Impact Analysis

SWE 795, Fall 2019
Software Engineering Environments

(A
m

UNIVERSIT

<

LaToza

Today

Part 1 (Lecture)(~40 mins)
* Impact Analysis

Part 2 (Project Presentations, Part 1)(~40 mins)

Break

Part 3 (Project Presentations, Part 2)(~50 mins)

GMU SWE 795 Fall 2019

Impact analysis

e ‘|ldentifying the potential consequences of a
change, or estimating what needs to be moditied
to accomplish a change’

* Using investigation to determine what needs to be
done to make change consistently

S. A. Bohner and R. S. Arnold, Software Change Impact Analysis. Los Alamitos, CA, USA: IEEE Computer Society Publications Tutorial Series, 1996.

LaToza GMU SWE 795 Fall 2019

What strategies do you use for impact
analysis?

LaToza GMU SWE 795 Fall 2019

Where do
defects come
from?

10.

1",
[Glass TSE81]

12.
LaToza

Omitted logic

Failure to reset data

Regression error

Documentation in error

Requirements inadequate

Patch in error
Commentary in error

IF statement too simple

Referenced wrong data variable

Data alignment error

Timing error causes data loss

Failure to initialize data

Code is lacking which should be present.
Variable A is assigned a new value in logic

path X but is not reset to the value required
prior to entering path Y.

Reassignment of needed value to a variable omitted.
See example for "omitted logic."

Attempt to correct one error causes another,

Software and documentation conflict; software
is correct. User manual says to input a value in

inches, but program consistently assumes the value
is in centimeters. '

Specification of the problem insufficient to
define the desired solution,.

See Fiqure 4. If the requirements failed to
note the interrelationship of the validity
check and the disk schedule index, then

this would also be a requirements error,

Temporary machine code change contains an error.
Source code is correct, but “jump to 14000"
should have been "jump to 14004."

Source code comment is incorrect.

Program says DO I=1,5 while comment says
“loop 4 times."

Not all conditions necessary for an IF
statement are present.

IF A<B should be IF A<B AND B<C.

Self-explanatory
See Figure 3. The wrong queues were referenced.

Data accessed is not the same as data desired due
to using wrong set of bits.

Leftmost instead of rightmost substring of

bits used from a data structure.

Shared data changed by a process at an
unexpected time.

Parallel task B changes XYZ just before task A
used it.

Non-preset data is referenced before a value
is assiqgned.

Where do defects come from?

Gould [14]
Novice Fortran

Assignment bug

Iteration bug

Array bug
Eisenberg [15] Visual bug
Novice APL

Naive bug

Logical bug
Dummy bug

Inventive bug
Illiteracy bug

Gestalt bug

LaToza

Software errors in assigning
variables’ values

Software errors in iteration
algorithms

Software errors in array index
expressions

Grouping related parts of
expression

Iteration instead of parallel
processing

Omitting or misusing logical
connectives

Experience with other
languages interfering
Inventing syntax
Difficulties with order of
operations

Unforeseen side effects of
commands

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Fall 2019

Requires understanding of
behavior
Requires understanding of
language
Requires understanding of
language

‘...need to think step-by-step’

‘...seem to be syntax
oversights’

“...failure to see the whole
picture’

LaToza

Where do defects come from?

Knuth [18] While
writing TeX in
SAIL and Pascal

Algorithm awry

Blunder or botch

Data structure
debacle
Forgotten
function

Language liability

Module mismatch

Robustness

Surprise scenario

Trivial typos

Improperly implemented
algorithms

Accidentally writing code not
to specifications

Software errors in using data
structures

Missing implementation

Misunderstanding language/
environment

Imperfectly knowing
specification

Not handling erroneous input

Unforeseen interactions in
program elements

Incorrect syntax, reference, etc.

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Fall 2019

‘proved...incorrect or
inadequate’
‘not...enough brainpower’

‘did not preserve...invariants’

‘I did not remember everything’

‘I forgot the conventions I had
built’

‘tried to make the code bullet-
proof™

‘forced me to change my ideas’

‘my original pencil draft was
correct’

Where do defects come from?

Clobbered
memory

Eisenstadt [19]
Industry experts
COBOL, Pascal,
Fortran, C

Vendor problems
Design logic
Initialization
Variable

Lexical bugs
Language

Overwriting memory, subscript
out of bounds

Buggy compilers, faulty
hardware

Unanticipated case, wrong
algorithm

Erroneous type or initialization
of variables

Wrong variable or operator
used

Bad parse or ambiguous syntax
Misunderstandings of language
semantics

Adapted from Ko & Myers, JVLC0O5

LaToza

GMU SWE 795 Fall 2019

Also identified why software
errors were difficult to find:
cause/effect chasm; tools
inapplicable; failure did not
actually happen; faulty
knowledge of specs;
“spaghetti” code.

Reasoning about correctness

information type search times 9% agreed info is... frequency and outcome of searches frequency of sources
min mid max import. unavalil. inacc. acquireds deferred - gave up» beyond obs.- br = bug report, dbug = debugger

s1 Did | make any mistakes in my new code? 0 1 6 W5 7 1 12 sesssssssnnnssssnnnnnsnnnnnnnnnnnnnnnennnans 00UG 10 compile 26 intuition 6 unit test 4
a2 What have my coworkers been doing? 0 1 1M1 171 10 I 10 sessssssssnnsssssnnnnnnnsnnnnnnnnnnscocoos coworker 20 email 13 tool 4 bug alert 4 im 2
u3 What code caused this program state? 0 2 21 MEO0 W 49 W 32 wsssswssssanocooooooocooosoccor- (bug 16 br 3 intuition 3 log 3 tools 3 code 2 coworker 1
r2 In what situations does this failure occur? 0 2 49 mE80 W 32 1 20 sesswsssmmsmnmscoccccocoor- br8 coworker 8 inference 5 tools 3 dbug 2 comment 1
d2 What is the program supposed to do? 0 1 21 mEO3 B 29 N 29 swwsssssssssnsssnnnnnnnooce Spec 13 coworker 9 docs 5 email 1

a1 How have resources | dependonchanged? 0 1 9 B 41 1 15 1 15 ssssssssssssnnnnnnncocooy {00/s 12 coworker 6 email 4 br 2 code 1

u1 What code could have caused this behavior? 0 2 17 M 73 1 20 1 22 ssssssssssnnscocooo- coworker 5 intuition 4 log 4 br 4 dbug 2 im 1 code 1 spec 1
c2 How do | use this data structure orfunction? 0 1 14 M 71 01 20 B 29 ssssssssssnnnnnnsnscy docs 11 code 5 coworker 4 spec 1

d3 Why was this code implemented this way? 0 2 21 M 61 B 37 B 39 seeswocoooon----- code 4 intuition 4 history 3 coworker 2 dbug 2 tools 2 comment 1 br 1
b3 Is this problem worth fixing? 0 2 6 W 441 10 1 20 wessssssssssnsc coworker 12 email 2 br 1 intuition 1

d4 What are the implications of this change? 0 2 O M85 W 44 W 49 wwwwwswsssnsns coworker 13 log 1

d1 What is the purpose of this code? 1 1 5 M5 0 24 B 29 sewsssessos jntuition 5 code 2 dbug 2 tools 2 spec 1 docs 1

u2 What's statically related to this code? 0 1 7 WMGB6 N 27 B 27 sewwwsnso {ools 8 intuition 2 email 1

b1 Is this a legitimate problem? 0 1 2 m 491 17 B 34 www br5coworker1log 1

s2 Did | follow my team's conventions? 0 7 25 ®m 411 10 1 15 wooo docs 2 tools 2 memory 1

r1 What does the failure look like? 0 0 2 mm388 0N 24 % 23 ssw br3screenshot 2

$3 Which changes are part of this submission? 0 2 3 m 611 7 | 5 s fools2 memory 2

¢3 How | can coordinate this with this othercode? 1 1 4 m 75 8 28 ® 30 = docs 2 code 1 coworker 1

b2 How difficult will this problem be to fix? 2 2 4m 411 15 8 32 = code 1 coworker 1 screenshot 1

c1 What can be used to implement this behavior? 2 2 2 m 61 8 27 ¥ 22 = memory1docs 1

a3 What information was relevant to my task? 1T 1 1 ®m5 01 151 13 = memory?2

Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th international conference on
Software Engineering (ICSE '07). IEEE Computer Society, Washington, DC, USA, 344-353. DOI: https://doi.org/10.1109/ICSE.2007.45

LaToza GMU SWE 795 Fall 2019 O

rr et toirt o LU p/Urncertt Luuunoct trikto vung. (1)

What parameter values could lead to this case?
What are the possible actual methods called by «
here? (6)

Intent and Implementation (3 2) How do callsﬂow- across process boun.darie's? (

How many recursive calls happen during this op

What is the intent of this code? (12) [15] Is this method or code path called frequently, or
What does this do (6) in this case (10)? (16) [24] What throws this exception? (1)
How does it implement this behavior? (4) [24] What is catching this exception? (1)

: Contracts (17)
Refa CtO l'lll g. What assumptions about preconditions does this
Is there functionality or code that could be refactored? (4) What assumptions about pre(3)/post(2)conditior
Is the existing design a good design? (2) What exceptions or errors can this method genei
Is it possible to refactor this? (9) What are the constraints on or normal values of
How can I refactor this (2) without breaking existing users(7)? (9) What is the correct order for calling these methc
Should I refactor this? (1) these objects? (2)
Are the benefits of this refactoring worth the time investment? (3) What is responsible for updating this field? (1)

Performance (16)
HlStO ry (23) What is the performance of this code (5) on a la

When, how, by whom, and why was this code changed or Which part of this code takes the most time? (4)

inserted? (13)[7] Can this method have high stack consumption fr

What else changed when this code was changed or inserted? (2) How big is this in memory 7(2))
How has it changed over time? (4)[7] How many of these objects get created? (1)

Has this code always been this way? (2)

What recent changes have been made? (1)[15][7] Teammates (1 6)

Have changes in another branch been integrated into this Who is the owner or expert for this code? (3)[7]

?
branch? (1) How do I convince my teammates to do this the
Did my teammates do this? (1)

Implications (21) Policies (15)

What are the implications of this change for (5) API clients (5), What is the policy for doing this? (10) [24]

security (3), concurrency (3), performance (2), platforms (1), tests Is this the correct policy for doing this? (2) [15]

(1), or obfuscation (1)? (21) [15][24] How is the allocation lifetime of this object mair
10

LaToza and Myers. Hard-to-answer questions about code. PLATEAU 2010.

Investigating code to learn facts

* Developers navigated code to answer questions and learn
facts about code

« Examples:
« Whenever the window scrolls, the caret status must be updated.

Whenever the cursor moves, the caret status must be updated.

« Whenever the buffer changes, the caret status should be updated once.
« EditBus is for low frequency events, not high frequency events like buffer edits

When the buffer change EditBus message is sent, the text area has not yet been
updated with the new buffer's info.

« Developers sometimes were unsuccessful answering

their questions.
made optimistic or pessimistic assumptions

* Developers sometimes made false assumptions

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1 (ICSE '10), Vol. 1. ACM, New York, NY, USA, 185-194. DOI=http://dx.doi.org/10.1145/1806799.1806829

LaToza GMU SWE 795 Fall 2019 11

Examples of false beliefs and questions answered incorrectly

False assumption Correct fact about control flow

Method m need not invoke method n, as it
Is only called in a situation in which n has
already been called.

m is called in several additional situations
in which n has not been called.

> X

m
Question answered incorrectly Correct fact about control flow
Why is calling m necessary? m indirectly calls a function that updates

the screen.
—>
_)Q updates
m
the screen

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1 (ICSE '10), Vol. 1. ACM, New York, NY, USA, 185-194. DOI=http://dx.doi.org/10.1145/1806799.1806829

’i
False facts lead to defects

» Developers seek task-relevant information by asking questions and
navigating code to learn facts about code

» Developers built mental models (sometimes externalized in sketches
and notes) of control flow

» Developers sometimes hold false beliefs about code
because they answered questions incorrectly
or made false assumptions

» False beliefs about control flow led developers to introduce defects

5 related to false assumption
about control flow

16 inserted a

/ defect x §> 3 related to question about control

flow answered incorrectly

\ 16 did not 8 unrelated to
V control flow

insert a defect

32 changes

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1 (ICSE '10), Vol. 1. ACM, New York, NY, USA, 185-194. DOI=http://dx.doi.org/10.1145/1806799.1806829 I 3

LaToza

38.

39.

40.

41.

42.

43.

.

Impact analysis

Where should this branch be inserted or how should
this case be handled? (1.4, 1.5,1.6,1.8, 1.9, 2.11, 2.15)
Where in the UI should this functionality be added?
(1.1,15, 1.7, 2.1, 2.6)

To move this feature into this code, what else needs
to be moved? (2.7, 2.13)

How can we know that this object has been created
and initialized correctly? (1.10, 1.12)

What will be (or has been) the direct impact of this
change? (1.5, 1.7, 1.8, 1.10, 1.11, 1.12, 2.1, 2.2, 2.4, 2.6,
27,238,212, 2.15)

What will the total impact of this change be? (2.1,
22,23,24,25,29,2.10, 2.11)

Will this completely solve the problem or provide
the enhancement? (1.1, 1.9, 1.11, 2.12, 2.14)

GMU SWE 795 Fall 2019

14

Design space of bug fixes

data propagation (across components):

how far is information allowed to propagate? atsource @way from source

error surface:

how much information is revealed to users? led detailéd error

behavioral alternatives:

is a fix perceptible to the user? musthange behavior

change

functionality removal:

how much of a feature is removed during a bug fix? thing everything

refactoring:

degree to which code is restructured. tructuring sighificant

internal vs. external:

how much internal/external code is changed? ly internal only external

accuracy:

degree to which the fix utilizes accurate information. | a heuristics

rate

hardcoding:

degree to which a fix hardcodes data. data génerated @ data specified

same bug: @fix A ©fixB

Fig. 3. Two fixes for the same hypothetical bug plotted in our design space.

E. Murphy-Hill, T. Zimmermann, C. Bird and N. Nagappan, "The Design Space of Bug Fixes and How Developers Navigate It," in I[EEE Transactions on Software
Engineering, vol. 41, no. 1, pp. 65-81, 1 Jan. 2015. doi: 10.1109/TSE.2014.2357438

LaToza GMU SWE 795 Fall 2019

(A)

(B)

(C)

(D)

Design space of bug fixes

FACTORS THAT INFLUENCE ENGINEERS’ BUG FIX DESIGN

Phase of the release cycle
Changes few lines of code
Requires little testing effort

Takes little time to implement

Doesn't change interfaces or
break backwards compatibility

Maintains the integrity of
the original design

Frequency in practice

Never

2%
3%
3%
3%

0%

1%

2%

5%

17%

Microsoft

0

£ -

: 3

A 3
17% 35%
32% 38%
31% 37%
43% 30%
8% 36%
16% 50%
39% 33%

28%

8%

Never

Y
S
X

5%
5%
3%

0%

0%

3%

Other Developers

Rarely

11%

3%
24%
14%

0%

5%

27%

Sometimes

27%
27%
30%
35%

14%

24%

43%

32%

22%

35%

5%

E. Murphy-Hill, T. Zimmermann, C. Bird and N. Nagappan, "The Design Space of Bug Fixes and How Developers Navigate It," in IEEE Transactions on Software

Engineering, vol. 41, no. 1, pp. 65-81, 1 Jan. 2015. doi: 10.1109/TSE.2014.2357438

LaToza

GMU SWE 795 Fall 2019

16

Do developers do impact analysis?

Do developers believe that they do it”

e “| always try to understand how | can influence the
code. If Im uncertain about my changes | can make
a list of influenced part and give it to our QA[Quality
Assurance] engineers. They are checking all cases.”

* '| have to make sure that my change will not cause
bugs or other problems tor other parts of the project
or systems components ..."

e "After my changes | have to find direct and indirect
calls of this method and make sure that system will
be ok after my changes.’

Siyuan Jiang, Collin Mcmillan, and Raul Santelices. 2017. Do Programmers do Change Impact Analysis in Debugging?. Empirical Softw. Engg. 22, 2 (April 2017), 631-669.
DOLI: https://doi.org/10.1007/s10664-016-9441-9

LaToza GMU SWE 795 Fall 2019 17

LaToza

Techniques for impact analysis

* Find element that changes
* Find related elements where change might "ripple” to impact
* Show to user related elements to inspect

e Elements

e method
e gstatement in slice
* class in UML diagram

 Many approaches

e [ehnert identified 150

Lehnert, Steffen. “A review of software change impact analysis.” (2011).

GMU SWE 795 Fall 2019

18

LaToza

JRipples

-»! n v
vy - w v
-»! I 4

B
of 40

ofofofofofofofo) ¢

HEHMHMBGEEBGBMNEL

:

Progresst

Mark Change Probability (CCIR) :ﬂ

StatusBal Next a Impacted -I
ThxmbLe 9 Continue
TreeMode D visited
Utils Yisite
blurImage Change granularity »
brightenI
pluginExz View dependencies. ..
resizelme) undo
rotatelm: A =
: . -~ Redo

= Copy

JRipples Lucene Analysis?

JRipples GREP Analysis »

http://jripples.sourceforge.net/

GMU SWE 795 Fall 2019

19

http://jripples.sourceforge.net/

Impact in JavaScript

; funcf:i?n.checkPrice () { (body)
3 var cad-price = $(‘#price ca’).innerText(); |
4 Co. . B N O OO0
5) - I
N . (2
6 function calculateTax () { \ (fieldset
7 S(‘'.price’) .each (function (index) { — e — \
8 S(this) .text (addTaxToPrice (4
$ (this) .text () ; div (div
S }) s 7
10 } . .
id=price_ca
11 $(‘#price ca’).bind(‘click’, checkPrice); class=price

Figure 3 Impact transfer through DOM elements.

Alimadadi, Saba, Ali Mesbah and Karthik Pattabiraman. “Hybrid DOM-Sensitive Change Impact Analysis for JavaScript.” ECOOP (2015).

LaToza GMU SWE 795 Fall 2019 20

Tracking Impact in JavaScript

function checkPrice () {
2 var itemName = extractName($('#item231'));
3 var cadPrice $('#price_ca').innerText;

$.ajax ({
url "prices/latest.php",
type : "POST",
data itemName ,
8 success eval (getAction() + "Item")
s
10 confirmPrice () ;

o}

12 function updateltem(xhr) {

13 var updatedInfo =
suggestItem.apply (this,

}

1 updatedInfo) ;
15

16 function suggestItem() {

1 if (arguments.length > 2) {

18 displaySuggestion (argumentsl);

1

}

21 function calculateTax() {
22 $(".price") .each(function(index) {

23 $(this) .text (addTaxToPrice($(this) .text ()));

24 });

25 }

26 $("#price-ca").bind("click", checkPrice);
27 $("prices").bind("click", calculateTax);

Figure 1 Motivating example: JavaScript code

getUpdatedPrice (xhr.responseText) ;

1 <img id=‘item231’ srec=‘img/items/231.png’
itemName=‘dress’ />

2 <fieldset name=‘prices’>

3 <div class=‘price’ id=‘price-ca’>120</div>
4 <div class=‘price’ id=‘price-us’>110</div>
5 </fieldset>

D DOM elemem

|:] JS Function

O XHR Object

Labeled and
> Directed Edge

invokes + args

5
CF getUpdatePrice()

returns value

invokes

8
?displaySuggestion()

+ args

O O O

div

@ irrlig)(C fielldset@

—1
@div) (div@

1
checkPrice() N read by #item231
opens
& sends read by (id)

response

handled by

6
update Item()c|‘>

invokes
+ args

suggestltem()

9

#price-ca
.price

triggers /\ vwzglt:ssst)o
(propagation)

7
calculateTax() ?
triggers
(propagation)

10
addTaxToPrice()?

Alimadadi, Saba, Ali Mesbah and Karthik Pattabiraman. “Hybrid DOM-Sensitive Change Impact Analysis for JavaScript.” ECOOP (2015).

LaToza

GMU SWE 795 Fall 2019

21

Visualizing architectural changes

806 Motive
Query View Graph

2003/08/28 I”

= —

2004/02/17

|+ MRS 1

Changes

g ree n : ad d e d 'V .0 Added org.jgraph.algebra

_ org.jgraph.algebra

org.jaraph.celiview | 5]

vellow: modified

_ orgjaraph.layout —
org.jgraph.util

black: deleted > 1 e

' Deleted

v

Phantom T

' A
'

piNk: phantom

DELETED

re . u n C h an e d > | 0 AcmeJPM.Encoders - acmeJPM.Encoders T
. P | com.eteks.filter

» | 2 org.jgraph
> | 0 org.joraph.algebra
P | 3 org.jgraph.celiview

— — |

-

> | 0 orgjgraph.example
> | org.joraph.layout

> | org.jgraph.net

> |0 orgjgraph.pad

» [org.joraph.pad.actions org.shetline.io org.jgraph.pad.act..
P> | 0 org.jgraph.pad.resources
> | org.joraph,util
> | 0 org.jgraph.utils
> | 0 orgjgraph.utils.qui
CE——)«

Andrew McNair, Daniel M. German, and Jens Weber-Jahnke. 2007. Visualizing Software Architecture Evolution Using Change-Sets. In Proceedings of the 14th Working Conference on Reverse
Engineering (WCRE '07). IEEE Computer Society, Washington, DC, USA, 130-139. DOI=http://dx.doi.org/10.1109/WCRE.2007.52

LaToza GMU SWE 795 Fall 2019 22

