
Software Visualization
SWE 795, Fall 2019

Software Engineering Environments



LaToza GMU SWE 795 Fall 2019

Today

• Part 1 (Lecture)(~60 mins) 
• Software visualization

2



LaToza GMU SWE 795 Fall 2019

Why a diagram is (sometimes) worth ten 
thousand words

• Diagrams can group together all 
information that is used together, thus 
avoiding large amounts of search for the 
elements needed to make a problem-
solving inference.  

• Diagrams typically use location to group 
information about a single element, 
avoiding the need to match symbolic 
labels.  

• Diagrams automatically support a large 
number of perceptual inferences, which are 
extremely easy for humans 

• Larkin & Simon, 1987, Cognitive Science 
11, pp 65-99.

3



LaToza/Bell GMU SWE 432 Fall 2016

• Increased resrouces 
• High bandwidth hierarchical 

4

S.K.Card, J.D.Mackinlay, B.Shneiderman, “Information Visualization”, Readings in Information Visualization: Using Vision to 
Think, Morgan Kaufman, Chapter 1.



LaToza/Bell GMU SWE 432 Fall 2016

Designing an information visualization

5

S.K.Card, J.D.Mackinlay, B.Shneiderman, “Information Visualization”, Readings in Information Visualization: Using Vision to 
Think, Morgan Kaufman, Chapter 1.



LaToza/Bell GMU SWE 432 Fall 2016

Marks’ graphical properties
• Quantitative (Q), Ordinal (O), Nominal (N) 
• Filled circle - good; open circle - bad

6



LaToza/Bell GMU SWE 432 Fall 2016

Effectiveness of graphical properties

• Quantitative (Q), Ordinal (O), Nominal (N) 
• Filled circle - good; open circle - bad

7



LaToza/Bell GMU SWE 432 Fall 2016

Tufte’s principles of graphical excellence

• show the data 
• induce the viewer to think about the substance rather 

than the methodology 
• avoid distorting what the data have to say 
• present many numbers in a small space 
• make large data sets coherent 
• encourage the eye to compare different pieces of data 
• reveal data at several levels of detail, from overview to 

fine structure 
• serve reasonable clear purpose: description, exploration, 

tabulation, decoration

8



LaToza/Bell GMU SWE 432 Fall 2016

Interactive visualizations
• Users often use iterative process of making sense 

of the data 
• Answers lead to new questions 

• Interactivity helps user constantly change display 
of information to answer new questions 

• Should offer visualization that offers best view of 
data moment to moment as desired view changes

9



LaToza GMU SWE 795 Fall 2019

How software visualizations may help

• Offer information that helps developers to answer 
questions 

• Facilitate easier navigation between artifacts 
containing relevant information

10



LaToza GMU SWE 795 Fall 2019

Key questions for software visualization 
design

• Do you really need a visualization? 
• If you know the developer’s question, can you answer it 

more simply without a visualization? 

• Anti-pattern: show all the information, let user find patterns 
• In other domains (e.g., data analytics), visualization is a 

tool for data exploration and understanding dataset. 
• Not true for SE: developers want to complete tasks, 

finding patterns often not relevant 

• How much context do you need? 
• More context —> more information to sort through 
• Less context —> more direct

11



LaToza GMU SWE 795 Fall 2019

Some popular forms of software 
visualizations

• Code 
• Iconographic representation of code text 

• Algorithm & object structure visualizations 
• Depictions of data value changes over time 
• Runtime snapshots of object reference structure 

• Module structure 
• Static views of module properties & dependencies (e.g., 

calls, references) 

• Function calls 
• Dynamic and static depictions of function calls

12



LaToza GMU SWE 795 Fall 2019

Code visualizations
• Offer overview of source code 

• Identify relevant sources lines matching some 
property  
• e.g., changed in a commit, passing a test, with a 

compiler warning 

• Represent lines of iconagraphically 
• e.g., colored lines

13



LaToza GMU SWE 795 Fall 2019

SeeSoft

14

Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr.. 1992. Seesoft-A Tool for Visualizing Line Oriented Software Statistics. IEEE 
Trans. Softw. Eng. 18, 11 (November 1992), 957-968. 

AT&T Bell Labs [Eick, 1992] 
Visualization for performance 

“Hot spots” in red 
Large volumes of code 

Image is of 15,255 LOC 
Up to 50,000 LOC 

Can indent like original 
source files 

Also, recently changed,  
Version control systems 
Static, dynamic analyses 

Interactive investigation 



LaToza GMU SWE 795 Fall 2019

Tarantula

15

Color – code coverage 
Red – failed test case 
Green – past test case 
Yellow – hue is % of test cases passing 

James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test information to assist fault localization. International 
Conference on Software Engineering (ICSE ’02), 467-477. 



LaToza GMU SWE 795 Fall 2019

AspectBrowser

16

Macneil Shonle, Jonathan Neddenriep, and William Griswold. 2004. AspectBrowser for Eclipse: a case study in plug-in retargeting. In 
Proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange (eclipse '04). ACM, New York, NY, USA, 78-82. 



LaToza GMU SWE 795 Fall 2019

Industry Use: Eclipse Markers

17



LaToza GMU SWE 795 Fall 2019

Industry use: Visual Studio Code Minimap

18



LaToza GMU SWE 795 Fall 2019

Algorithm & object structure visualizations

• Depict runtime state at a snapshot or over time 
• e.g., elements in a collection, numeric values 

• Often focused on teaching basic algorithms (e.g., 
sorting algorithms, linked list insertion)

19

(Section adapted from Software Visualization, Lecture by Brad A. Myers, Spring 2011)



LaToza GMU SWE 795 Fall 2019

Sorting out Sorting

20

https://www.youtube.com/watch?v=SJwEwA5gOkM



LaToza GMU SWE 795 Fall 2019

Incense

21

Brad A. Myers. 1983. INCENSE: A system for displaying data structures. Conference on Computer graphics and interactive techniques 
(SIGGRAPH '83),115-125. 

First to automatically 
create viz. of data 
structures 

Produce pictures 
“like you 
might drawn them 
on a blackboard” 

Goal: help with 
debugging 



LaToza GMU SWE 795 Fall 2019

Brown University Algorithm Simulator and 
Animator (BALSA)

22

Major interactive integrated 
system 
Extensively used for teaching at 

Brown Univ. 
Lots of algorithms 

visualized 
Architecture for 

attaching the graphics 
with code 
Still required significant 

programming for each 
viz. 

Marc followed up with 
Zeus (‘91) at DEC SRC

Marc H. Brown and Robert Sedgewick. Techniques for Algorithm Animation. IEEE Software, 1985.



LaToza GMU SWE 795 Fall 2019

PECAN

23

Steven Reiss at Brown’s code & 
data visualization systems 
Take advantage of new Apollo 

workstation capabilities 
PECAN (1985) – automatic 

graphics about the program 
Multiple views 
Integrates Balsa 

data visualization 
Syntax directed editing 

Drag and drop 
Flowcharts of code 
Code highlighting while 

executing 
Data viz. like Incense 
Incremental compilation 
Could handle up to 

1000 LOC

Steven P. Reiss. 1984. Graphical program development with PECAN program development systems. In Proceedings of the first ACM 
SIGSOFT/SIGPLAN software engineering symposium on Practical software development environments (SDE 1), 30-41. 



LaToza GMU SWE 795 Fall 2019

Friendly Integrated Environment for 
Learning and Development (FIELD)

24

Field (1990) – IDE, 
wrappers for Unix tools 
Code and data viz. 
Message-based (control) 

integration 
Basis for most other Unix 

IDEs 
Widely used 

Followed by 
DESERT, … 

Steven P. Reiss: Interacting with the FIELD environment. Softw., Pract. Exper. 20(S1): S1 (1990)



LaToza GMU SWE 795 Fall 2019

Transition-based Animation Generation 
(TANGO)

25

John Stasko PhD thesis at Brown 
Univ. (1990) 

Smooth animations between 
states 
Paths & transitions 

Make it easier to author 
algorithm visualizations 
Events inserted into the code 

tied to animations 

J. T. Stasko, "Tango: a framework and system for algorithm animation," in Computer, vol. 23, no. 9, pp. 27-39, Sept. 1990.



LaToza GMU SWE 795 Fall 2019

Data Display 
Debugger

26

https://www.gnu.org/software/ddd/
Andreas Zeller and Dorothea Lütkehaus. 1996. DDD—a free graphical front-end for UNIX debuggers. SIGPLAN Not. 31, 1 (January 1996), 
22-27. 



LaToza GMU SWE 795 Fall 2019

PythonTutor

27

http://pythontutor.com/

Over 2.5 million people in over 180 countries have used Python Tutor to 
visualize over 20 million pieces of code

Philip J. Guo. Online Python Tutor: Embeddable Web-Based Program Visualization for CS Education. In Proceedings of the ACM Technical 
Symposium on Computer Science Education (SIGCSE), March 2013.



LaToza GMU SWE 795 Fall 2019

Module Views

• Depict static structure of modules (e.g., files, 
folders, packages) 

• Often depicts dependencies between modules 

• Focus on reverse engineering tasks, refactoring 
tasks, other architecture related tasks

28



LaToza GMU SWE 795 Fall 2019 29

SHriMP

M.-A.D Storey, F.D Fracchia, H.A Müller, Cognitive design elements to support the construction of a mental model during software exploration, 
Journal of Systems and Software, Volume 44, Issue 3, January 1999, Pages 171-185.



LaToza GMU SWE 795 Fall 2019

Code Crawler (Polymetric Views)

30

Michele Lanza and Stéphane Ducasse. 2003. Polymetric Views-A Lightweight Visual Approach to Reverse Engineering. IEEE Trans. Softw. 
Eng. 29, 9 (September 2003), 782-795. 



LaToza GMU SWE 795 Fall 2019

Relo

31

Vineet Sinha, David Karger, and Rob Miller. 2006. Relo: Helping Users Manage Context during Interactive Exploratory Visualization of Large 
Codebases. In Proceedings of the Visual Languages and Human-Centric Computing (VLHCC ’06), 187-194.



LaToza GMU SWE 795 Fall 2019

Lattix (Design Structure Matrices)

32

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. 2005. Using dependency models to manage complex software architecture. 
Conference on Object-oriented programming, systems, languages, and applications (OOPSLA ’05), 167-176.



LaToza GMU SWE 795 Fall 2019

Function calls
• Depict function invocations 

• Could be runtime view (specific execution) or static 
view (all possible executions) 

• Many decisions about what to show & how to show it 
• Code centric? Timeline centric? 
• Show all functions? Show some functions? Which 

ones? 
• What information about functions to depict? Order, 

time, asycnonicity, …

33



LaToza GMU SWE 795 Fall 2019 34

https://www.youtube.com/watch?v=FzMl4Zu2tps 
Del Myers and Margaret-Anne Storey. 2010. Using dynamic analysis to create trace-focused user interfaces for IDEs. In Proceedings of the 
eighteenth ACM SIGSOFT international symposium on Foundations of software engineering (FSE '10). ACM, New York, NY, USA, 367-368. 

Diver

https://www.youtube.com/watch?v=FzMl4Zu2tps


LaToza GMU SWE 795 Fall 2019

Theseus

35

https://www.youtube.com/watch?v=qnwXX510E2Q 
Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing misconceptions about code with always-on programming visualizations. 
Conference on Human Factors in Computing Systems, 2481-2490. 

https://www.youtube.com/watch?v=qnwXX510E2Q


LaToza GMU SWE 795 Fall 2019

Visual Programming Languages

36



LaToza GMU SWE 795 Fall 2019

Definitions

“Programming” 
‘‘The process of transforming a mental plan of desired actions for a 

computer into a representation that can be understood by the 
computer’’     
– Jean-Michel Hoc and Anh Nguyen-Xuan 

“Single-dimensional characteristics” 
 The compilers  or  interpreters  programs  as  long,  one-dimensional  

streams. 

37



LaToza GMU SWE 795 Fall 2019

Definitions

“Visual Programming” 
“Programming in which more than one dimension is used to convey 

semantics.”     - Myers, 1990 

“Token” 
“A collection of one or more multi-dimensional objects”.  
Examples:  

Multi-dimensional graphical objects 
Spatial relationships 
Use of the time dimension to specify “before-after” semantic relationships.  

“Visual Expression” 
“A collection of one or more tokens” 

38



LaToza GMU SWE 795 Fall 2019

Definitions

“Visual Programming Language” 
“Any system where the user writes a program using two or more 

dimensions”                                                                 [Myers, 1990]  

“A visual language manipulates visual information or supports visual 
interaction, or allows programming with visual expressions”   
[Golin , 1990] 

“A programming language that lets users create programs by manipulating 
program elements graphically rather than by specifying them textually”. 

“A set of spatial arrangements of text-graphic symbols with a semantic 
interpretation that is used in carrying out communication actions in the 
world”.                           
 [Lakin, 1989]  

39



LaToza GMU SWE 795 Fall 2019

What is not a Visual Programming 
Language?

Programming Languages like 
Visual Basic, Visual C++, 
Visual C sharp, Delphi, etc 
do not satisfy the multi-
dimensional characterization. 

They are primarily Textual 
languages with: 

A graphical GUI builder 
A visual user interface

40



LaToza GMU SWE 795 Fall 2019

Goal of VPL Research
• To strive for improvements in programming 

language design. 
• To make programming more accessible to some 

particular audience. 
• To improve correctness with which people perform 

programming tasks. 
• To improve the speed with which people perform 

programming tasks.

41



LaToza GMU SWE 795 Fall 2019

Motivation from Psychology

Language determines thought and that linguistic categories limit 
and determine cognitive categories     [1] 

In longer sentences meaning of each word may be clear, but the 
way in which they are strung together makes little sense imposes 
a tremendous mental workload to understand.            [2] 

Most design tasks require 3 cognitive skills: search, recognition and 
inference.  

 Diverse set of views (and studies) exist today about whether 
VPLs aid in search or cognition. [3] 

  

42

[1] Sapir, E. (1929): 'The Status of Linguistics as a Science'. In E. Sapir (1958): Culture, Language and 
Personality (ed. D. G. Mandelbaum). Berkeley, CA: University of California Press 
[2] Christopher D. Wickens, “Engineering Psychology and Human Performance”, 3rd Edition 
[3] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 
11:65-99, 1987. 



LaToza GMU SWE 795 Fall 2019

Motivation
Some applications are (believed to 
be) very well suited to graphical 
development approaches 

Scientific visualization 
Simulations 
User Interfaces 
Signal Processing 
Data Displays 

43



LaToza GMU SWE 795 Fall 2019

(Claimed) Advantages of VPLs
• Fewer programming concepts  
• Concreteness 
• Explicit depiction of relationships  
• Immediate visual feedback  
• Parallel computation is a natural consequence of 

many visual programming paradigms

44



LaToza GMU SWE 795 Fall 2019

(Claimed) Disadvantages of VPLs

“Deutsch Limit” * 
The problem with visual programming is that you can't have 

more than 50 visual primitives on the screen at the same 
time.  

Some situations in which text has superiority: 
Documentation,  
Naming to distinguish between elements that are of the 

same kind, and  
Expressing well-known and compact concepts that are 

inherently textual, e.g. algebraic formulas.

45



LaToza GMU SWE 795 Fall 2019

Visual Programming Languages 
Techniques

• Concreteness: expressing some aspect of a program using 
instances 
• e.g., display the effects of computation on individual instance 

• Directness: small distance between goal and actions required of 
the user to achieve goal 
• e.g., direct manipulation of object properties 

• Explicitness: don’t require inference to understand semantics 
• e.g., depict dataflow edges between variables 

• Livenesss: offer automatic display of effects of program edits on 
output 
• e.g., after every edit, IDE reruns code and regenerates output

46



LaToza GMU SWE 795 Fall 2019

Levels of liveness
• Level 1: No semantic feedback offered 

• e.g., using ER diagram for documentation 
• Level 2: Semantic feedback, but not offered 

automatically 
• e.g., interpreters 

• Level 3: Incremental semantic feedback automatically 
provided after edit, regenerating onscreen output 
• e.g., spreadsheets 

• Level 4: Incremental semantic feedback offered after 
edits & systems events (e.g., clock ticks, mouse clicks) 
• e.g., some Smalltalk environments (?)

47

Tanimoto, S., VIVA: a visual language for image processing. Journal of Visual Languages Computing 2(2): 127-139, June 1990.



LaToza GMU SWE 795 Fall 2019

History of VPLs

48

12

1960 1980 1990 2000

o AMBIT/G/L
o Grail
o GAL
o Graphical Program 

Editor
o Query by Example
o Pygmalion
o I/O Pairs

o Action 
Graphics

o FORMAL
o ThingLab
o Hi-Visual
o LabView
o PROGRAPH
o PIGS
o Pict
o Rehearsal
o SmallStar

o Forms
o Editing by 

Example
o PICT
o Lotus 1-2-3
o SIL-ICON
o VisiCalc
o HiGraphs
o Miro
o StateMaster

o Cube
o Cantata
o SchemePaint
o CODE 2.0
o Iconicode
o MViews

Techniques
o Graphs
o Flowcharts
o Flowchart derivatives
o FORMS
o Demonstrational

Techniques
o Graphs
o Flowcharts
o Flowchart 

derivatives
o FORMS
o Demonstrational
o Data Flows
o Spreadsheets
o Matrices
o Jigsaw Puzzles
o Petri nets
o Flowchart 

derivatives

o AVS
o Mondrian
o ChemTrains
o Vampire
o VIPR
o SPE

Techniques/Goals
o 3D Rendering
o Visual Hierarchy
o Procedures
o Control Structures
o Programmable Graphics
o Animations
o Video Imagery Exploitation
o General purpose, declarative language
o Audio, video and image processing
o Graphical models from behavioral models
o Learning and Cognitive abilities in vision 

processes
o Handling Scalability, typing, and 

imperative design
o Collaborative Software Development

o LOFI/HIPI
o FOXQ
o VMQL
o GXL
o Euler View
o Yahoo Pipes
o Popfly

Techniques/Goals
o Child Learning
o Xquery by FORMS
o Spreadsheet Analysis
o Visual Model Query
o Layouts
o Specification and Interchange
o Mashups
o Web-based design
o Programming for end-users 

(2003)  / non-Professionals



LaToza GMU SWE 795 Fall 2019

History of VPLs

49

13

1960 1980 1990 2000

Technology 
Trigger

Period of 
Reality Check

Period of Early 
promises

Period of
Inflated Expectations

[Ellis, 1969] : GRAIL

[Myers, 1990] : Taxonomies for VPL

[Burnett, 1994] : Broad Classifications for VPL Research
[Kirsten N. Whitley, 1997]:  User Studies (for/against VPLs)

[Repenning, 1992] : Agent Sheet

[Smith, 1975] : Pygmalion

[MacLaurin, 2009] : KODU



LaToza GMU SWE 795 Fall 2019

History of VPLs

50

1960 1980 1990 2000

o Make programming 
more accessible

o Support domain -
specific designs 

o Let users program in 
Visual Languages

o (Almost) Make textual 
languages redundant

o Strive for improvements 
in programming 
language design

o Support the 
cognition 
aspect of 
Programming



LaToza GMU SWE 795 Fall 2019

Taxonomy of visual programming 
languages

51

Brad A. Myers. "Taxonomies of Visual Programming and Program Visualization," Journal of Visual Languages and Computing. vol. 
1, no. 1. March, 1990. pp. 97-123. 



LaToza GMU SWE 795 Fall 2019

Dataflow Program Representations

• Represent computation as a network 
• Nodes correspond to components 
• Edges correspond to data flow between 

components

52



LaToza GMU SWE 795 Fall 2019

Prograph

53

Margaret M. Burnett, “Visual Programming” In the Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), 1999

https://www.google.com/url?q=http://www.google.com/url?q%3Dhttp%253A%252F%252Fciteseerx.ist.psu.edu%252Fviewdoc%252Fdownload%253Fdoi%253D10.1.1.54.3110%2526rep%253Drep1%2526type%253Dpdf%26sa%3DD%26sntz%3D1%26usg%3DAFQjCNG1Hts0ki3fC-DFVQ7yE9RGyUXXSg&sa=D&ust=1492492232120000&usg=AFQjCNG961iQ3HJuENiYIw7_F6n9dwwlbA


LaToza GMU SWE 795 Fall 2019

Industrial Example: Clarity
• “Clarity is a schematic functional programming 

environment that allows you to design and 
implement programs by drawing them. The picture 
below shows an example of the hypotenuse 
function that expresses Pythagoras' theorem.”

54

http://www.clarity-support.co.uk/products/clarity/ 

http://www.clarity-support.co.uk/products/clarity/


LaToza GMU SWE 795 Fall 2019

Industrial Example: Yahoo Pipes

55

https://en.wikipedia.org/wiki/Yahoo!_Pipes 
https://www.youtube.com/watch?v=Xv-4TOit5_g 

https://en.wikipedia.org/wiki/Yahoo!_Pipes
https://www.youtube.com/watch?v=Xv-4TOit5_g


LaToza GMU SWE 795 Fall 2019

Structured editors
• Structured editors that utilize extra dimension to 

capture program semantics can be considered 
visual programming languages 
• e.g., Alice, Scratch

56



LaToza GMU SWE 795 Fall 2019

Form Representations

• Program consists of a form, with a network of 
interconnected cells 

• Developers define cell through combination of 
pointing, typing, gesturing 

• Cells may define constraints describing 
relationships between cells

57



LaToza GMU SWE 795 Fall 2019

Forms/3
• Based on constraints between cells 
• Supports graphics, animation, recursion 
• Concreteness: resulting box is immediately seen 
• Directness: demonstrates elements directly 
• Level 4 liveness: immediate visual feedback

58

Margaret M. Burnett, “Visual Programming” In the Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), 1999

https://www.google.com/url?q=http://www.google.com/url?q%3Dhttp%253A%252F%252Fciteseerx.ist.psu.edu%252Fviewdoc%252Fdownload%253Fdoi%253D10.1.1.54.3110%2526rep%253Drep1%2526type%253Dpdf%26sa%3DD%26sntz%3D1%26usg%3DAFQjCNG1Hts0ki3fC-DFVQ7yE9RGyUXXSg&sa=D&ust=1492492232120000&usg=AFQjCNG961iQ3HJuENiYIw7_F6n9dwwlbA


LaToza GMU SWE 795 Fall 2019

Forms/3 Example

59

http://web.engr.oregonstate.edu/~burnett/Forms3/LED.html 

http://web.engr.oregonstate.edu/~burnett/Forms3/LED.html


LaToza GMU SWE 795 Fall 2019

Forms/3 Example

60



LaToza GMU SWE 795 Fall 2019

Interstate

61

http://interstate.from.so/ 
https://www.youtube.com/watch?v=M--9jsuDZis 

Stephen Oney, Brad Myers, and Joel Brandt. 2014. InterState: a language and environment for expressing interface 
behavior. Symposium on User interface software and technology, 263-272.

http://interstate.from.so/
https://www.youtube.com/watch?v=M--9jsuDZis


LaToza GMU SWE 795 Fall 2019

Assessing Usability

• Empirical techniques assess usability through 
studies gathering data 

• Analytical techniques use principles & guidelines 
to estimate the usability of a system 

• Will look at a technique for analytical usability 
evaluation here

62



LaToza GMU SWE 795 Fall 2019

Cognitive Dimensions of Notations
• Analytical technique for assessing usability of notation 

through a set of heuristics 
• Also terminology for describing usability problems

63

T. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and 
Computing 7(2): 131-174, June 1996



LaToza GMU SWE 795 Fall 2019

Diffuseness / Terseness
• How many symbols or graphic elements is 

required to express a meaning? 

• Simple rocket simulation program 
• Basic: 22 LOC, 140 words (fits on screen) 
• LabView: 45 icons, 59 wires (fits on screen) 
• Prograph: 52 icons, 79 connectors, 11 screens

64

T. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and 
Computing 7(2): 131-174, June 1996



LaToza GMU SWE 795 Fall 2019

Error-proneness
• Does the design of the notation induce slips? 

• Compared to textual language, VPLs 
• Do not need delimiters & separators 
• Fewer identifiers are needed, easier to reference 
• Constructs inserted automatically (e.g., loops)

65



LaToza GMU SWE 795 Fall 2019

Viscosity
• How much effort is required to make a simple 

change? 

• Edit Rocket program to take account of air resistance 
• Basic: 63.3 s 
• LabView: 508.3 s 
• Prograph: 193.6 s 

• VPLs required many wires to be rebuilt, layout to be 
tweaked

66



LaToza GMU SWE 795 Fall 2019

Visibility
• Is every (relevant) part of the code simultaneously 

visible? 

• LabView does not show both branches of 
conditional at same time (!) 
• Particular problem for nested conditionals 

• Prograph has poor support for deep nesting of 
routines 

67



LaToza GMU SWE 795 Fall 2019

VPLs Discussion
• Often offers a representation that makes specific tasks 

easy 
• e.g., tracking data flow 
• Often involves structured editor targeted to specific 

domain, which may not support full range of programs 
• But may make other tasks harder 
• Often limited focus on scalability 

• May be possible to get benefits of task-specific 
representations without drawbacks through task specific 
editor rather than language

68


