Debugging

SWE 795, Fall 2019
Software Engineering Environments

LaToza

Today

 Part 1 (Lecture)(~80 mins)
* Debugging
 Break!

 Part 3 (Discussion)(45 mins)
* Discussion of readings

GMU SWE 795 Fall 2019

Java - Fusion/src/edu/cmu/cs/fusion/xml/XMLRetriever.java - Eclipse SDK - /Users/tlatoza/Documents/Code/Reachability question

T O B O QU N HGCG @D 5

= v (v v

f% Package Explorer 53 e Y= 8 4J] XMLRetriever.java &3

> Ba edu.cmu.cs.crystal.flow.concur 223
= Ba edu.cmu.cs.crystal.flow.worklist 260
> [# edu.cmu.cs.crystal.internal 272
» £ edu.cmu.cs.crystal.simple 225
» i} edu.cmu.cs.crystal.tac 284
> [} edu.cmu.cs.crystal.tac.eclipse 255
> Ba edu.cmu.cs.crystal.tac.model 270
> [} edu.cmu.cs.crystal.util 282
I Eﬁ edu.cmu.cs.crystal.util.typehierarchy 282
> (Htest 276
> (B analyses 284
P =, Plug-in Dependencies
P = JRE System Library [JVM 1.6.0 (MacOS X Default))
P (= doc 269
P (Syicons 3
P (= lib 22
(& log 3
P 5 META-INF 276
> (= schema 91
o} build.properties 250
|57y COPYING 3
iy COPYING.LESSER 3
[5) copyright-notice.txt 129
) javadoc.xml 236
45 plugin.xml 260
'b—'ﬂ-r— Fusion 36 [https://fusion.googlecode.com/svn, Tr
V58> src 36

» [# > edu.cmu.cs.fusion 36

public void retrieveWithSchema(File file, String schema) {

public RelationshipContext getStartContext(Variable thisVar, AliasContext aliases) {

SchemaQueries sQueries = queries.get(schema);

if (sQueries != null) {
RelationshipDelta result = sQueries.runQueries(file, types);
delta = RelationshipDelta. join(delta, result);
topLabels.addA11(sQueries.findTopObjects(file, types));

RelationshipContext start = new RelationshipContext(false);
RelationshipDelta converted = new RelationshipDelta();
Map<ObjectLabel, ObjectLabel> bindings = new HashMap<ObjectLabel, ObjectLabel>();

for (ObjectLabel possibleTop : toplLabels) {
String thisType = thisVar.resolveType().getQualifiedName();
String possibleTopType = possibleTop.getType().getQualifiedName();
if (types.isSubtypeCompatible(thisType, possibleTopType)) {
Set<0ObjectLabel> thisAliases = aliases.getAliases(thisVar);
assert (thisAliases.size() == 1);
bindings.put(possibleTop, thisAliases.iterator().next());

© getStartContext(Variable, AliasCon
m convertRelationship(Relationship, !

}

for (Entry<Relationship, ThreeValue> entry : delta) {
Relationship convDelta = convertRelationship(entry.getKey(), bindings);
converted.setRelationship(convDelta, FourPointLattice.convert(entry.getValue()));

}

return start.applyChangesFromDelta(converted);

» & > edu.cmu.cs.fusion.constraint 36 O
| 4 % edu.cmu.cs.fusion.constraint.operations 32
: z < R - - ~

> Baedu.cmu.cs.fusuon.constramt.predlcates 36 Problems javadoc Declaration :_.. Call Hierarchy &2 o ke o3 i v 4 = g
> Ba > edu.cmu.cs.fusion.constraint.requestors 87

‘EH edu.cmu.cs.fusion.parser 41 Members calling 'getStartContext(Variable, AliasContext)' - in workspace
> i > edu.cmu.cs.fusion.parsers.predicate 41 ¥ @ performAnalysis() : AnalysisResult<LE, N, OP> - edu.cmu.cs.crystal.flow.workl — Lall : :
» i edu.cmu.cs.fusion.rawannotations 41 ¥ @ performAnalysis(MethodDeclaration) * void - edu.cmu.cs.crystal flow. Mothe 203 performAnalysisOnSurroundingMethodifNeeded(d)

» 3 > edu.cmu.cs.fusion.relationship 36
¥ iz > edu.cmu.cs.fusion.xml
b g& > NamedTypeBinding.java
> [J3 SchemaQueries.java
[[_11 TypeComparisonCall.java
» [13 TypeComparisonDefinition.java
> %3 > XMLFileVisitor.java
> [J3 XMLObjectLabel.java
» |13 XMLRetriever.java
> 5 > test 36
P = JRE System Library [JVM 1.6.0 (MacOS X Default)]
P =i, Plug-in Dependencies
P =i Referenced Libraries
» i > META-INF 24
o} > build.properties 24
§) Fusion.xsd 88
4% plugin.xml 87
& - saxonShe. jar
P‘lﬁ» > FusionTests 74 [https://fusion.googlecode.com/s

¥ & switchToMethod(MethodDeclaration) : void - edu.cmu.cs.crystal.flow.Mc
¥ @ performAnalysisOnSurroundingMethodIfNeeded(ASTNode) : void - ec
¥ © getEndResults(MethodDeclaration) : LE - edu.cmu.cs.crystal.flow.h

¥ @ analyzeMethod(MethodDeclaration) : void - edu.cmu.cs.fusion.
v Gf runAnalysis(lAnalysisReporter, IAnalysisinput, ICompilationL
& run(AnnotationDatabase) : void - edu.cmu.cs.crystal.inte

@ getLabeledEndResult(MethodDeclaration) : IResult<LE> - edu.cmu
<& getLabeledResultAfter(ICFGNode<ASTNode>) : IResult<LE> - edu
< getLabeledResultBefore(ICFGNode<ASTNode>) : IResult<LE> - ed
@ getLabeledResultsAfter(ASTNode) : IResult<LE> - edu.cmu.cs.crys
P @ deriveResult(EclipselnstructionSequence, LE, TACInstruction, bc
¥ @ getLabeledResultsAfter(ASTNode) : IResult<LE> - edu.cmu.cs.c
P getLabeledResultsAfter(ASTNode) : IResult<LE> - edu.cmu.c

» @ getLabeledResultsAfter(TACInstruction) : IResult<LE> - edu.cm
» @ getLabeledResultsBefore(ASTNode) : IResult<LE> - edu.cmu.cs.cry
@ getLabeledStartResult(MethodDeclaration) : IResult<LE> - edu.cm

P & getResultsOrNullAfter(ASTNode) - LE - edu.cmu.cs.crystal.flow.Mo
b & getResultsOrNullBefore(ASTNode) : LE - edu.cmu.cs.crystal.flow.M
P @ getStartResults(MethodDeclaration) : LE - edu.cmu.cs.crystal.flow.

4d4VvYYVvYYy

"173’ PlaidAnnotations 62 [http://plaidannotations.google P> & getEntryValue(: LE - edu.cmu.cs.crystal.flow.worklist.BranchSensitiveWorklist

- *§ latoza@gmail.com edu.cmu.cs.fusion.xml.XMLRetriever.java - Fusion/src

Steps in fixing bugs

Reproduce the problem
-ind cause of defect

nvestigate fix
Implement fix
Test fix

Will focus on finding cause of defect today

GMU SWE 795 Fall 2019

Edit / Debug Cycle

14%
28% *
50% f
Reproducse
P - Sompile ‘._,@est
50% B o,
/ 57 %
Circle size: % of time Edge thickness: % of transitions observed

For tasks in code in your own codebase that you haven’t seen recently

LaToza and Myers. Developers ask reachability questions. ICSE 2010.

Debugging process model

Bug reports
Source code comprehension Gather context <
Documentation

Hypothesis to test

\ 4
Set break points Instrument _
Insert log statements hypothesis [nformation
Delete statements
Modified system
\ 4

Step through breakpoints

Execute the program/system Test hypothesis
Log execution data

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

6

Formulate & test hypotheses

« Use knowledge & data so far to formulate hypothesis
about why bug happened
cogitation, meditation, observation, inspection,
contemplation, hand-simulation,
gestation, rumination, dedication, inspiration,
articulation

 Recognize cliche
seen a similar bug before

« Controlled experiments - test hypotheses by gathering
data

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

LaToza GMU SWE 795 Fall 2019

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Resources for testing hypotheses

subjects Hypothesis instrumentation methods
Inserting breakpoints and watch variables
Inserting log statements

Removing irrelevant code

Tweaking - modifying existing code

(SR NS

subjects | Hypothesis testing and comparison methods
Stepping in the debugger
Comparing against examples
Comparing against an oracle
Analyzing network packets
Backtracking

Printing out hard copies of code

NICISIFNES

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

LaToza GMU SWE 795 Fall 2019

Definitions

o Error - discrepancy between actual behavior of system
and intended behavior

e [Fallure - incorrect output value, exception, etc.; an error
that has become observable

e Fault - l[ines In code which are incorrect

 Debugging: determining the cause of a failure

« May involve finding location (fault localization) as well
as explanation.

LaToza GMU SWE 795 Fall 2019

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE

Resources used in debugging

subjects

Resources used in debugging

15

Debugger tools

14

Bug information

12

Communication with others

\O

Internet resources

Custom code/manual debugging data

System state information (variables, packets)

Searching the source repository

Code browsers

Printed publications

Production health/status/monitoring systems

Build information

Personal library of technical tidbits

Shared internal development team resources

el Bl Kl SR S A A A B SN AV BN N

Product documentation

International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

LaToza

GMU SWE 795 Fall 2019

10

Information needs in debugging

% How did this runtime state occur? (12) KA Where was this variable
data, memory corruption, race last changed? (1)
conditions, hangs, crashes, failed API o Why didn’t this
calls, test failures, null pointers happen? (3)

Record execution history
Provide interactions for browsing or searching

= @ ! A

,,,,, ! properties of this line » why did x1 =887
objects rendering this ¥ why did y1=1857

why did x2 =937
windows ¥ why did y2 = 169?

WhyLine _/ it N O

why did stroke = 5.0 pixel stroke?

omniscient debuggers

directly supports all 3 questions _ T —— 5;;;{3;:;;5' *’
1n some situations . |
[ERry—

|
1 4
o 'y - e
¥ 9 &4 9V v S 5 showng afl Vo events
before this window repanied

LaToza and Myers. Hard-to-answer questions about code. PLATEAU 2010.
LaToza GMU SWE 795 Fall 2019

statistical debugging [1]

-Sample execution traces
on user computers

-Find correlations between
crashes and predicates

How do I debug
® this bug in this
environment?(3)

No need to
reproduce
environment on
developer
computer

In what
KA circumstances

does this bug
occur? (3)

Examine
correlations
between crashes
and predicates

[1] Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. 1. 2003. Bug isolation via remote program sampling. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation.

LaToza

GMU SWE 795 Fall 2019

12

LaToza

X

How is this object different
from that object? (1)

What runtime state changed
when this executed? (2)

GMU SWE 795 Fall 2019

Which team’s component

caused this bug? (1)
Which team should I

assign this bug to?

13

Information needs in debugging

- \What code could have caused this behavior?
- What's statically related to this code?

- What code cause this program state?

A: Why did | get gibberish? Storing field, given PPack, what is an
MPField? | have no idea what this data structure contains. SPSField? |
suspect SPS is just busted.

Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th international conference on
Software Engineering (ICSE '07). IEEE Computer Society, Washington, DC, USA, 344-353. DOI: https://doi.org/10.1109/ICSE.2007.45
14

LaToza

Activity

 What's the hardest debugging bug you've ever
debugged?

e \What made it hard?

GMU SWE 795 Fall 2019

15

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE

What makes debugging hard?

subjects Debugging challenges

11 Environmental challenges

7 Multithreaded/multicore

6 Information quality

6 Communication challenges

6 Unable to reproduce failures consistently
4 Debugging process challenges

subjects

Debugging challenges

Capture and replay of production events

More contextual information in runtime Iogs/stack traces

Integrating data from different sources

Bi-directional debugger

Debugging tool training

Multithreaded support

Automatic breakpoints upon entry into a class

Automated log analysis

Program context

R W W WW WO

Visually showing the execution trace

International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

LaToza

GMU SWE 795 Fall 2019

16

What makes hard bugs hard to debug?

« Cause / effect chasm - symptom far removed from the root cause (15
iInstances)
timing / synchronization problems
intermittent / inconsistent / infrequent bugs
materialize many iterations after root cause
uncertain connection to hardware / compiler / configuration

* |napplicable tools (12 instances)
Heisenbugs - bug disappears when using debugging tool
long run to replicate - debugging tool slows down long run even more
stealth bug - bug consumes evidence to detect bug
context - configuration / memory makes it impossible to use tool

 What you see if probably illusory (7 instances)
misreads something in code or in runtime observations

e Faulty assumption (6)
« Spaghetti code (3)

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

LaToza GMU SWE 795 Fall 2019 17

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza

What makes hard bugs hard to debug?

Table 6 Root cause of the hardest bug (number of answers given).

memory parallel vendor design init variable
42 53 41 82 9 3
lexical ambiguous user unknown other
1 6 5 29 32

Table 7 Most useful technique to find the hardest bug (number of answers given).

stepping wrapper printf log diff breakpoints tool
54 5 33 12 38 15
reading expert experiments not fixed other
41 4 58 31 12

Table 8 Main difficulty source for hardest bug (number of answers given).

distance tools output assumption bad code unknown other
87 47 1 33 38 35 62

GMU SWE 795 Fall 2019

18

LaToza

Activity

 \What is a strategy you've used to debug a defect?

GMU SWE 795 Fall 2019

19

LaToza

Some debugging strategies

Backwards: Find statement that generated incorrect
output, follow data and control dependencies
backwards to find incorrect line of code

Forwards: Find event that triggered incorrect
behavior, follow control flow forward until incorrect
state reached

npu
IN OL

Blac

t manipulation: Edit inputs, observe differences

fput

Kbox debugging: Find documentation, code

examples to understand correct use of API

GMU SWE 795 Fall 2019

20

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,

Traditional debugging techniques

e Stepping in debugger

 Logging - insert print statements or wrap particular
suspect functions

 Dump & diff - use diff tool to compare logging data
between executions

 Conditional breakpoints

* Profiling tool - detect memory leaks, illegal memory
references

1993, 86-112.

LaToza

GMU SWE 795 Fall 2019

21

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza

Debugging tools

Make breakpoint debuggers better

e Support stepping backwards (omniscient debuggers)

e Support finding statement that generated incorrect output

Find part of program that generated incorrect output (slicing)

e QOutput: subset of program

Help developers follow data and control dependencies backwards
e Support for navigating control and data dependencies (WhyLine)

Compare execution across different runs to guess locations that might be related
(automatic debugging)

« QOutput: list of potential fault locations

Simplify input to find a simpler input that still generates failure (delta debugging)
e QOutput: simplified input

Enable developers to directly answer questions about causality

e Support searching across control and data flow (Reacher)

Help developers understand execution state

e Show visualizations which depict the current contents of memory

Let developers experiment, editing program till they find the right one (live
programming)[editing code]

GMU SWE 795 Fall 2019

22

LaToza

Program analysis building blocks

 Many tools rely on gathering an execution trace

* Record the value of every expression as it
executes (or sometimes at function boundaries)

* Challenge: scalability
» (Other tools use log data
* (Gives developer control over what is being logged

* More easily scalable, requires developer to control
what is logged

» (Other tools use test coverage data

e \Which statement executes on each test, test
passing or succeeding

GMU SWE 795 Fall 2019

23

Make breakpoint debugging better

 Debugging in a debugger is hard

* Forces developer to guess which methods to
step Into

* [orces developers to guess which values to
iInstrument

 Changing guess requires reproing failure again
* Can be time consuming

 What if developers could debug forwards and
backwards”

LaToza GMU SWE 795 Fall 2019

24

/Step94

* Forwards / backwards stepping

* Selectg

through execution events

Go to end of program

Show wvalue of expression, without stopping
Single step
Single step backwards

Back up from value to expression

Go to beginning of program

Single step "graphically”
Single step backwards "graphically” ——

See value of selected variables

(ab-left (left-side tree)

=> # (A 'TREE <(4 3>)

(right-side treell)))

Cab-left (left-siEOirarnnnnnnaas

(right-side tree)

=> # (A 'TREE (1 22>

jefun_alpha-betq (tree)

(display-tfEQq::

(ab tree)fF> 3

I

He fun ab (trngEj

A Tree =3

Cif Cleaf?
Clabel 4
Clabel A

Max:3

if:3 M

1

L

Just Show Source Code |
Backup Stepper to Event

\

Demo: http://web.media.mit.edu/

~lieber/Lieberar

y that drew it

7.Ste

Z.Step.mov

Henry Lieberman and Christopher Fry. 1995. Bridging the gulf between code and behavior in programming. In Proceedings of the
SIGCHI conference on Human factors in computing systems (CHI '95), 480-486.

LaToza

GMU SWE 795 Fall 2019

25

http://dx.doi.org/10.1145/223904.223969
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov

Omniscient debugger

| &
e 06 Omniscient Debugger 29.Dec.06 - com.lambda.Debugger.Demo
File Run Trace Filter | Previous | | <« J» P Event 532[1273] Demo.java:198
Objects
Threads (i <« P M Method Traces | « P M < <> D
<main 7> =**<DemocRunnable 3>.run() -> void — — S— A—
<Sorter 0> <Sorte: <pemo 0O».sort(0, 5) -» void <Demo 0>
<Sorter 1> <Sorte <pemo 0>.average(0, 5) -> 240 quick <Demo_1>
<Sorter 2> <Sorte) DemcRunnable.new(<Demo 0>, 0, 2) -> <DemoRunnable c ‘X7 (88)
<Sorter 3> Thread.new(<DemoRunnable 6>, "Sorter”) -> <Sorte: b =" (61)
-- <Sorter 4> -- <Sorter 6>.start() -> void array int[20] 0
-- <Sorter 5» -- A <Demo O».sort(3, 5) -» void = 19 1968
-- <sSorter 6> -- < <Demo 0>.average(3, 5) -> 483 = 18 1962
= sWaitor 8> _o <Demo 0O».sort(3, 4) -» void 17 1725
ol e <pemo 0».sort(5, 5) -» void 16 1719
- sort -» void * 15 1476
Stack <Sorter 6>.join() -> void = 14 1470
<DemcRunnable 3>.run() sort "'V°id 1? 1??;
<pemo 0>.sort(0, 5) run -» vold 12 1233
- 11 1227
<pDemo 0O».sort(3, 5) ——————— — — — — — ——
<Demo_0>.avera . B, e * 10 984
3 . rage(3, 5) ~
9 978
8 735
Jode [TP L MWCOAY .,
~ return; * 6 492
} * 5 243
Locals | < B> ol | ¢ W
* start 3 publ%c int average(int start, int end) { - ? ?g?
+ end 5 int sum = 0; * 2 237
- —— . 3 o e A
+ gum 0 for (int i = start; i < end; i++) { 1 0
* i 3 sum == array[i]; v 0 1
——) <>
This ITY Output | « P M
<emo 0> 9 QR ————————ecccccccceae ODB Demo Program-————=——--
quick <PDemo_ 1> A badMethod threw: java.lang.Kull?oimertxcept.@
z "X o(88) Starting QuickSort: 20
b =T (61) -- Done sorting --
array int[20] 0 -0 1--
-1 0 --
-— 2 237 --
pp—| 2483
———————— - < >
|From last: 234 stamps, 0.0l17secs local = value

Demo / talk: http://video.google.com/videoplay?
docid=3897010229726822034#

Bill Lewis. Debugging backwards in time. In Proceedings of the Fifth International Workshop on Automated Debugging
(AADEBUG 2003), October 2003.

LaToza GMU SWE 795 Fall 2019

http://video.google.com/videoplay?docid=3897010229726822034#
http://video.google.com/videoplay?docid=3897010229726822034#
http://video.google.com/videoplay?docid=3897010229726822034#
http://www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf

Associating incorrect output with
responsible code

jiv id=" wrapper*>

{<header id="masthead">.</header> | II

<div id="mosaic"

v<aul> Add Attribute
r<li style="wii Edit Attribute n
r<li style="wii
r<li style="wii
> <li 51110-'-.1. Forced Pseudo-Classes Q
»<li style="wil

r<li style="wii

: o Edit as HTML
T stiesens Copyas HTML
“wii Delete Node

. ::t Track Element
“wil ;]

tyle="wii Inspect Element

[vediv id="mosaic"

class="ri-grid">

v

vy
»<li style="width:
115px; "></1i>
»<li style="width:
115px; " >.</ 11>
v<li style="width: 116px; height:
115px; ">

<a stple="background-image:

116px; height:

116px; height:

url(n s://mozorg.cdn.mozilla.net/
media/img/mosaic/
003.24807a54035b. jpg); cursor:
fault; width: 116px; height:
pr.“>
1 ,tylc— 'width: 116px; height:

115px; " »ue/Li>

Operation Responsible Code

Element Removed

buildFragment — mozorg-

5

Matched Properties

-webkit-background-size: 100%;
-webkit-box~-sizing: content-box
background-color: [JJ rgb(51, 51,

background-posit!‘h-x: S0%;
background-position-y: 50%;
background-size: 100%;
border top~- wxcth Qpx;
[:] 150, 221);

dcfault

: block;

115px;
px;
-top: O@px;
outline-width: Opx;

cursor:

re...

Element Removed

w wmeavaen_ vaon hondla anEAMRANAE

{ > < mission Scripts = i mozorg-resp-bundie.ec5436a3cfof |
Element Inserted —
buildFragment: function(a, b, ¢, d) {
El Removed for (vare, f, g, h, 1, J, k, m = a.length,
1739 if (f=alql, f || @ wem f)
emoved 1740 if ("object" === n.type(f))
1741 n.merge(p, f.nodeType ? [f] : f)
El Removed else if (mb.test(f)) {
174 h=h || o.appendChild(b.createE
- lace(jb, "<$1></$2>") + k([2], e = k[0);
174 while (e--)
h = h.lastChild;
if ('L leadingWhitespace &&

Figure 2. Susan first uses the Web Inspector to go from the mosaic’s vi-
sual output to its DOM elements. Then, she uses Scry to track changes
to the mosaic element (a), select different visual states to inspect (b), and
see the DOM tree (c) and CSS styles (d) that produced each visual state.
To jump to the code that implements interactive behaviors, Susan uses
Scry to compare two states and then selects a single style property differ-
ence (d). Scry shows the mutation operations indirectly responsible for
causing the property difference (e), and Susan can jump to JavaScript
code (f) that performed each mutation operation.

Brian Burg, Andrew J. Ko, and Michael D. Ernst. 2015. Explaining Visual Changes in Web Interfaces. In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology (UIST '15). ACM, New York, NY, USA, 259-268. DOI: https://doi.org/10.1145/2807442.2807473

LaToza

GMU SWE 795 Fall 2019

27

Find part of the program that caused
Incorrect output

e Slice

* Subset of the program that is responsible for
computing the value of a variable at a program
point

e Backwards slice

e Transitive closure of all statements that have a
control or data dependency

* Originally formulated as subset of program

LaToza GMU SWE 795 Fall 2019

28

Early evidence for slicing

¢« BEGIN Participants performed 3 debugging tasks on
READ(X, Y) short code snippets
-SFSI/IA!_::; 8'0 Asked to recognize code snippets afterwards
IFX <=1 e
THEN SUM := Y g
ELSE BEGIN g .
READ(Z) & sof
TOTAL := X*Y £
END H | L1 O
WRITE(TOTAL, SUM) & Oy g £g £g o
END :o 33 83 3% &
e (Static) slice - subset of the progr & a:§ EIS; £

values at a program point
e Slice on variable Z at 12

Type of Algorithm

Mark Weiser. 1982. Programmers use slices when debugging. Commun. ACM 25, 7 (July 1982), 446-452.

LaToza GMU SWE 795 Fall 2019 29

http://portal.acm.org/citation.cfm?id=358577

Slicers debug faster

e Students debugging 100 LOC C++ programs

o Students given

Programming environment

Hardcopy input, wrong output, correct output
~-les with program & input

 Compared students instructed to slice against everyone
else
Excluding students who naturally use slicing strategy

e Slicers debug significantly faster (65.29 minutes vs.
30.16 minutes)

Francel M. A. and S. Rugaber (2001). The Value of Slicing While Debugging. Science of Computer Programming, 40(2-3), 151-
169.

LaToza GMU SWE 795 Fall 2019 30

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V17-434442G-2&_user=525223&_coverDate=07/31/2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1592955686&_rerunOrigin=google&_acct=C000026389&_version=1&_urlVersion=0&_userid=525223&md5=fc3d24a54e88a14f5439d75ad19e91cf&searchtype=a

Dynamic
slicing

Hiralal Agrawal, Richard A. Demillo, and Eugene H.
Spafford. 1993. Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper. 23, 6 (June 1993),
589-616.

LaToza

/ul7/ha/v2/denc/exanple bug.c

g order:\n", i+l);

| /# Find the sun of areas of given triangles, »/

2 tdefine HAX 100

3 typedef enun (isosceles, equilateral, right, scalenel class_type;
; typedef struct (int a, b, c3) triangle_type;

6 nain{)

7 {

8 triangle_type sides(MAX];

9 class_type classs

10 int a_sqr, b_sqr, c_sqr, N, i3

11 double area, sum, s, sqrt()s

12

13 printf(“Enter numnber of triangles:\n");

14 scanf ("Xd", 8N)

15

16 orintf{“Enter Lhree sides of triangle Xd in ascendi

17 scanf("%d %d %d”, 8sidesli).a, 8sideslil. b, Bsideslil.c);
18

19

20

21

22 while (i < N) §

23 a_sqr = sides(i).a » sideslil.a;

24 b_sqr = sides[i].,b # sideslil).c;

25 c.sqr = sidesli).c #» sideslil).c;

26 if ((sides(i).a == sides[i).b) 88 (sides(il.b == sideslil.c))
27 class = equilateral;

28 else if ((sidesli).a == sides(il.b) || (sideslil.b == sideslil.c))
29 class = isosceless

30 else if (a_sgr == b_sgr + c_sqr)

K5 | class = rights

32 else class = scalene;

33

34 if (class == right)

K) area = sideslil.b + cideclil.c /7 2,03

36 else if (class = eqg

37 area = sideslil.a « sideslil.a + sg

38 else [

39 s = (sides(il.a + sides(il.b + sides(il.c) /7 2.03

9 area = sqrt(s # (s - sideslil.a) # (s - sides(il.b) »
11 (s - sideslil.c));

4 3

43 sun = area;

44 ! i = 13

S B]

%6 -}! printf("Sun of areas of the Xd triangles is X.2f.\n", N, TMD:
7 B 3

48

149

C static analysis

D (vt waves) (D

p .

stopped at line 47,

> stop at line 46

> backup

stopped at line 46,

> select exact dynamic analysis

> dynanic data slice on "sum™ at line 46

program shce data shce control skce reaching defs new testcase Clear
run stop || continue || print || backup || step || stepback || delete quit

Current Testcase 8+ 1

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231

Compare faulty & unfaulty execution
traces

User hits bug and program crashes
Program (e.g. Microsoft Watson) logs stack trace

Stack trace sent to developers
Tool classifies trace into bug buckets

Problems
WAY too many bug reports => way too many open bugs

=> can’t spend a lot of time examining all of them
Mozilla has 35,622 open bugs plus 81,168 duplicates (in 2004)

Stack trace not good bug predictor for some systems (e.g. event based
systems)

= bugs may be in multiple buckets or multiple bugs in single bucket

Stack trace may not have enough information to debug
=> hard to find the problem to fix

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza

GMU SWE 795 Fall 2019

32

Compare faulty & unfaulty execution
traces

* Program runs on user computer
Crashes or exhibits bug (failure)
Exits without exhibiting bug (success)

‘ The Cooperative Bug Isolation Project

* Counters count # times predicates hit
Counters sent back to developer for failing and
successful runs

* Statistical debugging finds predicates that predict bugs
100,000s to millions of predicates for small applications
Finds the best bug predicting predicates amongst

these

* Problems to solve

Reports shouldn’t overuse network bandwidth (esp
~2003)

Logging shouldn’t kill performance

Interesting predicates need to be logged (fair
sampling)

Find good bug predictors from runs

Handle multiple bugs in failure runs

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Fall 2019

33

Compare faulty & unfaulty execution

traces
* Predictor of what statements are related to a bug:
Fail(P) - Context(P)
Pr(Crash | P observed to be true) - Pr(Crash | P observed

at all)

 Example of a “likelihood ratio test”

 Comparing two hypotheses

* 1. Null Hypothesis: Fail(P) <= Context(P)
Alpha <= Beta

o 2. Alternative Hypothesis: Fail(P) > Context(P)
Alpha > Beta

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Fall 2019

Simplify failure inducing input

Long sequence of steps uncovered by tester
triggers a bug.

Which of these steps are causing the bug

Complex input - which part of input is
responsible for bug?

=xample - 10,700 Mozilla bugs (11/20/2000)

<td align=left valign=top>

<SELECT NAME="op_sys" MULTIPLE SIZE=T7>

<OPTION VALUE="All">All<OPTION VALUE="Windows 3.l1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98">Windows 98<QOPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System B8.5">Mac System
B8.5<0OPTION VALUE="Mac System 8.6">Mac System B.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="0OpenBSD">0penBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeQS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION VALUE="0S/2">0S/2<OPTION
VALUE="QSF/1">0SF/1<OPTION VALUE="Solaris">So0laris<OPTION VALUE="Sun0S">SunOS<OPTION VALUE="other">other</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="==">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>
</td>

<td align=left valign=top>

<SELECT NAME="bug.severity” MULTIPLE SIZE=7>

<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION

VALUE="normal">normal<QPTION VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>

</table>

Fig. 1. Printing this HTML page makes Mozilla crash (excerpt)

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering
28(2), February 2002, pp. 183-200.

LaToza

GMU SWE 795 Fall 2019

35

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering

Find shortest repro steps

ddmin algorithm sketch:

1. Decompose input into pieces
2. Run tests on pieces
3. It there’s a piece that still fails, go back to 1 on
plece
Otherwise, found locally minimal smallest input

Step | Test case test

1 Ay |1 2 3 4 : 2

2 | As 5 6 7 8| X

3| Ay 5 6 . (74

4 | Aj 7 8| X

5| A 7 X Done
Result 7

28(2), February 2002, pp. 183-200.

LaToza

GMU SWE 795 Fall 2019

36

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

