Software Visualization

SWE 795, Fall 2019
Software Engineering Environments

LaToza

Today

 Part 1 (Lecture)(~60 mins)
e Software visualization

GMU SWE 795 Fall 2019

Why a diagram is (sometimes) worth ten
thousand words

 Diagrams can group together all
information that is used together, thus
avoiding large amounts of search for the

‘ & H A H \ elements needed to make a problem-
solving inference.

* Diagrams typically use location to group

‘. information about a single element,
o Ff " avoiding the need to match symbolic
labels.
Fea~ fa=Mg0 F-f,-Faa=M,0

* Diagrams automatically support a large
number of perceptual inferences, which are
extremely easy for humans

e Larkin & Simon, 1987, Cognitive Science
11, pp 65-99.

LaToza GMU SWE 795 Fall 2019

How information visualization amplifies cognition.

Increased Resources

High-bandwidth hierarchical interaction

Parallel perceptual processing
Offioad work from cognitive to
perceptual system

Expanded working memory
Expanded storage of information

Reduced Search
Locality of processing
High data density
Spatially indexed addressing
Enhanced Recognition of Patterns
Recognition instead of recall

Abstraction and aggregation

Visual schemata for organization
Value, relationship, trend

Perceptual Inference
Visual representations make some
problems obvious
Graphical computations
Perceptual Monitoring

Manipulable Medium

The human moving gaze system partitions limited channel capacity so that it combines high spatial
resolution and wide aperture in sensing visual environments (Resnikoff, 1987).

Some attributes of visualizations can be processed in paraliel compared to text, which is aerial.
Some cognitive inferences done symbalically can be recoded into inferences done with simple
perceptual operations (Larkin and Simon, 1987).

Visualizations can expand the working memory available for solving a problem (Norman, 1993).
Visualizations can be used to store massive amounts of information in a quickly accessible form (e.g.,
maps).

Visualizations group information used together, reducing search (Larkin and Simon, 1987).
Visualizations can often represent a large amount of data in a small space (Tufte, 1983).
By grouping data about an object, visualizations can avoid symbolic labels (Larkin and Simon, 1987).

anmmmwwammsmtmmmmmmmwm

Vmahmhmssmpilyandocgmzenfonmbon supplying higher centers with aggregated forms of
information abstraction and selective omission (Card, Robertson, and Mackinlay, 1991;
Resnkoff, 1987).

Visually organizing data by structural relationships (e.g., by time) enhances patterns.

Visualizations can be constructed to enhance patterns at all three levels (Bertin, 1977/1981).

Visualizations can support a large number of perceptual inferences that are extremely easy for
humans (Larkin and Simon, 1987).

Visualizations can enable complex specialized graphical computations (Hutchins, 1996).
Visualizations can allow for the monitoring of a large number of potential events if the display is orga-
nized so that these stand out by appearance or motion.

Unlike static diagrams, visualizations can allow exploration of a space of parameter values and can
amplify user operations.

S.K.Card, J.D.Mackinlay, B.Shneiderman, “Information Visualization”, Readings in Information Visualization: Using Vision to

Think, Morgan Kaufman, Chapter 1.

LaToza/Bell

GMU SWE 432 Fall 2016 4

Designing an information visualization

Raw
Data

Data Visual Form
Data Visual
Views
Tables Structures s
Data Visual View
Transformations Mappings Transformations

7

task

. ¢+ ¢+ |

Raw Data: idiosyncratic formats
Data Tables: refations (cases by variables) « metadata

Visusl Structures: spatial substrates + marks « graphical propertios
Views: graphical parameters (position, scaling, clipping. ...)

Human Interaction

S.K.Card, J.D.Mackinlay, B.Shneiderman, “Information Visualization”, Readings in Information Visualization: Using Vision to
Think, Morgan Kaufman, Chapter 1.

LaToza/Bell

GMU SWE 432 Fall 2016

Marks’ graphical properties

e Quantitative (Q), Ordinal (O), Nominal (N)
* Filled circle - good; open circle - bad

____Spatial Object
Extent (Position) —|—I|—| | Gray Scale |} i B
Size @ @ o -
Coor BB B[

IOrientation
fzi:;n -f |\ Texture R Z N
tial shape l % @ @

LaToza/Bell GMU SWE 432 Fall 2016

Effectiveness of graphical properties

e Quantitative (Q), Ordinal (O), Nominal (N)
* Filled circle - good; open circle - bad

Spatial @ O “N Object Q O N

(Position) | ® | ® | ® |Grayscale | @ | @ | O

Extent
Size | ® © | @

1P| @ Colorf d | | @

Jifferential | Orientation Texture | @ | O

Shape | O

LaToza/Bell GMU SWE 432 Fall 2016

Tufte’s principles of graphical excellence

e show the data

e nduce the viewer to think about the substance rather
than the methodology

e avoid distorting what the data have to say

* present many numbers in a small space

 make large data sets coherent

e encourage the eye to compare different pieces of data

e reveal data at several levels of detall, from overview to
fine structure

e serve reasonable clear purpose: description, exploration,
tabulation, decoration

LaToza/Bell GMU SWE 432 Fall 2016

Interactive visualizations

e Users often use iterative process of making sense

of the data

 Answers lead to new guestions

e Interactivity helps
of information to a

 Should offer visua

user constantly change display
nswer new questions

ization that offers best view of

data moment to moment as desired view changes

LaToza/Bell

GMU SWE 432 Fall 2016

LaToza

How software visualizations may help

o QOffer information that helps developers to answer
guestions

* [acilitate easier navigation between artifacts
containing relevant information

GMU SWE 795 Fall 2019

10

LaToza

Key questions for software visualization
design

Do you really need a visualization”

e |f you know the developer’s question, can you answer it
more simply without a visualization”

* Anti-pattern: show all the information, let user find patterns

* |n other domains (e.g., data analytics), visualization is a
tool for data exploration and understanding dataset.

 Not true for SE: developers want to complete tasks,
finding patterns often not relevant

« How much context do you need?
* More context —> more information to sort through
* |Less context —> more direct

GMU SWE 795 Fall 2019

11

LaToza

Some popular forms of software
visualizations

Code
e |conographic representation of code text

Algorithm & object structure visualizations
e Depictions of data value changes over time
 Runtime snapshots of object reference structure

Module structure

e Static views of module properties & dependencies (e.g.,
calls, references)

Function calls
 Dynamic and static depictions of function calls

GMU SWE 795 Fall 2019

12

LaToza

Code visualizations

o (Offer overview of source code

* |dentify relevant sources lines matching some
oroperty

e e.g., changed in a commit, passing a test, with a
compiler warning

* Represent lines of iconagraphically
* e.9., colored lines

GMU SWE 795 Fall 2019

13

SeeSoft

——
h= s o W
!
Ll

|
: Lile Statistics Viex Uptiour Uslp

AT&T Bell Labs [Eick, 1992]
Visualization for performance
“Hot spots” in red

Large volumes of code
Image is of 15,255 LOC
Up to 50,000 LOC

Can indent like original
source files

Also, recently changed,
Version control systems
Static, dynamic analyses

Interactive investigation

xlr
i
=)i
|
2 |
L . |
—
—

I 1Y =00 |'|1 anr

o :;':_Ux:-:l‘fl't:.';' ul"!‘liﬂ'\smff“ :

Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr.. 1992, Seesoft-A Tool for Visualizing Line Oriented Software Statistics. IEEE
Trans. Softw. Eng. 18, 11 (November 1992), 957-968.

LaToza GMU SWE 795 Fall 2019 14

Tarantula

= Tarantula CockeViewer | 21 %1%
File

— ==y — - — — - — . [: e

(Default) Discrete @ Continuous Passes (Fails () Mixed . ®ih Line: 7254

Test.

|

I
HETR

! |‘1 WIH “|||H1 [RGT

1IH! WI 1

| w" KT R

| —

1” I.|H| ' ll‘ll

=

al|l Line
2 Executions:

Rl

Color Legend

Failed: 3 ; 3

Color — code coverage
Red — failed test case
Green — past test case
Yellow — hue is % of test cases passing

James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test information to assist fault localization. International
Conference on Software Engineering (ICSE '02), 467-477.

LaToza GMU SWE 795 Fall 2019

AspectBrowser

£~ Aspect Browser - ClassDictionary.java - Eclipse Platform = |EI |l|
File Edit Source Refactor Navigate Search Project Run Window Help
ICiy @ |0 vQ~ || 9@ | ~vGlvs Gy v Eﬁ'l@AspectBro... &JJava
[FA Aspect Tree 53 AR ~" 8 (ff visualization and Navigation 532 Plv@® QPN T & < v =08
_Create Mmcts Y ey ...t. ~ s e o e =
Lotow ' seclipse 18y rieduiucsd
Grep Pattern: I 5 - |lfa space 3 : pectbrowse
ebulous iews
Create Group || Create Aspect -
<
— Show and Hide Aspects C:Documents and SettingsiMacneil Shonle'DesktopiXAspectsProjectiXAspectsieduineuiccsix... J
E]---[B Aspect Index Aspe... | Aspe... | Aspe... | Clas... | Com... | Java.. | Java.. | Sour.. | Trav.. |Trav.. | XAJC.. | ©
[4 length (138) — E
M a\set (70) — —f
..... D A file® = (12)
~[¥] & new (202) — . —
~[v] 4 modifier (23)
1 »
—Computed Source Informaton—————— |([J] JavaTok... | [J] Aspectl... | [J] SourceE... mm Travers... |75 =)
(= Redundant Lines Present T T A
@ MOrSt COfMmon Identilers PrintStream origOut = System.out; -
B4 FEcnpse RerSOUFFC(jE PRGRRETS ‘ PrintStream origErr = System.err; —
E" org.ecrlpse.].dt.gotr) e.ta§) | File out = new File (getWorkingDirectory(), "ou
B-& 0rg.ecipse.) - € ug-JavalineBrez File err = new File (getWorkingDirectory(), "e:
-~ Line breakpoint: Traversal [line try |
< Line breakpoint: Traversal [ine System. pew PrintStream(new FileOutr
System. 1éW PrintStream(new FileOut
‘ I ol g :
}
Run Analysisl catch (FileNotFoundException fnfe) { v
«| | >
[| Writable | SmartInsert |156:1 |

Macneil Shonle, Jonathan Neddenriep, and William Griswold. 2004. AspectBrowser for Eclipse: a case study in plug-in retargeting. In
Proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange (eclipse '04). ACM, New York, NY, USA, 78-82.

LaToza GMU SWE 795 Fall 2019

LaToza

Industry Use: Eclipse Markers

|5 Project Explorer 3 =5

g

1
=1
=l = 1 o

= fag org. ecipse. mylar-site [dev.e
1 build.xml
_ 3 buldHib.xml

-l&_buld
- Q wree | def ay

<7 pde.exportPlugns

=) ka' arg.ecipse mylar.tasks.ui [de: |

=l ey wors
=) g__‘j =l)
™) refresh.gif
&4 phugin. sl
£)
92 outiine X S |

PR R® X% T

!ﬂubuld xml (4

&3 org.edbse.my'lav... ' P =0
"UTF-872> (sl

") o] .r - 4 " ™ " . ' 9 '
A~ L verLr=ai1o0n 1-'-’ cnC -"{LA.'J L

<project default="source" name="build"> _
<target name="source">
<pd& prorzpinginb destination=
exportSource="crue”
exportType="zip"”
filename="mylar-archive-0.€
plugins="org.eclipse.nmylar,
org.eclipse.mylar.bugza
org.eclipse.mylar.bugzi
org.eclipse.mylar.bugzi
crg.ecllpse.mylar.contqv

<] ul | 2
'[2 Problems 53 ‘"’Tl"'arasks XA ”ﬂl
1 error, 47 warnings, 0 infos = | Fiter matched 100 of 357 kems —
) Deécription -~ | v ! Descnptlon

9 Duplicate target ‘plugin_e TODO : all of this should

% The seridizable dass BugaillaRs

"l :>l<l ' 1>‘

GMU SWE 795 Fall 2019

17

Industry use: Visual Studio Code Minimap

> minimap.ts - vscode - Visual Studio Code - Insiders

File Edit Selection View Go Help

@ minimap.ts X

‘use strict';

‘vs/css!./minimap’;
ViewPart } ‘vs/editor/browser/view/viewPart';
ViewContext } ‘vs/editor/common/view/viewContext';
IRenderingContext, IRestrictedRenderingContext } ‘vs/editor/common/ :
getOrCreateMinimapCharRenderer } 'vs/editor/common/view/runtimeMini
browser ‘vs/base/browser/browser’;
dom 'vs/base/browser/dom';
MinimapCharRenderer, MinimapTokensColorTracker, Constants } 'vs/ed1
editorCommon ‘vs/editor/common/editorCommon’;
CharCode } 'vs/base/common/charCode’;
IViewLayout, ViewLineData } ‘vs/editor/common/viewModel/viewModel"';
ColorId } 'vs/editor/common/modes"’;
FastDomNode, createFastDomNode } ‘vs/base/browser/fastDomNode' ;
IDisposable } 'vs/base/common/lifecycle’;
EditorScrollbar } 'vs/editor/browser/viewParts/editorScrollbar/edit
RenderedLinesCollection, ILine } ‘vs/editor/browser/view/viewLayer'
Range } 'vs/editor/common/core/range’;
RGBA } ‘vs/base/common/color’;
viewEvents ‘vs/editor/common/view/viewEvents'; _
GlobalMouseMoveMonitor, IStandardMouseMoveEventData, standardMouseMoveMe ===
platform ‘vs/base/common/platform’; =

{
{
{
{

I VA g N Sy Sl Sl Wl Bl S VA W2

enum RenderMinimap 4 —
Pmasterr 8101 @0AO0 Ln55 Col1 TabSize:4 UTF-8 LF TypeScript 221 TSlint @

GMU SWE 795 Fall 2019

Algorithm & object structure visualizations

* Depict runtime state at a snapshot or over time

* e.g., elements in a collection, numeric values

» (Often focused on teaching basic algorithms (e.g.,
sorting algorithms, linked list insertion)

(Section adapted from Software Visualization, Lecture by Brad A. Myers, Spring 2011)

LaToza GMU SWE 795 Fall 2019 19

LaToza

Sorting out Sorting

https://www.youtube.com/watch?v=SJwEwWA5SgOKM

GMU SWE 795 Fall 2019

20

Incense

Figure 14. Figure 17.
ARRAY [1..4] OF POINTER with two POINTERS Incense display for
referring to the same value. RECORD [int: INTEGER, p1: POINTER TO CARDINAL].
data: 2
less:
greater: -
First to aut_omatlcally
create viz. of data romuage—
structures e
data: 10
I £55; o
Produce pictures p—
“like yOU Figure 18.
) Artist hierarchy that would be created for:
mig ht drawn them Figure 15. rec: RECORD [p1: POINTER TO CARDINAL, int: INTEGERY];
” This erroneous tree structure demonstrates that a pointer (This figure was not created by Incense).
on a blackboard to previously displayed object does not generate a new

copy. The second arrow is drawn to the first occurrence.

Goal: help with @
debugging N N

®) eight: 175 Kreizht: 125

weight> 175 lastName: Myers lastName: Myers
lastName: Myers initial: 'B iniual: 'B

initial: ‘B

Figure 19.
Figure 16. Demonstration of the advantage of curved lines used in
Pointer to value inside a record (a) does not get confused Incense (a) over straight lines (b). The control points used
with a pointer to the record itself (b). to specify the spline are shown as black squares in (a).

Brad A. Myers. 1983. INCENSE: A system for displaying data structures. Conference on Computer graphics and interactive techniques
(SIGGRAPH '83),115-125.

LaToza GMU SWE 795 Fall 2019 21

Brown University Algorithm Simulator and
Animator (BALSA)

o Transitive Closure --

----- . Grmme
Major interactive integrated . K
system e gm
Extensively gsed for teaching at | .:.:...::...... | mEm
Brown Univ. oo i | IERD
Lots of algorithms e ‘e |
visualized ¢ 7 ...'
Architecture for . .
attaching the graphics - -

with code . L e——
Stl” required Significant . o . . “ . s s s u Er . : ':j::__‘:i;'g:::_;_:.,,.,:.;';;; e
programming for each .)
viz. l IL ll
Marc followed up with GIHE]

Zeus ('91) at DEC SRC OEODEN

o ere——C] ST: Di katra (soarse) [———

Marc H. Brown and Robert Sedgewick. Techniques for Algorithm Animation. IEEE Software, 1985.

LaToza GMU SWE 795 Fall 2019 22

PECAN

57 1ox coson 0usot o [
33> Begim execution ... 100 IN ouT NEXT BACK E
> wrestpatat set 1Y vt | oo] P] 7 T weroe
Steven Reiss at Brown’s code & [pist s’ ™™ P i o s tanirte pecan inaon
data visualization systems > Stop conprats 4 e
color : (red,green,blue);
Take advantage of new Apollo gy, Integer
workstation capabilities - e
. ‘ FORWARD DEBUGC X, Yy ¢ integer;
PECAN (1985) — automatic SECLaRATION
. i ROUTINE
graphics about the program 7 } DATA SEXIE < trogren saemi 3
MUltIp'G views X g“ | Pty L= 178 100 "
Integrateg Bal_sa | RITELIC dverage 15, #/160.0);
data visualization STeTEneT
Syntax directed editing o 25] | |r == 1]
Drag and drop e Yo T g e v | 35|
Flowcharts of code L TR > o
Code highlighting while e
executing
. . WRITELN(’Result is*, x)
Data viz. like Incense RITELNC verage 157, W/1000)
Incremental compilation I S
Could handle up to ¥ B

1000 LOC 7 : T K E E @ @ B B = E—
Lt -
rav a Display Box kdit Rothon NS Edit Symbols xprs Declaration Symbols Type Transcript sanple
TRVERT

 RESIZE — WOVE DELETE PUSH RELP QUIT

Steven P. Reiss. 1984. Graphical program development with PECAN program development systems. In Proceedings of the first ACM
SIGSOFT/SIGPLAN software engineering symposium on Practical software development environments (SDE 1), 30-41.

LaToza GMU SWE 795 Fall 2019 23

Friendly Integrated Environment for
Learning and Development (FIELD)

[®] display: 11

11: List
Field (1990) — IDE, Fm,, [ET,, I, [0, @]
wrappers for Unix tools
Code and data viz. B o R B e o Rl B e T
Message-based (control =
integration () | NN N R ﬂ 9
Basis for most other Unix — FT — FT —V M e
IDEs
Widely used B N [y N N N N N Sy
Followed by
DESERT, ... =1 =T el Bl o1 Y el Bl e
0 1 2 3 4 5 6 7 8

Steven P. Reiss: Interacting with the FIELD environment. Softw., Pract. Exper. 20(S1): S1 (1990)

LaToza GMU SWE 795 Fall 2019 24

Transition-based Animation Generation
(TANGO)

John Stasko PhD thesis at Brown TANGO

Univ. (1990) MONITOR CONSUMER
Smooth animations between

states

Paths & transitions
Make it easier to author
algorithm visualizations

Events inserted into the code
tied to animations

o R R R T TR

-

Gt

L OU WBTIRS PN PPt B B A - (ME eyt DM

_ i FReset

“Bigeset T Figure 2. Tango animation of a producer-consumer ring buffer.

Figure 9. Sperim scquee of fes from thbiakingamation.
J. T. Stasko, "Tango: a framework and system for algorithm animation," in Computer, vol. 23, no. 9, pp. 27-39, Sept. 1990.

LaToza GMU SWE 795 Fall 2019 25

22-27.
LaToza

F-a=ull DDD: /public/source/programming/ddd- 3.2/ddd/cxxtest.C O X
File Edit View Program Commands Status Source Data Help |
0: 1ist—>self] 9 @ e e \Z %57
Lookup Find:« Break Watch Print Dispx Plot Hide FHotzte Set Undisp
.. self. .. self.
T value = 85 /> || value = 86 '/> -
1('“;5:) —soadreo—— R || el se1f = 0x804dfg0| !

next

0x804df30

list—>next = new List{a_global + start+); E X E
list—>next—>next = new List({a_global + start++);
1ist—>next—>next—>next = list; Run
Data D|Sp|ay @ (void) 1isk: // Display this _Interrupt |
B delete Tist (List *) 0x804df80 Step | Stepi
D b delete 1ist—>next; Mext | Mexti
e U g g e I) e WS Until | Finish
7 Tt *~4 DDD Tip of the Day #5 > Kill
void 1is Dwh
¢ Tt If you made a mistake, try Edit—Undo. This will undo the most edo
2 recent debugger command and redisplay the previous program state. s N
e
-
¥o1d ref
jate|_Close | Prev Tip Next Tip
dele
date== —
3
d
(gdb) graph display *{Tist—>next—>next—>self) dependent on 4 A
(gdb) : i
§ /
A list= (List *) 0x804df80 'F

https://www.gnu.org/software/ddd/

Andreas Zeller and Dorothea Lutkehaus. 1996. DDD—a free graphical front-end for UNIX debuggers. SIGPLAN Not. 31, 1 (January 1996),

GMU SWE 795 Fall 2019

26

LaToza

PythonTutor

Python 2.7

def listSum(numbers):
if not numbers:

return ©
else:
(f, rest) = numbers
— return f + listSum(rest)

myList = (1, (2, (3, None)))
total = listSum(myList)

Edit code

line that has just executed
== next line to execute

<Back Step 11 of 22 Forward >

Visualized using Python Tutor by Philip Guo

Over 2.5 million people in over 180 countries have used Python Tutor to

http://oythontutor.com/

Frames Objects
Global frame function
) listSum(numbers)
listSum
myList tuple tuple tuple
0 1 0 1 0 1
1| «”| 2 | «”| 3 | None
listSum L_ L/ A
numbers
f 1
rest
listSum
numbers
f 2
rest

visualize over 20 million pieces of code

Philip J. Guo. Online Python Tutor: Embeddable Web-Based Program Visualization for CS Education. In Proceedings of the ACM Technical
Symposium on Computer Science Education (SIGCSE), March 2013.

GMU SWE 795 Fall 2019

27

LaToza

Module Views

* Depict static structure of modules (e.g., files,
folders, packages)

» (Often depicts dependencies between modules

* Focus on reverse engineering tasks, refactoring
tasks, other architecture related tasks

GMU SWE 795 Fall 2019

28

SHriMP

%“I'."“‘.‘. o ik (38 SR
e . HA ;
', _

Fig. 3. A SHriMP View of a program which implements a Hangman game. The main subsystems (Control, Setup, GamePlay, Input, Output,
GlobalVars and Die) are shown in this view. A fisheye view of the GamePlay subsystem provides more detail since it is shown larger than the other
subsystems. The maintainer can browse the source code by following hyperlinks within an architectural view of the entire program.

M.-A.D Storey, F.D Fracchia, H.A Muller, Cognitive design elements to support the construction of a mental model during software exploration
Journal of Systems and Software, Volume 44, Issue 3, January 1999, Pages 171-185.

LaToza GMU SWE 795 Fall 2019 29

Code Crawler (Polymetric Views)

Position Metrics (X.,Y) 0[O

Height
Metric

Color Metric

———Width Metric

e
I’D‘Eﬁﬁm‘jﬁﬁi

Ty

lh

=\

ApplicationModel Hierarchy

Model Hierarchy

\\A" Mﬁ% U”E [][l’ BE DE[] ‘mﬂi f[]ﬂ[ﬂ&g% poeo A

LLI:I “L{DiLﬁUu rogo UIDU%“ULUUUL Uu un[] 0° @ %Ma nnﬂp”cucn

ﬂfﬂf&ﬂ"ﬂlﬂ

n

Michele Lanza and Stéphane Ducasse. 2003. Polymetric Views-A Lightweight Visual Approach to Reverse Engineering. IEEE Trans. Softw.

Eng. 29, 9 (September 2003), 782-795.

LaToza GMU SWE 795 Fall 2019

30

Relo

IO OH.ifa.draw.utl. GraphLayout £} CH.ifa.cdraw. framework
@ addNode(Figure): void ~——._ o
Sl Figure
— = @ addFgureChangelistener (FgureChangelistener): vod
34 Members »
é 21 Classes »
i O1.fa.draw. figures
(© LneComnection £ Or.ife. fraw.standard
1
- {o connectStart{Connector): vod ‘ (— | AbstractEgure
@ connectEnd(Connector): void < 41 Members »
38 Members » -
64 Classes »
[
© TextFigure //

@ read(StorableInput): vod 7/ (O ElpseFigure
@ readObject(Objectinputsfean): vod / > basicMoveBy(nt,nt): vod
@ comect{Figure): void uw»
50 Members »

30 Classes »

Vineet Sinha, David Karger, and Rob Miller. 2006. Relo: Helping Users Manage Context during Interactive Exploratory Visualization of Large
Codebases. In Proceedings of the Visual Languages and Human-Centric Computing (VLHCC '06), 187-194.

LaToza

GMU SWE 795 Fall 2019

31

Lattix (Design Structure Matrices

$root T LT T] B RR = = 1 1 T G WWREEEE
- s lnlo /e BERBE GBS EEEEREENR S B R E R 88550
-} 1+}- Subsystem1 -}{ Haystack 1| L Lt rrrrrrrtrrrertrrtrrerrir R '
= - 2|)|
2 |5~ subsystem2 § (+) services.wrapperinduction 2 (oY
8 = 3% +) services. mediaplayer 3]
3 [+ Subsystem3 & @ [+ ui.games 4
+| Subsystem4 # | | ul.bioinformatics 5|
& == recommender 6 23
Figure 12: DSM with Rule View] gz 2 [+ learning 7‘.)
%38 query 8 C
) ‘ [+ collaboration 9]
$root ANARNE 3+ hp 10
[+ jabber 11 |
+/-application | B L o jxta 12 | ‘ ‘
S |+ model 2 |37 () federation 13| @ .
S = : o fs 14 [1] N |
g " domain 3 17.28‘ [+ navigation 15Y ‘2 ‘2 | "
2 |3 framework 4 ||75|53 (42| . | [+ text 16Y i 1] A
& : | PPy + transport 17 JEE
L1 = { 4 4 4+ + +
+ - util 5(]10 |13 (16|13 | 4+ mail 18 | 1|2]2]2 | |
: « Desi -1+ adenine 19 Y
Figure 13: Design Rules for a Layered System @ [sere 20" N] @
g.i - = o O [l
$root N S S R 4 | melatonin 2 | 121
[+ setup 23 | |
=I|[+]- application 1. | 4 4% mercury 24 1
S |+ model 2| 371‘ i " {EHG) calendar 2%
g |5 _Mmode | il n 8 |8 |+ catscheme 26 |
@ |[+]- domain 3 28| . 3 "4 chart 27
5' ‘h |] 'Y .-“’ m. 4 4 4 | 4 - |.
4 < la,OUt | ! -
3 L framework 4 | 2| "'»f editor 29 . @] - |
@ |+ util 5 L | (13 g;« modeless 30 D
Figure 14: Design Rules for a Strictly Layered System Q.‘ : bwe,l 'a'gs ;;‘ 111 - T N -
’:; [+ utils 33\ 2113 1 | ¢ [1]3|w|s5|3 2w |J 1
Q; utils.g'qnhics 34 KIEl W 1 BE IEE D NE
com.example = |0 W = o, 1 d “ 3|1 1]e <6 \] | | 8|2 e (w|o 7|5 [w]|] 6
- '+ project 1 ,f server.core 36 |2 L | :5‘4‘:‘5’6‘8} 4’4 515 4.4‘5.5‘4 l.l‘ 3 3.1_ 3_4.1 2 2“1‘1 J‘_;]
N ‘ +-languages.adenine c7alE [3] 3|4 «[3] E 1{eefa] e 7 1205 <] [2]7 43 2
§ + - comp-1 2‘ 2 | - L +secu'|ty 38Y|2 1 1 11 1 1 1 221]2 BE 122 A B
2 () comp-2 al[2] |- Slghaystackadenne.query 3| | | [[[[2] [[[T [T2l [T T Tel T TTTTTTTTTTTTTTIs]
= : | N | N “_ Lks '-'aysml .ozone. dab 40‘ 0 3 5 916 |3 5w 4 64 1
+/ comp-3 41121 | 51+ content a\l T DT T 200z 21 2] (200 [T 1L T T T C D 20 (3] sl | [
+l semvices 51|78 /717 ‘*fdf aN|sle(s(a|aja|7|7|s|a|o|ajala|oa|2(ala|a|2|7|o|a|7 7|3 |wa|a]|s |2|n|e o || |o|[n]s| |3}
“‘ 43‘|.|.|‘ | .|‘2‘|.|.|'1.2‘|.|'|.2' .2 .|.1‘1.|.|‘1‘|. 'l‘l' | ‘]-|- '|-3-]' '|v|33

Figure 15: Design Rules for Independent Components

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. 2005. Using dependency models to manage complex software architecture.
Conference on Object-oriented programming, systems, languages, and applications (OOPSLA '05), 167-176.

GMU SWE 795 Fall 2019 32

LaToza

LaToza

Function calls

* Depict function invocations

* Could be runtime view (specific execution) or static
view (all possible executions)

 Many decisions about what to show & how to show it

Code centric? Timeline centric?

Show all functions”? Show some functions”? Which
ones”

What information about functions to depict? Order,
time, asycnonicity, ...

GMU SWE 795 Fall 2019 33

= Java lracing - letris/src/org/oversout/tetris/ui/ letrisActionListener.java - cclipse SUR =5 S

File Edit Source Refactor Navigate Search Project Run Window Help

Nl @i P -0-Q- BHG- PAeET ®S - FF e e o B %% &
' [# Package Explorer gg\ = B[Toib EventQueue. dass |/ B2 outiine | [Trace Outline S@ =8|
TIEEN A —S N
— 262 Fr———o] : :
-4} org.oversoul.tetris.highscores lallff <°< P ——] 1 1
< | 263 1
=it} org.oversoul. tetris.ui - :
- [J] ScorePanel.java 1.1 o . !
= [1) StatsPanel.java 1.1 <0 ' —] i
& C'B 266 * Forwards the key event on to the controller. !
= StatsPanel 1.1 R . X ~ . _ _) e] i
getlossesLabel() : JLabe 26 * @see java.awt.event.KeyListenerfkeyPressed (KeyEvent) : <
B getPercentagelabel() : - “o- o] = ————————————————— .
B getTetrisTotalLabel() : 1 L2269 public void keyPressed (KeyEvent e) { e J 1
B getWinsLabel() : JLabel 270 int code = e.getKeyCode(): 00000 | leeeeoc-o----—_ o _____. =
@ updateStats(TetrisPlaye| = ||| <~ o) - .
EI DEI TetrisActionListener.java 1.1 272 // Workaround for when Enter or Space is pressed and a butt
& DEI TetrisBoardComponent.java 1.1 273 if ((code == KeyEvent.VK ENTER) || (code == KeyEvent.VK SPi=|
= . 1.1 .) T ==
= Q, TetrisBoardComponent 1.1 f_: it (EZE?EZii:z '2zi§i:§:ré3,;§:t(:§’?tr013 () -containsKeyCoc 8
@ getDarkerColor(Color) : 1 :_; e. consume () '. St ’ B
@ getlighterColor(Color) : _— - ’
@ hideCursor() : void o || }
@ invalidateSquare(int, int) == ! =
@ isFocusable() : boolean 279 //check for CTRL-# keys which change the starting level

. H H H
! i i) E—— 280 I else if ((e.getModifiersix() & KeyEvent.CTRL DOWN MASK) != —
i ; i & pmt(Gra:hcs) ¢ void a SF llmmAa SN— TmsTevmmt+ I A\ e lmmda +— FesTevmwm+s 77 0\ \|!| ;g& Deb 02 N\ = a
: : paintComponent(Graphitl’v‘| (] 1) | B ebug &2 N\
- : — = v

| i | 1 | E3 » bg —— »E P, I = 8 |
G, program Traces 53 =0 %R &t O

1
45

—) : - - itional) -> t, it -> > o A
= 00 Tetris USER.start() @ run() & pumpEvents(Conditional) & pumpEvents(int, Conditional) & pumpEve > P @ .Z: 6@ 2
- l\—_—| {?-ﬁuigo[gQ Application Trace] 3: © & = [<terminated>Tetris [Java Application Trace]
= @ Tetris [Dava Application Trace] 3: © i . . . 1)
s$ AWT-Windows () o & ® TetrisBoardComponent & component G sunGraphics2D ® TetrisBoard el <terminated, exit value: 0>C:\Program Files\J:
@, <terminated, exit value: 0>Tracing C:\Program
b@ DestroyJavaVM (11) o =
= T T T (A
v Thread-5 (17) o= ¢ getBackground() 1 ! ! |
& AWT-Shutdown (9) o= = H i
~ 1 1 _— o
»$ AWT-EventQueue-0 (10) © vif (background!= nuII)J : : < i | 3
5% Finalizer (1) o & Col i 1 =
»$ TimerQueue (14) el = |lle=====o-------_F A 9'1!- : : (9= variables | 9o Breakpoin IC‘ Progress &3 8
o Tread0 (5 o *sciColorak X | %~
1
¥ AWT-Shutdown (7) o | ¢ ST P T \Z[.J | =l —
@ ect(int, int, int, int 2 o operations to display at this time.
99 Thread-4 (13) o= 1 ! pe y
59 Thread-2 (18) o= | ——————rrr e \ZL] :
59 Reference Handler (0) o & : i H
b@ Thread-1 (15) o & wfor (inty=0;y < height;y++)[1 of l]J :
% Java2D Disposer (6) o ® | H B
»$ D30 Screen Updater (12) @ & wfor (int x=0;x < width;x++)[6 of 200] | i
5% Attach Listener (4) o= ¢ getSquareColor{int, int)]
5% main (3) o & o Qo_lgr:U
¥ Thread-3 (18) Q g i ‘l’
»9 Signal Dispatcher (2) - 00: 00 : 00 . 000 00:02: 56 .94
3 (1) org.oversoul. tetris. ui. TetrisBoardComponent. paint(Graphics g) : void - Tetris/src

https://www.youtube.com/watch?v=FzM|4Zu2tps

Del Myers and Margaret-Anne Storey. 2010. Using dynamic analysis to create trace-focused user interfaces for IDEs. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software engineering (FSE '10). ACM, New York, NY, USA, 367-368.

LaToza GMU SWE 795 Fall 2019 34

https://www.youtube.com/watch?v=FzMl4Zu2tps

2calls » function fetch(id, callback) {
var stream = new Stream(id);

var allData =

2 calls stream.on(s, function (data) {
allData += data:

stream.on(, function () {
callback(. allData);:
')
1cal @ stream.on(s, Tunction (err) {

callback(err):

Theseus o

B fetch (stream.js: 1:0855543 id=1 callback=» Function returnva
(‘data’ handler) (st . 1:08:55.567 data=» [Buffer:512]® th
(‘data’ handler) (st 21 1:08:56.038 data=» [Buffer:512]® th

W fetch (st . 1:0855548 id=2 callback=» Function returnva

@ (‘error' handler) (strean 1:08:56.756 err = "connection failed"

Figure 1. Theseus shows call counts for every function, and an asyn-
chronous call tree allows the user to see how functions interact. In the
log below the code, users can see which call to fetch corresponds to the
failure without adding any debugging-specific code or re-executing their
program.

hitps://www.youtube.com/watch”?v=gnwXX510E2Q

Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing misconceptions about code with always-on programming visualizations.
Conference on Human Factors in Computing Systems, 2481-2490.

LaToza GMU SWE 795 Fall 2019

https://www.youtube.com/watch?v=qnwXX510E2Q

Visual Programming Languages

36

LaToza

Definitions

“Programming”
“The process of transforming a mental plan of desired actions for a
computer into a representation that can be understood by the

computer”
— Jean-Michel Hoc and Anh Nguyen-Xuan

“Single-dimensional characteristics”
The compilers or interpreters programs as long, one-dimensional
streams.

GMU SWE 795 Fall 2019

37

LaToza

Definitions

“Visual Programming”

“Programming in which more than one dimension is used to convey
semantics.” - Myers, 1990

“Token”

“A collection of one or more multi-dimensional objects”.

Examples:
Multi-dimensional graphical objects
Spatial relationships
Use of the time dimension to specify “before-after” semantic relationships.

“Visual Expression”
“A collection of one or more tokens”

GMU SWE 795 Fall 2019

38

Definitions

“Visual Programming Language”

“Any system where the user writes a program using two or more
dimensions” [Myers, 1990]

“A visual language manipulates visual information or supports visual
Interaction, or allows programming with visual expressions”
[Golin , 1990]

“A programming language that lets users create programs by manipulating
program elements graphically rather than by specifying them textually”.

“A set of spatial arrangements of text-graphic symbols with a semantic
iInterpretation that is used in carrying out communication actions in the
world”.

[Lakin, 1989]

LaToza GMU SWE 795 Fall 2019 39

What is not a Visual Programming
Language?

w5, Project1 - Microsoft Visual Basic [design] - [Form1 (Form)]

Programming Languages like
Visual Basic, Visual C++,

VISU8|CShaI’p, Delphl’ etC SRR R - B3 Project1 (Project1)
do not satisty the multi- S oz
dimensional characterization.
essassaases Dedellwloontoss s ennsanss e ———
. e e
They are prlmarlly TeXtuaI "' mph;be“clcatego_ﬁzedl

|anguages W|th R EE;:EX irue 7
. . 7 =
A graphical GUI builder =
m R'::‘utrns.fsets the text contained in the

A visual user interface

LaToza GMU SWE 795 Fall 2019 40

LaToza

Goal of VPL Research

To strive for improvements in programming
language design.

To make programming more accessible to some
particular audience.

To improve correctness with which people perform
programming tasks.

To improve the speed with which people perform
programming tasks.

GMU SWE 795 Fall 2019

41

Motivation from Psychology

Language determines thought and that linguistic categories limit
and determine cognitive categories [1]

In longer sentences meaning of each word may be clear, but the
way in which they are strung together makes little sense imposes
a tremendous mental workload to understand. [2]

Most design tasks require 3 cognitive skills: search, recognition and
inference.

Diverse set of views (and studies) exist today about whether
VPLs aid in search or cognition. [3]

[1] Sapir, E. (1929): 'The Status of Linguistics as a Science'. In E. Sapir (1958): Culture, Language and
Personality (ed. D. G. Mandelbaum). Berkeley, CA: University of California Press
[2] Christopher D. Wickens, “Engineering Psychology and Human Performance”, 3rd Edition

[3] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes) worth ten thousand words. Cognitive Science,
11:65-99, 1987.

LaToza GMU SWE 795 Fall 2019

42

Motivation

Some applications are (believed to
be) very well suited to graphical
development approaches

Scientific visualization
Simulations

User Interfaces
Signal Processing
Data Displays

23 Alice (2.0 04/05/2005) - £ Wlico2WAlice R ploW a2w 1= @E

Filo Edit Tools Help

- Begin: - lceSkater.go wireframe -

paint of view of = CameraPoinlONfiew? — dwalion =2 seconds — more—

Camera -~ setpoint of viewto <None> — paint of view of » CamerafointOfView — more—.
& =

- =IDotogether

© koSkater < tum left 046 revolutions - mose...

IcoSkater setpose lceSkalerpose — more...

IceSkater.skate RowsAwySteps =1
 IceSkater.stmploSpin

LaToza GMU SWE 795 Fall 2019 473

LaToza

(Claimed) Advantages of VPLs

 Fewer programming concepts
Concreteness

Paralle

Cxplicit depiction of relationships
mmediate visual feedback

computation is a natural consequence of

many visual programming paradigms

GMU SWE 795 Fall 2019

44

(Claimed) Disadvantages of VPLs

“Deutsch Limit” *
The problem with visual programming is that you can't have
more than 50 visual primitives on the screen at the same
time.

Some situations in which text has superiority:
Documentation,
Naming to distinguish between elements that are of the
same kind, and
Expressing well-known and compact concepts that are
inherently textual, e.g. algebraic formulas.

LaToza GMU SWE 795 Fall 2019 45

LaToza

Visual Programming Languages
Techniques

Concreteness: expressing some aspect of a program using
Instances

* e.g., display the effects of computation on individual instance

Directness: small distance between goal and actions required of
the user to achieve goal

* e.g., direct manipulation of object properties

Explicitness: don't require inference to understand semantics
* e.g., depict dataflow edges between variables

Livenesss: offer automatic display of effects of program edits on
output

* e.g., after every edit, IDE reruns code and regenerates output

GMU SWE 795 Fall 2019 46

LaToza

Levels of liveness

Level 1: No semantic feedback offered
* ©.9., using ER diagram for documentation

Level 2: Semantic feedback, but not offered
automatically

e e.9g., Interpreters

Level 3: Incremental semantic feedback automatically
provided after edit, regenerating onscreen output

* e.g., sSpreadsheets

Level 4: Incremental semantic feedback offered after
edits & systems events (e.g., clock ticks, mouse clicks)

¢ ©.9., some smalltalk environments (?)

Tanimoto, S., VIVA: a visual language for image processing. Journal of Visual Languages Computing 2(2): 127-139, June 1990.

GMU SWE 795 Fall 2019 47

History of VPLs

_ o Action _ _
' ' Graphics o Forms ' '
{ 0 AMBIT/GIL {oFORMAL o Editing by focube 0 AVS { oLOFIHIP
{ o Grall { oThingLab Example { 0 Cantata oMondrian { oFOXQ
' o GAL ' oHi-Visual ~ oPICT ' o SchemePainto ChemTrains,,"’ o VMQL
{ oGraphical Program | © LabView olotus 1-2-3 { 0oCODE20 o Vampire o GXL
’ Editor ’ 0 PROGRAPH © S_IL_'ICON ’ olconicode oVIPR , o EulerView
i oQueryby Example / oPIGS oVisiCalc { oMViews o SPE o Yahoo Pipes
i oPygmalion i oPict oHiGraphs i o Popfly
0 1/O Pairs oRehearsal 0 Miro
—O" @, oSmallStar © StateMaste&,') @,
1960 1980 1990 2000
Techniques Techniques Techniques/Goals Techniques/Goals
o Graphs o Graphs o 3D Rendering o Child Learning
o Flowcharts o Flowcharts o Visual Hierarchy o Xquery by FORMS
o Flowchart derivatives o Flowchart 0 Procedures 0 Spreadsheet Analysis
o EFORMS derivatives o Control Structures o Visual Model Query
o Demonstrational o FORMS o Programmable Graphics o Layouts
o Demonstrational o Animations o Specification and Interchange
o Data Flows o Video Imagery Exploitation o Mashups
o Spreadsheets o General purpose, declarative language o Web-based design
o Matrices o Audio, video and image processing o Programming for end-users
o Jigsaw Puzzles o Graphical models from behavioral models ~ (2003) /non-Professionals
o Petri nets o Learning and Cognitive abilities in vision
o Flowchart Processes
derivatives o Handling Scalability, typing, and
imperative design
o Collaborative Software Development

LaToza

GMU SWE 795 Fall 2019

48

History of VPLs

Period of
Period of Reality Check
Inflated Expectations

Period of Early
Technology promises
Trigger
@
O O O O
1960 1980 1990 2000
O [Ellis, 1969]: GRAIL
@ [Smith, 1975]: Pygmalion
O [Myers, 1990]: Taxonomies for VPL
O [Repenning, 1992] : Agent Sheet
O [Burnett, 1994]: Broad Classifications for VPL Research
O [Kirsten N. Whitley, 1997]. User Studies (for/againstVPLs)
© [MacLaurin, 2009]: KODU
Visual Programming Search nstantis en ¥
About 18,200 resulis (0.47 seconds) Advanced search
Timeline [x]

LaToza

1960-2011 Search other dates

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

GMU SWE 795 Fall 2019

History of VPLs

OI_/ie;uuaSieLraSnpraeglraerg In ! oMake programming
guag ! more accessible

! o Supportdomain -

I specificdesigns

o Strive for improvements

1
I
1
1
]
1
1
I
1
1
I
1
1
]
1
1
)
I
1
I
1
1
I
)
)

{ oSupportthe S _
! cognition ! :gnprogrammmg
aspect of guage design
Programming ;
1 i £~ o (Aimost) Make textual |
{ j i languages redundant |
0 O O O
1980 1990 000

1960

GMU SWE 795 Fall 2019

LaToza

Brad A. Myers. "Taxonomies of Visual Programming and Program Visualization," Journal of Visual Languages and Computing. vol.

LaToza

Taxonomy of visual programming

languages

Specification Technique:

Systems:

Textual Languages:

Pascal. Ada. Fortran. Lisp. Ada. etc.
Tinker. Smallstar

Flowcharts:

Grail. Pict. FPL. IBGE. OPAL

Flowchart derivatives:

GAL. PIGS. SchemaCode. PLAY

Petr1 nets:

MOPS-2, VERDI

Data flow graphs:

Graphical Program Editor. PROGRAPH.
Graphical Thinglab., Music System. HI-VISUAL.
LabVIEW., Fabrik. InterCONS

Directed graphs:

AMBIT/G/L. State Transition UIMS. Bauer’s Traces

Graph derivatives:

HiGraphs. Miro. StateMaster

Matrices: ALEX. MPL

Jigsaw puzzle pieces: Proc-BLOX

Forms: Query by Example. FORMAL

Iconic Sentences: SIL-ICON

Spreadsheets™: VisiCalc. Lotus 1-2-3. Action Graphics. “‘Forms™

None*:

Demonstrational®:

Pygmalion. Rehearsal World. Peridot

/O Pauwrs. Editing by Example

1, no. 1. March, 1990. pp. 97-123.

GMU SWE 795 Fall 2019

51

LaToza

Dataflow Program Representations

 Represent computation as a network
 Nodes correspond to components
 Edges correspond to data flow between

components

GMU SWE 795 Fall 2019

52

Margaret M. Burnett, “Visual Programming” In the Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), 1999

LaToza

Prograph

math dataflow 1:1

778 Finding the hypotenuse

/ 7/
/ show?/
P D

of a right triangle.

.;j“rj

-+

Figure 3: Dataflow programming in Prograph. Here the programmer is using the low-level (primitive) operations to
find the hypotenuse of a right triangle. Prograph allows the programmer to name and compose such low-level
graphs into higher-level graphs that can then be composed into even higher-level graphs, and so on.

GMU SWE 795 Fall 2019

53

https://www.google.com/url?q=http://www.google.com/url?q%3Dhttp%253A%252F%252Fciteseerx.ist.psu.edu%252Fviewdoc%252Fdownload%253Fdoi%253D10.1.1.54.3110%2526rep%253Drep1%2526type%253Dpdf%26sa%3DD%26sntz%3D1%26usg%3DAFQjCNG1Hts0ki3fC-DFVQ7yE9RGyUXXSg&sa=D&ust=1492492232120000&usg=AFQjCNG961iQ3HJuENiYIw7_F6n9dwwlbA

Industrial Example: Clarity

o “Clarity is a schematic functional programming
environment that allows you to design and
implement programs by drawing them. The picture
below shows an example of the hypotenuse
function that expresses Pythagoras' theorem.”

$ENETWORKES [2 of 9]

r | [run_model_4.24 |
< real > <real > X

[run_4.2_consult_experimenters_cycles |
A - —
[exp_cons_plot_line | Iw_l.wf‘t:‘.ls_next_actwn. I
‘§ ide 1 é;ide 2 e o_exp_or_cons |
\ =3 Ldo_pick_consultee | il
\y | 7N, 0_No ;“ o_experiment]
square square | Lpick_consultee [*. [actors_waiting_data_plot_Tine_elm "]
\ 3 \\\ ‘
/ K [each_actor_cycle_plot_line
+ %
4
[consulting_actors_cycle_plot_line I
2
sqrt _|select_setup |
[person_setup_mem | //’ rf
7 .J:
’,]
i
real £

| f
[select_min_two_list IJ:’

]

>
| actor_setup_entropy |

http://www.clarity-support.co.uk/products/clarity/

LaToza GMU SWE 795 Fall 2019

http://www.clarity-support.co.uk/products/clarity/

Industrial Example: Yahoo Pipes

Fetch Feed HE X
O URL
hitp://pittsburgh.craigslist.org/sofii

= hitp://iwww.careerbuilder.com/RTC

" Google Base 211kl
Find jobs + with keywords software engineer
within 20 miles « of 91423

© hitp:/irtq.careerbuilder.com/RTQ/r: s ‘_‘_,.;-,-,:rf;\i‘-:::—_.,.,\ V
& http:/ittq.careerbuilder.com/RTQJr: moﬂ —44 v—::;:—:_:j:—:j;j:m ——— auuu: ‘-‘1-,?;
= http://hotjobs.yahoo.comirss/0/US y o = 77”::::7_:::;;1 Fi'lie&' o e %
= http:llwww.simply’hired.comlaljob- ""ﬂf::;;:______._-;:::-‘f”":::::f Block + itemsthatmatch any + ofthe following
{" .7‘_:_;__,_.;-_1:'-'--" 1 L’ Rules
il & item.description » Contains v internship
& item title » Contains v intern
& item title » Contains v summer internshig
v
Filter B B
Permit v itemsthatmatch any + ofthe following [Sort —— (v A%
O Rules _ © Sort by
© item.description ~ » Contains v research " | @ item.dcdate » in descending v order
£ item.description » Contains v web-senices o ~ ™
© item.description » Contains v architecture
& item title » Contains v software engineeri
& itemtitle » Contains v design
‘.,
[Epe Out_put . l Debugger: none

https://www.youtube.com/watch?v=Xv-4TQOit5 g

LaToza GMU SWE 795 Fall 2019

https://en.wikipedia.org/wiki/Yahoo!_Pipes
https://www.youtube.com/watch?v=Xv-4TOit5_g

Structured editors

o Structured editors that utilize extra dimension to
capture program semantics can be considered
visual programming languages

* ©.9., Alice, Scratch

Hello, world!

SSSSS

myself |

LaToza GMU SWE 795 Fall 2019

LaToza

Form Representations

 Program consists of a form, with a network of
iInterconnected cells

* Developers define cell through combination of
oointing, typing, gesturing

* (Cells may detine constraints describing
relationships between cells

GMU SWE 795 Fall 2019

57

Margaret M. Burnett, “Visual Programming” In the Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), 1999

LaToza

Forms/3

 Based on constraints between cells

e Supports graphics, animation, recursion

e (Concreteness: resulting box is immediately seen
e Directness: demonstrates elements directly

o [evel 4 liveness: immediate visual feedback

~ares |0

=

Enter Fomuia:

Formula for: scuare Accept | Cancel| Clear |

Undo | Redo | Clone | Display]

Graphics Area:

Hide |

Wegl

box circ line

scuare | ' .

Form Help' 300

CutCall'

drea

Paste |

Show Test
Data

Figure 2: Deﬁm’n the area of a square using spreadsheet-like cells and formulas in Forms/3. Graphical types are
supported as first-class values, and the programmer can enter cell square’s formula either by sketching a square box or

(width SQUARE [J) * (height SQUARE D—Jl

by typing textual specifications (e.g., “box 30 307).

GMU SWE 795 Fall 2019

58

https://www.google.com/url?q=http://www.google.com/url?q%3Dhttp%253A%252F%252Fciteseerx.ist.psu.edu%252Fviewdoc%252Fdownload%253Fdoi%253D10.1.1.54.3110%2526rep%253Drep1%2526type%253Dpdf%26sa%3DD%26sntz%3D1%26usg%3DAFQjCNG1Hts0ki3fC-DFVQ7yE9RGyUXXSg&sa=D&ust=1492492232120000&usg=AFQjCNG961iQ3HJuENiYIw7_F6n9dwwlbA

LaToza

Forms/3 Example

RADIO| OPTION

Testl

|

if (1
then

nlist input (2 356 78 9 0))
horizontal

L

1f ({inlist input {
then vertical

|
if (inlist input (1 2 34 7 8 9 0))
then vertical

456890)) |

if (1
then

nlist input (2 345 6 8 9))
horizontal

if (inlist input (1 34 56 78 9 0))
then wvertical

if (1
then

nlist input (2 3 56 8 9 0))
horizontal

horizontal gLine S0

vertical tline 0 80

0

http://web.engr.oregonstate.edu/~burnett/Forms3/LED.html

GMU SWE 795 Fall 2019

59

http://web.engr.oregonstate.edu/~burnett/Forms3/LED.html

LaToza

Forms/3 Example

RADIO| OPTION

bottles of beer on the wall.
bottles of beer...

Take one down, pass 1t arcund,
bottles of beer on the wall.

fi1xedWords

29

9% fbyv {{earlier bottles) - 1)
b°ttleﬁqnn ymtil {isarlier bottles] = 2)

99 bottles of beer on the wall.
99 bottles of beer...

Take one down, pass 1t arcund,
98 bottles of beer on the wall.

p— coapose bottles at {4 2)

g with fixedWords at {5 2)
with bottles at {4 14)
with {(bottles — 1) at {4 38)

by Dr. Margaret M. Burnett and Jonathan Jay Cadiz

GMU SWE 795 Fall 2019 60

Interstate

n('dblclick’, thi
on(’ mousedown this)

on('click’)
Copies: on(mouseup’)
Add Field no drag drag drag_lock
prototypes (div) | dom.div |
X 313 0 X mouse. X mouse. X
y 763) y mouse.y mouse.y
fill 'black’ 'black’ 'blue’ "navy’

Figure 1: A basic InterState object, named draggable, which
implements draggable and drag lock behaviors. Properties that
control draggable’s display are represented as rows (e.g. x, v,
and fill). States and transitions are represented as columns (e.g.
no_drag and drag). An entry in a property’s row for a particular
state specifies a constraint that controls that property’s value in that
state. Here, while draggable is in the drag state, x and y will be

constrained to mouse.x and mouse.y respectively, meaning
draggable will follow the mouse.

http://interstate.from.so/
https://www.youtube.com/watch?v=M--9jsuD/is

Stephen Oney, Brad Myers, and Joel Brandt. 2014. InterState: a language and environment for expressing interface
behavior. Symposium on User interface software and technology, 263-272.

LaToza GMU SWE 795 Fall 2019

http://interstate.from.so/
https://www.youtube.com/watch?v=M--9jsuDZis

LaToza

Assessing Usability

* Empirical technigues assess usability through
studies gathering data

* Analytical techniques use principles & guidelines
to estimate the usabillity of a system

* Will look at a technique for analytical usability
evaluation here

GMU SWE 795 Fall 2019

62

Cognitive Dimensions of Notations

* Analytical technique for assessing usability of notation
through a set of heuristics

e Also terminology for describing usabillity problems

Abstraction gradient

What are the minimum and maximum levels of abstraction? Can fragments be
encapsulated?

Closeness of mapping

What ‘programming games’ need to be learned?

Consistency

When some of the language has been learnt, how much of the rest can be inferred?

Diffuseness

How many symbols or graphic entities are required to express a meaning?

Error-proneness

Does the design of the notation induce ‘careless mistakes’?

Hard mental operations

Are there places where the user needs to resort to fingers or penciled annotation to keep
track of what’s happening?

Hidden dependencies

Is every dependency overtly indicated in both directions? Is the indication perceptual or
only symbolic?

Premature commitment

Do programmers have to make decisions before they have the information they need?

Progressive evaluation

Can a partially-complete program be executed to obtain feedback on “How am I doing™?

Role-expressiveness

Can the reader see how each component of a program relates to the whole?

Secondary notation Can programmers use layout, color, or other cues to convey extra meaning, above and
beyond the ‘official’ semantics of the language?

Viscosity How much effort is required to perform a single change?

Visibility Is every part of the code simultaneously visible (assuming a large enough display), or is

it at least possible to compare any two parts side-by-side at will? If the code is

dispersed, is it at least possible to know in what order to read it?

T. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and
Computing 7(2): 131-174, June 1996

LaToza

GMU SWE 795 Fall 2019

63

Diffuseness / Terseness

 How many symbols or graphic elements is
required to express a meaning?

* Simple rocket simulation program

e Basic: 22 LOC, 140 words (fits on screen)

o LabView: 45 icons, 59 wires (fits on screen)
 Prograph: 52 icons, 79 connectors, 11 screens

T. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and

Computing 7(2): 131-174, June 1996
LaToza GMU SWE 795 Fall 2019 64

LaToza

Error-proneness

* Does the design of the notation induce slips?

 Compared to textual language, VPLs

e Do not need delim
 Fewer identitiers a

ite

e

's & separators

needed, easier to reference

* (Constructs inserted automatically (e.g., loops)

GMU SWE 795 Fall 2019

65

Viscosity

How much effort is required to make a simple
change?

—dit Rocket program to take account of air resistance
Basic: 63.3 S

_abView: 508.3 s

Prograph: 193.6 s

VPLs required many wires to be rebullt, layout to be
tweaked

GMU SWE 795 Fall 2019

LaToza

Visibility

* |s every (relevant) part of the code simultaneously
visible”

e [LabView does not show both branches of
conditional at same time (!)

* Particular problem for nested conditionals

* Prograph has poor support for deep nesting of
routines

GMU SWE 795 Fall 2019

67

LaToza

VPLs Discussion

Often offers a representation that makes specific tasks
easy

e e.g., tracking data flow

* (Often involves structured editor targeted to specific
domain, which may not support full range of programs

But may make other tasks harder
Often limited focus on scalability

May be possible to get benefits of task-specific
representations without drawbacks through task specific
editor rather than language

GMU SWE 795 Fall 2019 68

