
Navigating Code
SWE 795, Fall 2019

Software Engineering Environments

LaToza GMU SWE 795 Fall 2019

Today
• Part 1 (Lecture)(~40 mins)

• Navigating code

• Part 2 (Project Presentations, Part 1)(~40 mins)

• Break

• Part 3 (Project Presentations, Part 2)(~60 mins)

2

LaToza GMU SWE 795 Fall 2019

Code navigation: examples
• A developer wants to find method that implements

x.
• A developer wants to find all of the methods

involved in feature x.
• A developer wants to understand what a method

does or when it is called.
• A developer wants to understand how to reuse a

function by finding examples of code snippets.
• A developer wants to switch back to a method they

were just editing.

3

LaToza GMU SWE 795 Fall 2019

Task context
• Could be

• Set of information
necessary to complete
a task

• Set of locations in code
that must be edited to
implement a change
(e.g., add feature, fix
bug)

• Which is it? Often used
interchangeably…

• Sometimes known as a
“working set”

4

LaToza GMU SWE 795 Fall 2019

How Effective Developers Investigate Source Code

• Unsuccessful subjects made all of their code modifications in one place even
if they should have been scattered to better align with the existing design.
• --> better support navigating across methods

• Program segments that were clearly relevant to the change task were not
acknowledged when displayed accidentally.
• --> suport intentional searches

• The successful subjects created a detailed and complete plan prior to the
change whereas the unsuccessful and average subjects did not.
• --> support building a change plan

• Successful subjects did not reinvestigate methods as frequently as
unsuccessful subjects.
• --> support understanding methods

• The successful subjects performed mostly structurally guided searches
(e.g., keyword and cross-reference searches), rather than searches based on
intuition (browsing) or aligned with the file decomposition of the system
(scrolling).
• --> support structural relationship traversal

5

Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. 2004. How Effective Developers Investigate Source Code: An Exploratory Study. IEEE Trans. Softw. Eng. 30, 12 (December 2004),
889-903. DOI=http://dx.doi.org/10.1109/TSE.2004.101

LaToza GMU SWE 795 Fall 2019

Structural Relationship Traversal

• Developer is currently viewing an element in code
• e.g,. class, method, statement, field reference

• Developers wishes to navigate to a related method
• By reference, call, data dependency, …

• How do developers make navigation decisions?

6

LaToza GMU SWE 795 Fall 2019

Information foraging
• Mathematical model describing navigation
• Analogy: animals foraging for food

• Can forage in different patches (locations)
• Goal is to maximize chances of finding prey

while minimizing time spent in hunt
• Information foraging: navigating through an

information space (patches) in order to maximize
chances of finding prey (information) in minimal
time

7

LaToza GMU SWE 795 Fall 2019

Information environment
• Information environment represented as topology

• Information patches connected by traversable
links

• For SE, usually modeled as call graphs
• methods are nodes and function invocations

are edges

8

LaToza GMU SWE 795 Fall 2019

Traversing links
• Links - connection between patch offered by the

information environment
• Cues - information features associated with

outgoing links from patch
• E.g., text label on a hyperlink

• User must choose which, of all possible links to
traverse, has best chance of reaching prey

9

LaToza GMU SWE 795 Fall 2019

Scent
• User interprets cues on links by likelihood they will

reach prey
• e.g., do I think that the “invoke” method is likely

to implement the functionality I’m looking for?

10

LaToza GMU SWE 795 Fall 2019

Simplified mathematical model
• Users make choices to maximize possibility of

reaching prey per cost of interaction
• Predators (idealized) choice = max [V / C]

• V - value of information gain, C - cost of
interaction

• Don’t usually know ground truth, have to estimate
• Predator’s desired choice = max [E[V] / E[C]]

11

LaToza GMU SWE 795 Fall 2019

What’s a concern?
Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is, that one is willing to study in depth an aspect
of one's subject matter in isolation for the sake of its own consistency,
all the time knowing that one is occupying oneself only with one of the
aspects. We know that a program must be correct and we can study
it from that viewpoint only; we also know that it should be efficient and
we can study its efficiency on another day, so to speak. In another
mood we may ask ourselves whether, and if so: why, the program is
desirable. But nothing is gained —on the contrary!— by tackling
these various aspects simultaneously. It is what I sometimes
have called "the separation of concerns", which, even if not
perfectly possible, is yet the only available technique for effective
ordering of one's thoughts, that I know of. This is what I mean by
"focusing one's attention upon some aspect": it does not mean
ignoring the other aspects, it is just doing justice to the fact that
from this aspect's point of view, the other is irrelevant.

12

—Edsger W. Dijkstra. ”On the role of scientific thought”. 1974. EWD447.

LaToza GMU SWE 795 Fall 2019

Crosscutting concerns
• Ideal: one concern per module

• But, in practice modules exhibit
• Scattering — single concern implemented in

many modules
• Tangling —- single module containing many

concerns

13

LaToza GMU SWE 795 Fall 2019

Significant time spent navigating across
task context

14

Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting design requirements for maintenance-oriented IDEs: a detailed study of
corrective and perfective maintenance tasks. International conference on Software engineering,126-135.

l Each instance of an interactive bottleneck cost
only a few seconds, but . . .

= 35% of uninterrupted work time!

Interactive Bottleneck Overall Cost
Navigating to fragment in same file (via scrolling) ~ 11 minutes
Navigating to fragment in different file
(via tabs and explorer) ~ 7 minutes
Recovering working set after returning to a task ~ 1 minute

Total Costs ~19 minutes

LaToza GMU SWE 795 Fall 2019

Switching tasks incurs startup cost
rebuilding task context

15

l Represented by explorer and file
tabs

l When changing tasks, working
sets were lost as tabs and nodes
changed

l “Including” code in the working set
by opening a file or expanding a
node made it more difficult to
navigate to other code in the
working set

Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting design requirements for maintenance-oriented IDEs: a detailed study of
corrective and perfective maintenance tasks. International conference on Software engineering,126-135.

LaToza GMU SWE 795 Fall 2019

DeLine’s study of developers
• Confirmed Ko’s observation that:

• Navigating and “re-finding” areas of the code that had
already been visited was frequent, difficult and
distracting

• Textual searching and returning
• Tabs got problematic when many opened

• All subjects wanted better inline comments and
overview documentation.

• Wanted code annotations
• All subjects agreed that finding the entry point and

understanding the control flow was the most difficult task

16

Robert DeLine, Amir Khella, Mary Czerwinski, and George Robertson. 2005. Towards understanding programs through wear-based filtering.
Symposium on Software visualization (SoftVis ’05), 183-192.

LaToza GMU SWE 795 Fall 2019

Field study of developers at IBM
• 8 IBM developers doing their own tasks using

Eclipse for Java
• Interviews and 2-hour observations of actual use
• Experts do become disoriented

• Did use Eclipse’s advanced navigation tools, like
find-all-callers

• No trace of how got to the current file, or how to
get back

• Thrashing to view necessary context
• No support for switching tasks

17

Gail C. Murphy, Brian de Alwis, "Using Visual Momentum to Explain Disorientation in the Eclipse IDE", IEEE Symposium on Visual
Languages and Human-Centric Computing, p. 51-54, , 2006

LaToza GMU SWE 795 Fall 2019 18

task
started

task
complete

Find
Read

within file

Edit
Test

Form working set of
task-relevant code

Navigate dependencies in
working set

Modify code in
working set

4

Working with task context

Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting design requirements for maintenance-oriented IDEs: a detailed study of
corrective and perfective maintenance tasks. International conference on Software engineering,126-135.

LaToza GMU SWE 795 Fall 2019

Code navigation tools
• Structural relationship traversal

• Find starting point, traverse relationships to find
other related code locations

• Recommenders
• Based on {edits, navigation} past developers did on

similar tasks, predict relevant elements

• Working set navigation
• Make it easier to navigate back and forth between

task context elements
• Make it easier to resume tasks by redisplaying

working set
19

LaToza GMU SWE 795 Fall 2019

Structural relationship traversal

20

Call hierarchy view

LaToza GMU SWE 795 Fall 2019

JQuery

21

LaToza GMU SWE 795 Fall 2019

StackSplorer

22

Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and Jan Borchers. 2011. Stacksplorer: call graph navigation helps increasing code maintenance efficiency. In Proceedings
of the 24th annual ACM symposium on User interface software and technology (UIST '11). ACM, New York, NY, USA, 217-224. DOI: https://doi.org/10.1145/2047196.2047225

LaToza GMU SWE 795 Fall 2019

Prodet

23

Vinay Augustine, Patrick Francis, Xiao Qu, David Shepherd, Will Snipes, Christoph Bräunlich, and Thomas Fritz. 2015. A field study on fostering structural navigation with prodet.
In Proceedings of the 37th International Conference on Software Engineering - Volume 2 (ICSE '15), Vol. 2. IEEE Press, Piscataway, NJ, USA, 229-238.

LaToza GMU SWE 795 Fall 2019

Reacher

24

T. D. LaToza and B. A. Myers, "Visualizing call graphs," 2011 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Pittsburgh, PA, 2011, pp. 117-124.
doi: 10.1109/VLHCC.2011.6070388

LaToza GMU SWE 795 Fall 2019

Recommenders

• Based on {edits, navigation} past developers did
on similar tasks, predict relevant elements

25

LaToza GMU SWE 795 Fall 2019

Rose

26

Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, Andreas Zeller. Mining Version Histories to Guide Software Changes. IEEE Trans.
Software Eng. 31(6): 429-445 (2005)

LaToza GMU SWE 795 Fall 2019

TeamTracks
• Shows source code

navigation patterns of
team
• Related Items – most

frequently visited
either just before or
after the selected
item

• Favorite Classes –
hide less frequently
used

• Deployed for real use –
5 developers for 3
weeks

• Successful, but usability
issues, seemed most
useful for newcomers

27

R. DeLine, M. Czerwinski and G. Robertson, "Easing program comprehension by sharing navigation data," Symposium on Visual Languages
and Human-Centric Computing (VL/HCC'05), 2005, pp. 241-248.

LaToza GMU SWE 795 Fall 2019

Task context navigation

• Make it easier to navigate back and forth between
task context elements

• Make it easier to resume tasks by redisplaying task
context

28

LaToza GMU SWE 795 Fall 2019 29

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance Tasks. IEEE Trans. Softw. Eng. 32, 12 (December 2006), 971-987.

LaToza GMU SWE 795 Fall 2019

Concern Graphs
• Abstract (formal) model that describe which parts of the

source code are relevant to different concerns
• FEAT tool builds concern graphs “semi-automatically”
• Shows only code relevant to the selected concern
• User-specified or detected using intra-concern analysis
• User can make queries

30

Martin P. Robillard and Gail C. Murphy. 2007. Representing concerns in source code. ACM Trans. Softw. Eng. Methodol. 16, 1, Article 3
(February 2007).

LaToza GMU SWE 795 Fall 2019

Mylar

31

1 – task list
3 – package explorer filters to show what relevant to this task

Most relevant are bold
4 – active search shows what might be relevant
5 – switch to different task

Mik Kersten and Gail C. Murphy. 2006. Using task context to improve programmer productivity. International symposium on Foundations of
software engineering, 1-11.

LaToza GMU SWE 795 Fall 2019 32

https://www.youtube.com/watch?v=PsPX0nElJ0k

Code Bubbles

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr.. 2010. Code bubbles: a working set-based interface for code understanding and maintenance. Conference on
Human Factors in Computing Systems (CHI ’10), 2503-2512.

https://www.youtube.com/watch?v=PsPX0nElJ0k

LaToza GMU SWE 795 Fall 2019

Debugger Canvas

33

https://www.youtube.com/watch?v=3p9XUwIlhJg
R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

https://www.youtube.com/watch?v=3p9XUwIlhJg

LaToza GMU SWE 795 Fall 2019

Use in practice
• Debugger Canvas offered as extension to Visual

Studio
• Mylar —> Mylyn, part of default Eclipse
• Mylyn —> commercial

34

https://www.tasktop.com/tasktop-dev

https://marketplace.visualstudio.com/items?itemName=DebuggerCanvasTeam.DebuggerCanvas

https://www.tasktop.com/tasktop-dev
https://marketplace.visualstudio.com/items?itemName=DebuggerCanvasTeam.DebuggerCanvas

LaToza GMU SWE 795 Fall 2019

Results from Debugger Canvas
deployment

35

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

LaToza GMU SWE 795 Fall 2019

Perceptions of debugger canvas

36

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

LaToza GMU SWE 795 Fall 2019

Useful when

37

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

“I often have to debug several layers on our side from the UI, via
middle tier to the data layer. It often gets confusing to go into the
deeper layer. This is where the canvas helps, you hit a breakpoint
here and can see the stack trace as you step through the layers.
This helps us debug things much faster.”

“I was working on a large project for only a week. There was a huge
ramp up, of course, and Debugger Canvas was invaluable for
stepping into the code to see what was going on.”

“With a really large code base that you are not familiar with it is really
handy. It helps wrap your head around other people's code. That
kind of visualization really helps to follow code as it crosses different
classes and projects. Go-to-definition and using Reflector is just too
cumbersome to navigate through all that code.”

LaToza GMU SWE 795 Fall 2019

Not useful when

38

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

For a "normal" project it isn't worth the hassle with performance.

I don't always want to get into the canvas. When I’m debugging something
small: for example - Did the parameter get here? Then it doesn’t warrant
opening up the canvas.

Sometimes the fix that I need to do involves code that is not in the bubbles,
but is in the same files, so I'd like to be able to get to the rest of the file
easily.

I stop using it when I need to see definition of classes. I'm aware of the Go-
to-definition feature, but I use ReSharper and lots of tools to navigate, so I
find it easier to go back to the file in those cases.

I hit a breakpoint check the value of a private field.That’s when seeing the
rest of the file comes in handy.

