X, Y) 
TOTAL := 0.0 
SUM := 0.0 
IF X <= 1 
 THEN SUM := Y 
 ELSE BEGIN 
 READ(Z) 
 TOTAL := X * Y 
 END  
WRITE(TOTAL, SUM) 
END

• (Static) slice - subset of the program that produces the same variable
values at a program point

• Slice on variable Z at 12

29

Participants performed 3 debugging tasks on
short code snippets

Asked to recognize code snippets afterwards

Mark Weiser. 1982. Programmers use slices when debugging. Commun. ACM 25, 7 (July 1982), 446-452.

http://portal.acm.org/citation.cfm?id=358577

LaToza GMU SWE 795 Fall 2019

Slicers debug faster
• Students debugging 100 LOC C++ programs
• Students given 

 Programming environment 
 Hardcopy input, wrong output, correct output  
 Files with program & input

• Compared students instructed to slice against everyone
else 
 Excluding students who naturally use slicing strategy

• Slicers debug significantly faster (65.29 minutes vs.
30.16 minutes)

30

Francel M. A. and S. Rugaber (2001). The Value of Slicing While Debugging, Science of Computer Programming, 40(2-3), 151-
169.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V17-434442G-2&_user=525223&_coverDate=07/31/2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1592955686&_rerunOrigin=google&_acct=C000026389&_version=1&_urlVersion=0&_userid=525223&md5=fc3d24a54e88a14f5439d75ad19e91cf&searchtype=a

LaToza GMU SWE 795 Fall 2019

Dynamic  
slicing

31

Hiralal Agrawal, Richard A. Demillo, and Eugene H.
Spafford. 1993. Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper. 23, 6 (June 1993),
589-616.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231

LaToza GMU SWE 795 Fall 2019

Compare faulty & unfaulty execution
traces

32

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Fall 2019

Compare faulty & unfaulty execution
traces

• Program runs on user computer 
 Crashes or exhibits bug (failure) 
 Exits without exhibiting bug (success)

• Counters count # times predicates hit 
 Counters sent back to developer for failing and
successful runs

• Statistical debugging finds predicates that predict bugs  
 100,000s to millions of predicates for small applications  
 Finds the best bug predicting predicates amongst
these

• Problems to solve  
 Reports shouldn’t overuse network bandwidth (esp
~2003) 
 Logging shouldn’t kill performance 
 Interesting predicates need to be logged (fair
sampling)  
 Find good bug predictors from runs  
 Handle multiple bugs in failure runs

33

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Fall 2019

Compare faulty & unfaulty execution
traces

• Predictor of what statements are related to a bug:  
 Fail(P) - Context(P)  
 Pr(Crash | P observed to be true) - Pr(Crash | P observed
at all)

• Example of a “likelihood ratio test”

• Comparing two hypotheses
• 1. Null Hypothesis: Fail(P) <= Context(P)  

 Alpha <= Beta
• 2. Alternative Hypothesis: Fail(P) > Context(P)  

 Alpha > Beta

34

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Fall 2019

Simplify failure inducing input
• Long sequence of steps uncovered by tester

triggers a bug.
• Which of these steps are causing the bug
• Complex input - which part of input is

responsible for bug?
• Example - 10,700 Mozilla bugs (11/20/2000)

35

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering
28(2), February 2002, pp. 183-200.

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

LaToza GMU SWE 795 Fall 2019

Find shortest repro steps
• ddmin algorithm sketch:
• 1. Decompose input into pieces  

2. Run tests on pieces  
3. If there’s a piece that still fails, go back to 1 on
piece  
 Otherwise, found locally minimal smallest input

•

36

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering
28(2), February 2002, pp. 183-200.

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

