
Impact Analysis
SWE 795, Fall 2019

Software Engineering Environments

LaToza GMU SWE 795 Fall 2019

Today
• Part 1 (Lecture)(~40 mins)

• Impact Analysis

• Part 2 (Project Presentations, Part 1)(~40 mins)

• Break

• Part 3 (Project Presentations, Part 2)(~50 mins)

2

LaToza GMU SWE 795 Fall 2019

Impact analysis

• "Identifying the potential consequences of a
change, or estimating what needs to be modified
to accomplish a change"

• Using investigation to determine what needs to be
done to make change consistently

3

S. A. Bohner and R. S. Arnold, Software Change Impact Analysis. Los Alamitos, CA, USA: IEEE Computer Society Publications Tutorial Series, 1996.

LaToza GMU SWE 795 Fall 2019

What strategies do you use for impact
analysis?

4

LaToza GMU SWE 795 Fall 2019

Where do
defects come

from?

5

[Glass TSE81]

LaToza GMU SWE 795 Fall 2019

Where do defects come from?

6

Adapted from Ko & Myers, JVLC05

LaToza GMU SWE 795 Fall 2019

Where do defects come from?

7

Adapted from Ko & Myers, JVLC05

LaToza GMU SWE 795 Fall 2019

Where do defects come from?

8

Adapted from Ko & Myers, JVLC05

LaToza GMU SWE 795 Fall 2019

Reasoning about correctness

9

Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th international conference on
Software Engineering (ICSE '07). IEEE Computer Society, Washington, DC, USA, 344-353. DOI: https://doi.org/10.1109/ICSE.2007.45

10
LaToza	and	Myers.	Hard-to-answer	ques5ons	about	code.	PLATEAU	2010.

How did this runtime state occur? (12) [15]
What runtime state changed when this executed? (2)
Where was this variable last changed? (1)
How is this object different from that object? (1)
Why didn’t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3) [15]
Which team’s component caused this bug? (1)

Debugging (26)
How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
What’s the best design for implementing this? (7)

Implementing (19)

What is the policy for doing this? (10) [24]
Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)

Policies (15)

Why was it done this way? (14) [15][7]
Why wasn’t it done this other way? (15)
Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Rationale (42)

When, how, by whom, and why was this code changed or
inserted? (13)[7]
What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]
Has this code always been this way? (2)
What recent changes have been made? (1)[15][7]
Have changes in another branch been integrated into this
branch? (1)

History (23)

What are the implications of this change for (5) API clients (5),
security (3), concurrency (3), performance (2), platforms (1), tests
(1), or obfuscation (1)? (21) [15][24]

Implications (21)

Is there functionality or code that could be refactored? (4)
Is the existing design a good design? (2)
Is it possible to refactor this? (9)
How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)
Are the benefits of this refactoring worth the time investment? (3)

Refactoring (25)

Is this code correct? (6) [15]
How can I test this code or functionality? (9)
Is this tested? (3)
Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Testing (20)

Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)
What do I need to include to build this? (3)
What includes are unnecessary? (2)
How do I build this without doing a full build? (1)
Why did the build break? (2)[59]
Which preprocessor definitions were active when this was built? (1)

Building and branching (11)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)

Teammates (16)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Intent and Implementation (32)

How big is this code? (1)
How overloaded are the parameters to this function? (1)

Method properties (2)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Location (13)

What is the performance of this code (5) on a large, real dataset (3)? (8)
Which part of this code takes the most time? (4)
Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)
How many of these objects get created? (1)

Performance (16)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Concurrency (9)

What assumptions about preconditions does this code make? (5)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)
What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)
What is responsible for updating this field? (1)

Contracts (17)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)
What are the possible actual methods called by dynamic dispatch
here? (6)
How do calls flow across process boundaries? (1)
How many recursive calls happen during this operation? (1)
Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)
What is catching this exception? (1)

Control flow (19)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Dependencies (5)

What is the original source of this data? (2) [15]
What code directly or indirectly uses this data? (5)
Where is the data referenced by this variable modified? (2)
Where can this global variable be changed? (1)
Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Data flow (14)

What are the composition, ownership, or usage relationships of this
type? (5) [24]
What is this type’s type hierarchy? (4) [24]
What implements this interface? (4) [24]
Where is this method overridden? (2)

Type relationships (15)

How does this code interact with libraries? (4)
What is the architecture of the code base? (3)
How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Architecture (11)

LaToza GMU SWE 795 Fall 2019

Investigating code to learn facts

• Developers	navigated	code	to	answer	ques5ons	and	learn	
facts	about	code	
• Examples:	
• Whenever	the	window	scrolls,	the	caret	status	must	be	updated.	
• Whenever	the	cursor	moves,	the	caret	status	must	be	updated.	
• Whenever	the	buffer	changes,	the	caret	status	should	be	updated	once.	

• EditBus	is	for	low	frequency	events,	not	high	frequency	events	like	buffer	edits	
• When	the	buffer	change	EditBus	message	is	sent,	the	text	area	has	not	yet	been	

updated	with	the	new	buffer's	info.	

• Developers	some5mes	were	unsuccessful	answering	
their	ques5ons.	
								made	op5mis5c	or	pessimis5c	assump5ons	

• Developers	some5mes	made	false	assump-ons

11

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1 (ICSE '10), Vol. 1. ACM, New York, NY, USA, 185-194. DOI=http://dx.doi.org/10.1145/1806799.1806829

12

Examples	of	false	beliefs	and	ques-ons	answered	incorrectly

Ques-on	answered	incorrectly Correct	fact	about	control	flow

Why is calling m necessary? m indirectly calls a function that updates
the screen.

False	assump-on Correct	fact	about	control	flow

Method m need not invoke method n, as it
is only called in a situation in which n has
already been called.

m is called in several additional situations
in which n has not been called.

…
m updates

the screen

…
m

…
n✖

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1 (ICSE '10), Vol. 1. ACM, New York, NY, USA, 185-194. DOI=http://dx.doi.org/10.1145/1806799.1806829

‣Developers seek task-relevant information by asking questions and
navigating code to learn facts about code

‣Developers built mental models (sometimes externalized in sketches
and notes) of control flow

‣Developers sometimes hold false beliefs about code
 because they answered questions incorrectly

 or made false assumptions

‣False beliefs about control flow led developers to introduce defects

13

False	facts	lead	to	defects

32	changes	

16	inserted	a	
defect	

16	did	not	
insert	a	defect	

5	related	to	false	assump5on	
about	control	flow	

3	related	to	ques5on	about	control	
flow	answered	incorrectly	

✔

✖

8	unrelated	to	
control	flow	

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1 (ICSE '10), Vol. 1. ACM, New York, NY, USA, 185-194. DOI=http://dx.doi.org/10.1145/1806799.1806829

LaToza GMU SWE 795 Fall 2019

Impact analysis

14

LaToza GMU SWE 795 Fall 2019

Design space of bug fixes

15

E. Murphy-Hill, T. Zimmermann, C. Bird and N. Nagappan, "The Design Space of Bug Fixes and How Developers Navigate It," in IEEE Transactions on Software
Engineering, vol. 41, no. 1, pp. 65-81, 1 Jan. 2015. doi: 10.1109/TSE.2014.2357438

LaToza GMU SWE 795 Fall 2019

Design space of bug fixes

16

E. Murphy-Hill, T. Zimmermann, C. Bird and N. Nagappan, "The Design Space of Bug Fixes and How Developers Navigate It," in IEEE Transactions on Software
Engineering, vol. 41, no. 1, pp. 65-81, 1 Jan. 2015. doi: 10.1109/TSE.2014.2357438

LaToza GMU SWE 795 Fall 2019

Do developers do impact analysis?

• Do developers believe that they do it?
• “I always try to understand how I can influence the

code. If Im uncertain about my changes I can make
a list of influenced part and give it to our QA[Quality
Assurance] engineers. They are checking all cases."

• "I have to make sure that my change will not cause
bugs or other problems for other parts of the project
or systems components ... "

• "After my changes I have to find direct and indirect
calls of this method and make sure that system will
be ok after my changes."

17

Siyuan Jiang, Collin Mcmillan, and Raul Santelices. 2017. Do Programmers do Change Impact Analysis in Debugging?. Empirical Softw. Engg. 22, 2 (April 2017), 631-669.
DOI: https://doi.org/10.1007/s10664-016-9441-9

LaToza GMU SWE 795 Fall 2019

Techniques for impact analysis
• Find element that changes
• Find related elements where change might "ripple" to impact
• Show to user related elements to inspect

• Elements
• method
• statement in slice
• class in UML diagram

• Many approaches
• Lehnert identified 150

18

Lehnert, Steffen. “A review of software change impact analysis.” (2011).

LaToza GMU SWE 795 Fall 2019

JRipples

19

http://jripples.sourceforge.net/

http://jripples.sourceforge.net/

LaToza GMU SWE 795 Fall 2019

Impact in JavaScript

20

Alimadadi, Saba, Ali Mesbah and Karthik Pattabiraman. “Hybrid DOM-Sensitive Change Impact Analysis for JavaScript.” ECOOP (2015).

LaToza GMU SWE 795 Fall 2019

Tracking Impact in JavaScript

21
Alimadadi, Saba, Ali Mesbah and Karthik Pattabiraman. “Hybrid DOM-Sensitive Change Impact Analysis for JavaScript.” ECOOP (2015).

LaToza GMU SWE 795 Fall 2019

Visualizing architectural changes

22

Andrew McNair, Daniel M. German, and Jens Weber-Jahnke. 2007. Visualizing Software Architecture Evolution Using Change-Sets. In Proceedings of the 14th Working Conference on Reverse
Engineering (WCRE '07). IEEE Computer Society, Washington, DC, USA, 130-139. DOI=http://dx.doi.org/10.1109/WCRE.2007.52

green: added
yellow: modified
black: deleted
pink: phantom

grey: unchanged

