Editing Code

SWE 795, Fall 2019
Software Engineering Environments

LaToza

Today

 Part 1 (Lecture)(~80 mins)
* Editing Code

e Break!

 Part 2 (Discussion)(~60 mins)
* Discussion of readings

GMU SWE 795 Fall 2019

LaToza

What IDE features do you use when
editing code?

GMU SWE 795 Fall 2019

Demo: JS in WebStorm

99999999999999999

Editing Code

 What types of edits do developers make?
 What mistakes occur? How can they be prevented?

« How can developers edit at a level of abstraction beyond lines
and characters?

* Technigues we will examine today
e Structured editors
* Editable program views
 Copy & paste reuse
* Refactoring
e Systematic edits
* Exploratory programming

LaToza GMU SWE 795 Fall 2019

LaToza

Structured Editors: Motivation

e Syntax can be hard

 Have to learn the right syntax (challenging for
programming or language novices)

o (Getting syntax wrong creates errors

 What if we could have a development environment
where it was impossible to have a syntax error

GMU SWE 795 Fall 2019

Structured Editors: Idea

 Developers edit code through commands that
create program elements

* e£.g., create an if statement through a keyboard
shortcut or drag & drop

o Edits are semantic rather than syntactic

* |ndividual elements expose specific elements
they support

e Cannot make edits that crosscut element
structure

LaToza GMU SWE 795 Fall 2019

Cornell Program Synthesizer

* [ntroduced key concepts

IF (condition) IF(k>0)
THEN statement —l - THEN statement
ELSE statement ELSE PUT SKIP LIST (‘not positive’);

Tim Teitelbaum and Thomas Reps. 1981. The Cornell program synthesizer: a syntax-directed programming
environment. Commun. ACM 24, 9 (September 1981), 563-573.

LaToza GMU SWE 795 Fall 2019

What happened?

e Structured editors make unstructured edits hard
e Hard to add / remove lines that crosscut structure

 Hard to copy and paste in ways that crosscut
structure

e |f you already know the syntax, may be slower to
select syntax from command or drag and drop than
it Is to type

e But... If you don’t know the syntax at all, can be helpful

e —> Extensive use of syntax directed editors In
programming environments for novice programmers

LaToza GMU SWE 795 Fall 2019

Eile Edit

% Play

Tools Help

|| world

EH-#H-H

Q HauntedHouse

Q Ground

Q Octopus
;g;gswride
EEQTeacups
Q RingTossLeft

[Coaster

Q FerrisWheel

World's details

Undo

4

properties [methods [functions

~skycarAnimation a

~skyrideAnimation

edit

edit

_teacupsAnimation cup cup2

~platterAnimation platter

edi

“teacupBaseAnimation

;gteacupBaseAnImatIonLoop E

~ferrisAnimation [qqjt

_horseAnimation horseStartUp

~carouselAnimation

edit

< I I

[»]

v

Example: Alice

Redo

Events |create new event

Let Ll move Camera
e

~ When the world starts, do = World.skyrideAnimation
~ When the world starts, do World.teacupBaseAnimationLoop

~ When the world starts, do ~World.ferrisAnimation

.

@ World.skycarAnimation

World.skycarAnimation a

Ne variables

create new para...

create new varia...

“[=)Do in order
. Do together
. a.— move forward - 25 meters duration = 4 seconds - style = begin gently - more...

“a. move up - 10 meters — duration = 4 seconds - style = begin gently — more...

~a. move right - 1.5 meters - duration = 4 seconds — style = begin gently — more...

~a. move forward - 95 meters - duration = 10 seconds — style = abruptly - more...

[=)Do together

~a. move forward - 22 meters — duration = 4 seconds — style = begin gently — more... -

Do in order Do together If/Else Loop ~While For all in order For all together Wait print

o

http://www.alice.org/3.1/Materials/Videos/01.BriefTour.mp4

Alice: Lessons Learned from Building a 3D System for Novices. Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove, Kevin Christiansen,

Rob Deline, Jim Durbin, Rich Gossweiler, Shuichi Kogi, Chris Long, Beth Mallory, Steve Miale, Kristen Monkaitis, James Patten, Jeffrey Pierce, Joe
Schochet, David Staak, Brian Stearns, Richard Stoakley, Chris Sturgill, John Viega, Jeff White, George Williams, and Randy Pausch, CHI 2000

LaToza

GMU SWE 795 Fall 2019

10

http://www.alice.org/3.1/Materials/Videos/01.BriefTour.mp4

Example:

Scratch

NI A
UL A

l—
A
CE
—

\l

Motion
Looks
Sound

Pen

move m steps

«» | 5 File Edit Share Help

Control

Sensing

Operators
Variables

(broadcast start |

turn &) degrees

turn & D) degrees

point in direction m

point towards

qotox:@y:m

go to

glide) secs to x: 139 v: €Y

change x by m

set x to 0
change y by m

set y to 0

if on edge, bounce

x position
y position
direction

S
gotox:Oy:m

go to front

Ty
(wlnn! up arrow | key pressed
change y by m
(broadcast flatter |
if Yy positionA S-m
set y to BTN

(Shan 1 recema 5]

forever
set MayaY |to y position

set MayaX |to x position

wait () secs
(i)

e
(wbonidownmw | key pressed
————

Please help me

out of this cage.

The spider holds
me as her
prisoner

New sprite: “{,:/ ""? 7k

TAVA:
e

A2 Maja

ey

| l!_i_ }‘ /—-\

J
-
i

j——

Stage
Blume3 Blumed Kaefig marien... Regenb.

——

»
K . . r
- F AT " -l s, i,

WS ~_—;:_ -~ WV

Blumel Blume2

0o
<
-

Spinne Schlues..

-} WV

N o
v -l "~y

https://vimeo.com/65583694

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum,

Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun. ACM 52, 11 (November 2009), 60-67.

LaToza

GMU SWE 795 Fall 2019

11

https://vimeo.com/65583694

Example: TouchDevelop
OO .

all APIs

ranslate field(tut, "finalDocs", fromr, P='€

I
@r steps := tut — field("steps") . . ‘ |

& parallel — for(steps, action) !
: @ 'for' expects Number here, got Json Builder 1

where action(index : Number) {
var step := steps — at(index)
> translate field(step, "docs”, from, to
normalized)

> translate field(step, "commandArg", from, to
normalized)

for(count : Number, action : Number Action) -- Runs the action for the elements of a collection

in parralel help...
- \ \ \ \ \

!
)
e
v

https://www.youtube.com/watch?v=ve2E90wh-wk

LaToza GMU SWE 795 Fall 2019

https://www.youtube.com/watch?v=ve2E90wh-wk

LaToza

Editable program views

* EXpressing code edits through textual changes
can be time consuming

e extra bollerplate, code duplication, etc.

o Key idea: Enable developers to instead interact
with abstracted view of code

* Use edits to abstract view to edit underlying
code

GMU SWE 795 Fall 2019

13

Clicks to
toggle ™ 0 Linked Editing

@ unked Editing | User types here

public void wakeAll() (
assert (conditionLock. isHeldByC
Log.print(“Ve're in wake]
boolean intStatus = Machine. in
vhile (threadQueue. size() > 0)

public void wake() {
assert(conditionLock. 1sHeldByC
Log.print(*Ve're in wakel
boolean intStatus = Machjine. in

n;f (threadQueuve. size() >T0) {

Ghost cursor

Linked Editing

@ Linked Editing

O Linked Editing

{

ck. 1sHe urye
n wakeAll i

= Machine. inter
.s1ze() > 0) {

ck. 1sHeldByCurr
n wake

public void wakeAll() (
assert(conditionLock nneldaycurre
Log.print(“We're in wakeAll()"):|
boolean intStatus = Machine. interr
while (threadQueuve. size() > 0) ¢

public void wake() (
assert(conditionLock. isHeldByCurre
Log.print("We're in wake()"):|
boolean intStatus = Machine. interr

= Machine. inter

() >0 ¢

public void wakeAll() (
rssott(condxtxonl.ock isHeldByCurre

boolean intStatus = Machine interr
while (threadQueue. size() > 0) {

public void wake() {
assert (conditionLock. 1sHeldByCurre
Log.print(*We're in wake()*);
boolean intStatus = Machine. interr

if (threadQueue. size() > 0) {

9'“ (threadQueue. size() > 0) {

e

Figure 2. (1) Adding a line to two clones. (2) Modifying one instance. (3) Deleting line in one instance.

pub11c void wakeAll() {
assert(conditionLock. 13He1dByCurrentThread()

System. out. println(“We're in wakeAll()");|
boolean intStatus = Machine. interrupt().disa
vhile (threadoueue 31ze() > 0) {

publzc v01d !ako() {
b ... wake ... if ... }

Figure 3. An elided clone looks similar to a
function definition and use

Michael Toomim, Andrew Begel, and Susan L. Graham. 2004. Managing Duplicated Code with Linked Editing. In Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing (VLHCC '04). IEEE Computer Society, Washington, DC, USA, 173-180.

LaToza

GMU SWE 795 Fall 2019

14

Registration-based language abstractions

public class WorkbenchHistoryPageSite implements IHistoryPage3ite {
a9 GenericHistoryView parct: |Getter: public IWorkbenchPart get

S IPageSite site; |Getter: public getWorkbenchPageSite
Delegates Implementation of IHistoryPage3ite (3 of 8 methods):

o public setSelectionProvider
< public getSelectionProvider
< public getShell

public static BundleDesc|[] getDependentBundles (BundleDesc root) {
BundleDesc[] imported = getImportedBundles(root):
BundleDesc([] required = getRequiredBundles(root):
v BundleDesc[] dependents = imported + required;
return dependents;
)

(a) An array-concatenation registration. The presentation uses an overloaded “+™ to indicate the concatenation of two arrays through
calls to System.arraycopy.

public static BundleDesc[] getDependentBundles (BundleDesc root) (
BundleDesc([] imported = getImportedBundles(root):
BundleDesc[] required = getRequiredBundles(root):

w BundleDesc[] dependents » new BundleDesc[imported. length + required. length):
o dependents[0 : *]E=®imported[0, imported.length]:
© dependents[imported. length : *) H=frequired[0, required. length]:

return dependents;

(b) Two arraycopy registrations. The notation “0 : *" indicates that the elements are copied into the indices starting at 0. An icon is used
to disambiguate the syntax, by making it clear that the dependents array is not truncated to the length of the copied elements.

Samuel Davis and Gregor Kiczales. 2010. Registration-based language abstractions. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications (OOPSLA '10). ACM, New York, NY, USA, 754-773.

LaToza GMU SWE 795 Fall 2019

Copy & paste code reuse

e A very common way to edit code is by copying existing
code. —> copy & paste reuse

e (Creates code duplication

o But... ok if this code duplication does not represent
new abstraction

o Studies have attempted to understand when code
duplication introduced by copy & paste is bad

 Many tools to detect code clones introduced by copy &
paste

Slides for this section adapted from 05-899D Human Aspects of Software
Development Spring 2011, “Software Evolution”™ by YoungSeok Yoon

LaToza GMU SWE 795 Fall 2019 16

Why do developers copy & paste code?

o structural template (the most common intention)

* relocate, regroup, reorganize, restructure,
refactor

 semantic template
* design pattern
* usage of a module (following a certain protocol)
* reuse a definition of particular behavior
* reuse control structure (nested if~else or loops)

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of
International Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU SWE 795 Fall 2019

17

LaToza

Why do developers copy & paste?

* Forking
* Hardware variations
* Platform variation
* Experimental variation
* Templating
* Boller-plating due to language in-expressiveness
* APIl/Library protocols

* (General language or algorithmic idioms
e Customization

* Bug workarounds
* Replicate and specialize

C. Kapser and M. W. Godfrey (2006), “Cloning Considered Harmful’ Considered Harmful,” in 13th Working Conference on Reverse
Engineering (WCRE '06), 2006, pp. 19-28.

GMU SWE 795 Fall 2019

18

Properties of copy & paste reuse

 Unavoidable duplicates (e.g., lack of multiple
inheritance)

 Programmers use their memory of C&P history to
determine when to restructure code

e delaying restructuring helps them discover the
right level of abstraction

 C&P dependencies are worth observing and
maintaining

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of
International Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU SWE 795 Fall 2019 19

Code clone genealogies

e |nvestigates the validity of the e Built an automatic tool to

assumption that code clones extract the history of code
are bad clones from a software
e Defines clone evolution model repository
Subtract & Add g’;;‘::’:“;""' C(;:‘;‘itfm Table 1: Description of Two Java Subject Programs
Lot e: Su,,,im change Program carol dnsjava
URL carol.objectweb.org | www.dnsjava.org
© LOC 7878 ~ 23731 5756 ~ 21188
Code Sruppet ® duration 26 months 68 months
© # of check-ins 164 905
g Table 2: Clone Genealogies in carol and dnsjava
0o (Mmintoren =30, simy, = 0.3)
i Consistent Inconsistent E— # of genealogies Cgrpl dnsjava
\ Change change & total 122 140
v ’ | Submac v v false positive 13 15
' Viey Vie) 3 o true positive 109 125
Clone Grou . locally unfactorable || 70 (64%) | 61 (49%)
p 1 example clong C|One L|neage consistently changed [| 41 (38%) | 45 (36%)

11

M. Kim, V. Sazawal, D. Notkin, and G. Murphy (2005), “An empirical study of code clone genealogies,” in Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering (ESEC/FSE-13).

LaToza GMU SWE 795 Fall 2019

LaToza

Refactoring: Motivation

“Refactoring is the process of changing a software system in such a
way that it does not alter the external behavior of the code yet
improves its internal structure.” [Fowler 1999]

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts (1999), “Refactoring:
Improving the Design of Existing Code”, 1st ed. Addison-Wesley Professional.

Slides for this section adapted from 05-899D Human Aspects of Software
Development Spring 2011, “Software Evolution”™ by YoungSeok Yoon

GMU SWE 795 Fall 2019

21

First tool: A Refactoring Tool for Smalltalk

r “tBrowser - Smalltalk |®] x|
Buffers Browse Category Class Protocol Selector Tool
Lens-Private-Data Model #](DatabaseTypeMappin $llintiahze-release #lladdindex:onTableForin +
accessing checkDataModelColumn with
Lens-Private-Object Manager LensDatabaselndex connection
Lens-Private-Query Manager LensDatabaseTable defaultTableNameF or
Lens-Private-Transporter LensDatabaseTableColumn testing defineForeignKeysForin
Lens-Private-Applications-Supyg ||LensTableKey private definePrimaryKeyForin
Lens-Private-Tools-Support getTableNamed:in:
Lens-Private-Tools-Browsing Method name E3
Lens-Private-Tools-Component yFor
2 2 #columnsOIT ype: definition yFor]
‘® category O hierarchy |[® instance O class = e = n [®
createTableFor: type in: alLensSession definition N\)
“Add the table for type in aLensSession. It's OK if it already exists.” —
| definttion | = N
definition .= WrteStream on: String new. - -
definition nextPutAll: ‘create table ', type table qualifiedName , ' (' columneOfType: type definkion: definkion
| 0K Cancel
definition skip: -1
definition nextPut. $).
aLensSession connection doCommandStnng: definition contents
+

Figure 2 - Screenshot of Refactoring Browser during extract code as method
refactoring

D. Roberts, J. Brant, and R. Johnson (1997), “A refactoring tool for smalltalk,” Theory and Practice of Object Systems, vol. 3, no. 4, pp. 253-263.

LaToza GMU SWE 795 Fall 2019

LaToza

(Very) brief story of refactoring

o Started with academic work defining idea of refactoring

 William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of lllinois, 1992.

* Academic work for tools quickly followed (e.g., [Brant

TPOS97])
e Built in real IDE for Smalltalk from beginning

* Disseminated by agile thought leaders like Martin Fowler
* Adopted into mainstream IDEs like Eclipse, Visual Studio
 Became standard accepted feature of IDES

 Research continued

« Do developers use refactoring tools?
 Could they use them more”?
 How could refactoring tools better support developers?

GMU SWE 795 Fall 2019

23

Developers manually perform refactorings
not yet supported by tools

« About 70% of structural changes may be due to refactorings

« About 60% of these changes, the references to the affected entities
IN a component-based application can be automatically updatea

o State-of-the-art IDEs only support a subset of common low-level
refactorings, and lack support for more complex ones

Type of refactoring # Eclipse Type of refactoring # detected Eclipse support
detected support : — - — \]
Convert anonymous class to nested*? 12 N Extract constant interface D
Convert nested type to top-level 19 \ Inline constant interface 2 X
Convert top-level type to nested 20 X Extract class 95 X
Move member class to another class 29 \ Inline class 3] 5
Extract package 16 X . .
: ac’ pacxas Type of refactoring # detected Eclipse support
Inline package 3 X .) .y -
Information hiding 751 X
Type of refactoring # detected Eclipse support Generalize type 107 \/
b] Tald/ N 7 7C -
Pull up field/method 279 v Downcast type]5 o
Push down field/method 53 \ - i J
- - - Introduce factory 19
Extract interface 28 \ - : —
. . Change method signature 4497 v
Extract superclass 15 X
Introduce parameter object™ B X
Extract subclass 4 x pare)
. Jvirar A sk / ;
Inline superclass 4 N Extract method 45 v
Inline subclass 7 » Inline Method* 31 v

Z. Xing and E. Stroulia (2006), “Refactoring Practice: How it is and How it Should be Supported - An Eclipse Case Study,” in Proceedings of 22nd IEEE International
Conference on Software Maintenance (ICSM ‘06), 2006, pp. 458-468.

LaToza GMU SWE 795 Fall 2019

24

LaToza

Supporting systematic edits

* Developers sometimes make edits to multiple files
that are very similar

* Jool idea: find commonality in edits between 2 or
more examples, generalize to others

GMU SWE 795 Fall 2019

25

Aold to Aru:w

1. public void textChanged (TEvent event) {
2. Iterator e=fActions.values () .iterator();
3. - print (event.getReplacedText ());
X 4. - print (event.getText());
5. while(e.hasNext ()){
6. — MVAction action = (MVAction)e.next();
7. — if(action.isContentDependent ())
8. - action.update();
9. + Object next = e.next();
10.+ if (next instanceof MVAction) {
11.+4 MVAction action =(MVAction)next;
12.+ if (action.isContentDependent ())
13.+ action.update();
14.+ }
15. }
16. System.out.println(event + " is processed");
17.}
Botd 10 Brew
1. public void updateActions () {
2. Iterator iter = getActions().values().iterator();
3. while (iter.hasNext ()) {
4. - print (this.getReplacedText ());
5. - MVAction action=(MVAction)iter.next();
6. - if (action.isDependent ())
7. - action.update();
8. + Object next = iter.next();
9. + if (next instanceof MVAction){
10.+ MVAction action =(MVAction)next;
11.+ if (action.isDependent ())
12.+ action.update();
13.+ }
14.+ if (next instanceof FRAction){
15.+ FRAction action = (FRAction)next;
16.+ if (action.isDependent ())
17.+ action.update();
18.+ }
19. }
20. print(this.toString());
21.}
Cogd t0 Crew
1. public void selectionChanged (SEvent event) {
2. Iterator e = fActions.values() .iterator();
3. while(e.hasNext ()){
4., - MVAction action=(MVAction)e.next();
5. - if (action.isSelectionDependent ())
6. - action.update();
7. + Object next = e.next();
8. + if (next instanceof MVAction){
9. + MVAction action = (MVAction)next;
10.+ if (action.isSelectionDependent ())
11.+ action.update();
12.+ }
13. }
14.}

Fig. 1. A systematic edit to three methods based on revisions from 2007-
04-16 and 2007-04-30 to org.eclipse.compare

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: locating and applying systematic edits by learning from examples. In Proceedings of the 2013 International Conference on
Software Engineering (ICSE '13). IEEE Press, Piscataway, NJ, USA, 502-511.

LaToza GMU SWE 795 Fall 2019 26

Locating and applying systematic edits

User selects User selects Irrelevant
example methods that need to change method
Aold Bold Co
—-t_% ag
N
new Learned edit is too specificto A

E SYDIT cannot apply it
AN J

Fig. 2. SYDIT learns an edit from one example. A developer must locate
and specify the other methods to change.

1. method declaration(.. ..){
2. TS0 v$0 = vS1.m$0().m$1();
3k DELETE: m$2(v$2.m$3());
4. DELETE: m$2(v$2.m$4());
3. while(v$0.m$5()){
4. UPDATE: T$1 v$3 = (T$1)v$0.m$6();
5. TO: T$2 v$4 = v$0.m$6();
6. if(v$3.m$7()){
Tio =
L
9. INSERT: if(v$4 instanceof T$1)({
10. INSERT: TS$1 v$3 = (T$1)vs$4;
; 11. - e
12. }

Fig. 4. Edit script from SYDIT abstracts all concrete names. Gray marks
edit context, red marks deletions, and blue marks additions.

User selects examples LASE selects Irrelevant
methods Method
Cow lDoM
X
p\‘f B . '—)[= no match
/ﬂ\ P new ~ Csuggested
L — \ /

Fig. 3. LASE learns an edit from two or more examples. LASE locates
other methods to change.

+ w .. method declaration(.. ..){
Iterator v$0 = u$0:FieldAccessOrMethodInvocation
.values().iterator();

N =
.

3. while(v$0.hasNext()){
4. UPDATE: MVAction action = (MVAction)v$0.next();
5. TO: Object next = v$0.next();
6. if(action.m$0()){
7l e
8. }
MOVE 9. INSERT: if(next instanceof MVAction){
10. INSERT: MVAction action = (MVAction)next;
y'11. ———
125 }

Fig. 5. Edit script from LASE abstracts code names that differ in the
examples and uses concrete names for common ones. Gray marks edit
context, red marks deletions, and blue marks additions.

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: locating and applying systematic edits by learning from examples. In Proceedings of the 2013 International Conference on

Software Engineering (ICSE '13). IEEE Press, Piscataway, NJ, USA, 502-511.

LaToza

GMU SWE 795 Fall 2019

27

LaToza

Specifying program transformations

Before: After:
-
if s != nil { for _, x := range s {
for _, x := range s {
}
}
}
o
Match template: Rewrite template:
~
if :[var] != nil { for :[_] := range :[var] {
for :[_] := range :[var] { : [body]
: [body] }
}
}
.

Figure 1. Top: A textual description for simplifying a nil check
Go code, taken from the Go staticcheck tool. Bottom: Our match
template and rewrite templates for the nil-check pattern above.

GMU SWE 795 Fall 2019

-
func (c *SymbolCollector) addContainer(...) {)
if fields.List != nil {
for _, field := range fields.List {
if field.Names != nil {
for _, fieldName := range field.Names {
c.addSymbol (field, fieldName.Name)
}
}
}
}
}
_ J

(a) Highlighted lines 2 and 4 contain redundant nil checks in Go
code: iterating over a container in a for loop implies it is non-nil.

p
func (c *SymbolCollector) addContainer(...) {)
for _, field := range fields.List {
for _, fieldName := range field.Names {
c.addSymbol (field, fieldName.Name)
}
}
}
\ b,

(b) Rewrite output simplifying the Go code above.

Figure 2. Redundant code pattern and simplification.

28

Exploratory Programming

 Developers sometimes explore programs without
knowing a priori what behavior they want to create
or the best way to implement it

 (Goal: enable developers to explore variations in
programs

LaToza GMU SWE 795 Fall 2019 29

Domains for exploratory programming

 [earning programming through play
e Digital art and music: generative music, live
coding, performance

e Data science: tasks analyzing data, building a
machine learning model

o Software engineering: backtracking, commenting
out or undoing different ideas; figuring out how an
AP| should be used

M. Beth Kery and B. A. Myers, "Exploring exploratory programming," 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, 2017, pp. 25-29.
doi: 10.1109/VLHCC.2017.8103446

LaToza GMU SWE 795 Fall 2019 30

Code quality tradeoffs

o (Often associated with code being hard to read

e |f rapidly changing it, no sense in spending time

making it clear and easy to read

e “| know how to write code. And | know that | could

write functions to reuse functions and | could
modularize things better, and sometimes | just

fry to

- don't

care because why am | going to put eftort in t
not going to use it again®?”

nat if I'm

* |n TDD methodology, make it work (functional), make it
right (easy to read), make it fast (performant) are 3

separate stages and should not progress till fi
previous

nished

M. Beth Kery and B. A. Myers, "Exploring exploratory programming," 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, 2017, pp. 25-29.

doi: 10.1109/VLHCC.2017.8103446

LaToza GMU SWE 795 Fall 2019

31

Exploration process

e Backtracking: 2 or more edit run cycles that are close In
time and affect the same code

* Exploration scale:
e tuning a single variable or parameter to observe effect

e [terating variations of a function
e trying out different larger snippets of code
* Exploration duration: transient to long term

e Using exploratory history

e (Often use code history to understand a change or
bug

M. Beth Kery and B. A. Myers, "Exploring exploratory programming," 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, 2017, pp. 25-29.
doi: 10.1109/VLHCC.2017.8103446

LaToza GMU SWE 795 Fall 2019 32

Backtracking in programming

Ex: getHe\ght()] getmdth()l getSue() betﬂetght() getWidth() betﬂetghtd

b1

b2

b3
Backtracking Instances: bi=vi.v4, b2=v2..v5, b3=v4.v6

Fig. 1. An example of a node evolution history, which contains three
backtracking instances. The node first appeared in the code as “getHeight(),”
(vl), changed a few times (v2 through v5), and finally ended up back at the
original code (v6). The different contents are symbolized as capital letters A,
B, and C. There are three backtracking instances in this node history indicated
as black backward arrows.

2 00 5269

g (34.9%)

I 3752

2 1000 - (24.9%)

K4

Q 2026 2259

£ 15.0%

§2000 - 1304 (13. 4%)()

@

= 1€.6%) 265 220

5 l (1. 8%) (1 5%)

E

3

z 1 2-9 10-49 50-99 21000
499 999

Backtracking Size (Number of Characters)

Fig. 3. Distribution of all the detected backtracking sizes

Backtracking instance: [4263, 4629)

v1|[4263) return new Point (getWidth() ,getHeight());

v2|[4555) return new Point (getiWidth () [EINEREERIBEEE, o=tHeight () ;

v3|[4567) return new Foint (getiWidth() - MARKER SIZE,getHeight () |FINRRERERISIZE) ;
vé4|[4623] return new Foint (getiWidth () —MAREER-SE88, getheight () -~ MARKER SIZE);
v5| [4629) return new Foint (getiidth () , getHeight () —=—MRRKER-Srds) ;

Fig. 2. An example output of our analyzer, showing the history of a statement
node. Each row maps to each version (v1,v2, ..., v5). This node contains a
single backtracking instance, which 1s v1...v5. The edit operation IDs were
originally 6-digits long (e.g., 184263), but were shortened for brevity.

UNIDENTIFIED,
TOGGLE_COMMENT, 9.43%

1.29% MULTIPLE,
3.53%

\

CONTENT_ASSIST,

1.74% —

REDO, 2.57%
CUT, 4.25%

Fig. 5. The identified backtracking tactics

Y. S. Yoon and B. A. Myers, "A longitudinal study of programmers' backtracking," 2014 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), Melbourne, VIC, 2014, pp. 101-108.
GMU SWE 795 Fall 2019 33

LaToza

Exploration by data scientists

 Notebooks used in 3 ways: (1) preliminary scratch pad
work, (2) production work, (3) shared work

e Scratch pad use: preliminary and short-lived, answers a
specific guestion: how to debug a piece of code, test
out example from internet, test it idea worth pursuing

* "| was just testing to make sure | had the syntax right
on these tuples.” - IP13

* "OK so can we do k-means on this dataset and like
does it make sense” - [P11

e Sometimes occurs with individual cells, sometimes with
whole notebooks

Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A. Myers. 2018. The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA, Paper 174, 11 pages. DOI: https://doi.org/

10.1145/3173574.3173748

LaToza GMU SWE 795 Fall 2019 34

[teration behavior

* Organizing the notebook
 Examples:
 Most recent code at the bottom
 Debugging at the bottom

* Function refs at top
* Add cels where the original data analysis took place
 Expand then reduce

e “So at the beginning it's usually a lot of little code cells that are one at
a time... just making things work... | end up with this huge mess where
there are several threads in sort of the same series. So | usually go
back and start deleting things or combining cells™ - IP17

* (Cells enable viewing intermediate results

* Narrative structure: some used note book chronologically following steps
in analysis; others were non-chronological, following important decisions

Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A. Myers. 2018. The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA, Paper 174, 11 pages. DOI: https://doi.org/
10.1145/3173574.3173748

LaToza GMU SWE 795 Fall 2019 35

Supporting data scientists

- DActivity (Artifacts (©Q " houses.ipynb X #53 of houses.ipynb (3) X
v TODAY JANUARY 6 2019 () B + XD 0O » = C Code v Python3 O
& 1:A8pr #55 I Our data: read the lowa data file into a Pandas DataFrame called home_data .

2dave

import pandas as pd

® | 11:17pm Runs wsa 11[
Path of the file to read
11:17mm Riine T iowa_file_path = './train.csv'
/PpM KuUns —- -
\\ @”53 [----- home_data = pd.read _csv(iowa_file_path)
3

1:177pm Run, Save #52 I
t1:16pm Runs o1 [l Goal:
/pm Run
g) Y = home_data.SalePrice
‘I«E 11:16pm Ce @ #s0 | Y.head()
removed
0 208500
11:16pm Cell added 1 181500
@ e 2 223500
11:16pm Load #48 3 140000
4 250000
Name: SalePrice, dtype: int64

> FRIDAY JANUARY 4 2019 (2)

Figure 3: The history tab opens the sidebar for Verdant containing three tabs: Activity (A), Artifacts (B & Fig. 5), and Search
(C & Fig. 7). The Activity tab, shown open here, displays a list of events. A date (D) can be opened or collapsed to see what
happened that day. Each row shows a version of the notebook (e.g. version #53) with a text description and visual minimap.
The minimap shows cells added in green (see G) and deleted in red (F). In (E), a cell was edited and run (in blue), and the
following cells were run but remained the same (in grey). The user can open any version (e.g., #53, H & Fig. 8) in a ghost
notebook tab for quick reference.

Video: hups://dlacm org/citation.cfm?doid=3290605.3300322

Mary Beth Kery, Bonnie E. John, Patrick O'Flaherty, Amber Horvath, and Brad A. Myers. 2019. Towards Effective Foraging by Data Scientists to Find Past Analysis Choices. In Proceedings c
the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, New York, NY, USA, Paper 92, 13 pages. DOI: https://doi.org/10.1145/3290605.3300322

LaToza GMU SWE 795 Fall 2019 36

https://dl.acm.org/citation.cfm?doid=3290605.3300322

