
Editing Code
SWE 795, Fall 2019

Software Engineering Environments

LaToza GMU SWE 795 Fall 2019

Today
• Part 1 (Lecture)(~80 mins)

• Editing Code

• Break!

• Part 2 (Discussion)(~60 mins)
• Discussion of readings

2

LaToza GMU SWE 795 Fall 2019

What IDE features do you use when
editing code?

3

LaToza GMU SWE 795 Fall 2019

Demo: JS in WebStorm

4

LaToza GMU SWE 795 Fall 2019

Editing Code

• What types of edits do developers make?
• What mistakes occur? How can they be prevented?
• How can developers edit at a level of abstraction beyond lines

and characters?

• Techniques we will examine today
• Structured editors
• Editable program views
• Copy & paste reuse
• Refactoring
• Systematic edits
• Exploratory programming

5

LaToza GMU SWE 795 Fall 2019

Structured Editors: Motivation
• Syntax can be hard

• Have to learn the right syntax (challenging for
programming or language novices)

• Getting syntax wrong creates errors

• What if we could have a development environment
where it was impossible to have a syntax error

6

LaToza GMU SWE 795 Fall 2019

Structured Editors: Idea
• Developers edit code through commands that

create program elements
• e.g., create an if statement through a keyboard

shortcut or drag & drop

• Edits are semantic rather than syntactic
• Individual elements expose specific elements

they support
• Cannot make edits that crosscut element

structure

7

LaToza GMU SWE 795 Fall 2019

Cornell Program Synthesizer
• Introduced key concepts

8

Tim Teitelbaum and Thomas Reps. 1981. The Cornell program synthesizer: a syntax-directed programming
environment. Commun. ACM 24, 9 (September 1981), 563-573.

LaToza GMU SWE 795 Fall 2019

What happened?
• Structured editors make unstructured edits hard

• Hard to add / remove lines that crosscut structure
• Hard to copy and paste in ways that crosscut

structure
• If you already know the syntax, may be slower to

select syntax from command or drag and drop than
it is to type

• But… if you don’t know the syntax at all, can be helpful
• —> Extensive use of syntax directed editors in

programming environments for novice programmers

9

LaToza GMU SWE 795 Fall 2019

Example: Alice

10

Alice:	Lessons	Learned	from	Building	a	3D	System	for	Novices.	Ma=hew	Conway,	Steve	Audia,	Tommy	Burne=e,	Dennis	Cosgrove,	Kevin	ChrisDansen,	
Rob	Deline,	Jim	Durbin,	Rich	Gossweiler,	Shuichi	Kogi,	Chris	Long,	Beth	Mallory,	Steve	Miale,	Kristen	MonkaiDs,	James	Pa=en,	Jeffrey	Pierce,	Joe	
Schochet,	David	Staak,	Brian	Stearns,	Richard	Stoakley,	Chris	Sturgill,	John	Viega,	Jeff	White,	George	Williams,	and	Randy	Pausch,	CHI	2000		

http://www.alice.org/3.1/Materials/Videos/01.BriefTour.mp4

http://www.alice.org/3.1/Materials/Videos/01.BriefTour.mp4

LaToza GMU SWE 795 Fall 2019

Example: Scratch

11

Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum,
Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun. ACM 52, 11 (November 2009), 60-67.

https://vimeo.com/65583694

https://vimeo.com/65583694

LaToza GMU SWE 795 Fall 2019

Example: TouchDevelop

12

https://www.youtube.com/watch?v=ve2E90wh-wk

https://www.youtube.com/watch?v=ve2E90wh-wk

LaToza GMU SWE 795 Fall 2019

Editable program views

• Expressing code edits through textual changes
can be time consuming
• extra boilerplate, code duplication, etc.

• Key idea: Enable developers to instead interact
with abstracted view of code
• Use edits to abstract view to edit underlying

code

13

LaToza GMU SWE 795 Fall 2019

Linked Editing

14

Michael Toomim, Andrew Begel, and Susan L. Graham. 2004. Managing Duplicated Code with Linked Editing. In Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing (VLHCC '04). IEEE Computer Society, Washington, DC, USA, 173-180.

LaToza GMU SWE 795 Fall 2019

Registration-based language abstractions

15

Samuel Davis and Gregor Kiczales. 2010. Registration-based language abstractions. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications (OOPSLA '10). ACM, New York, NY, USA, 754-773.

LaToza GMU SWE 795 Fall 2019

Copy & paste code reuse
• A very common way to edit code is by copying existing

code. —> copy & paste reuse
• Creates code duplication

• But… ok if this code duplication does not represent
new abstraction

• Studies have attempted to understand when code
duplication introduced by copy & paste is bad

• Many tools to detect code clones introduced by copy &
paste

16

Slides for this section adapted from 05-899D Human Aspects of Software
Development Spring 2011, “Software Evolution” by YoungSeok Yoon

LaToza GMU SWE 795 Fall 2019

Why do developers copy & paste code?

• structural template (the most common intention)
• relocate, regroup, reorganize, restructure,

refactor
• semantic template

• design pattern
• usage of a module (following a certain protocol)
• reuse a definition of particular behavior
• reuse control structure (nested if~else or loops)

17

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of
International Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU SWE 795 Fall 2019

Why do developers copy & paste?

• Forking
• Hardware variations
• Platform variation
• Experimental variation

• Templating
• Boiler-plating due to language in-expressiveness
• API/Library protocols
• General language or algorithmic idioms

• Customization
• Bug workarounds
• Replicate and specialize

18

C. Kapser and M. W. Godfrey (2006), “‘Cloning Considered Harmful’ Considered Harmful,” in 13th Working Conference on Reverse
Engineering (WCRE ’06), 2006, pp. 19-28.

LaToza GMU SWE 795 Fall 2019

Properties of copy & paste reuse

• Unavoidable duplicates (e.g., lack of multiple
inheritance)

• Programmers use their memory of C&P history to
determine when to restructure code
• delaying restructuring helps them discover the

right level of abstraction

• C&P dependencies are worth observing and
maintaining

19

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of
International Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU SWE 795 Fall 2019

Code clone genealogies

20

l Investigates the validity of the
assumption that code clones
are bad

l Defines clone evolution model

l Built an automatic tool to
extract the history of code
clones from a software
repository

11

Code Snippet

Clone Group Clone Lineage

M. Kim, V. Sazawal, D. Notkin, and G. Murphy (2005), “An empirical study of code clone genealogies,” in Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering (ESEC/FSE-13).

LaToza GMU SWE 795 Fall 2019

Refactoring: Motivation

21

“Refactoring is the process of changing a software system in such a
way that it does not alter the external behavior of the code yet
improves its internal structure.” [Fowler 1999]

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts (1999), “Refactoring:
Improving the Design of Existing Code”, 1st ed. Addison-Wesley Professional.

Slides for this section adapted from 05-899D Human Aspects of Software
Development Spring 2011, “Software Evolution” by YoungSeok Yoon

LaToza GMU SWE 795 Fall 2019

First tool: A Refactoring Tool for Smalltalk

22

D. Roberts, J. Brant, and R. Johnson (1997), “A refactoring tool for smalltalk,” Theory and Practice of Object Systems, vol. 3, no. 4, pp. 253-263.

LaToza GMU SWE 795 Fall 2019

(Very) brief story of refactoring
• Started with academic work defining idea of refactoring

• William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois, 1992.

• Academic work for tools quickly followed (e.g., [Brant
TPOS97])
• Built in real IDE for Smalltalk from beginning

• Disseminated by agile thought leaders like Martin Fowler
• Adopted into mainstream IDEs like Eclipse, Visual Studio
• Became standard accepted feature of IDES
• Research continued

• Do developers use refactoring tools?
• Could they use them more?
• How could refactoring tools better support developers?

23

LaToza GMU SWE 795 Fall 2019

Developers manually perform refactorings
not yet supported by tools

• About 70% of structural changes may be due to refactorings
• About 60% of these changes, the references to the affected entities

in a component-based application can be automatically updated
• State-of-the-art IDEs only support a subset of common low-level

refactorings, and lack support for more complex ones

24

Z. Xing and E. Stroulia (2006), “Refactoring Practice: How it is and How it Should be Supported - An Eclipse Case Study,” in Proceedings of 22nd IEEE International
Conference on Software Maintenance (ICSM ‘06), 2006, pp. 458-468.

LaToza GMU SWE 795 Fall 2019

Supporting systematic edits
• Developers sometimes make edits to multiple files

that are very similar

• Tool idea: find commonality in edits between 2 or
more examples, generalize to others

25

LaToza GMU SWE 795 Fall 2019

Example

26

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: locating and applying systematic edits by learning from examples. In Proceedings of the 2013 International Conference on
Software Engineering (ICSE '13). IEEE Press, Piscataway, NJ, USA, 502-511.

LaToza GMU SWE 795 Fall 2019

Locating and applying systematic edits

27

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: locating and applying systematic edits by learning from examples. In Proceedings of the 2013 International Conference on
Software Engineering (ICSE '13). IEEE Press, Piscataway, NJ, USA, 502-511.

LaToza GMU SWE 795 Fall 2019

Specifying program transformations

28

LaToza GMU SWE 795 Fall 2019

Exploratory Programming

• Developers sometimes explore programs without
knowing a priori what behavior they want to create
or the best way to implement it

• Goal: enable developers to explore variations in
programs

29

LaToza GMU SWE 795 Fall 2019

Domains for exploratory programming

• Learning programming through play
• Digital art and music: generative music, live

coding, performance
• Data science: tasks analyzing data, building a

machine learning model
• Software engineering: backtracking, commenting

out or undoing different ideas; figuring out how an
API should be used

30

M. Beth Kery and B. A. Myers, "Exploring exploratory programming," 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, 2017, pp. 25-29.
doi: 10.1109/VLHCC.2017.8103446

LaToza GMU SWE 795 Fall 2019

Code quality tradeoffs
• Often associated with code being hard to read

• If rapidly changing it, no sense in spending time
making it clear and easy to read

• “I know how to write code. And I know that I could
write functions to reuse functions and I could try to
modularize things better, and sometimes I just don’t
care because why am I going to put effort in that if I’m
not going to use it again?”

• In TDD methodology, make it work (functional), make it
right (easy to read), make it fast (performant) are 3
separate stages and should not progress till finished
previous

31

M. Beth Kery and B. A. Myers, "Exploring exploratory programming," 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, 2017, pp. 25-29.
doi: 10.1109/VLHCC.2017.8103446

LaToza GMU SWE 795 Fall 2019

Exploration process
• Backtracking: 2 or more edit run cycles that are close in

time and affect the same code
• Exploration scale:

• tuning a single variable or parameter to observe effect
• iterating variations of a function
• trying out different larger snippets of code

• Exploration duration: transient to long term
• Using exploratory history

• Often use code history to understand a change or
bug

32

M. Beth Kery and B. A. Myers, "Exploring exploratory programming," 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, 2017, pp. 25-29.
doi: 10.1109/VLHCC.2017.8103446

LaToza GMU SWE 795 Fall 2019

Backtracking in programming

33

Y. S. Yoon and B. A. Myers, "A longitudinal study of programmers' backtracking," 2014 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Melbourne, VIC, 2014, pp. 101-108.

LaToza GMU SWE 795 Fall 2019

Exploration by data scientists
• Notebooks used in 3 ways: (1) preliminary scratch pad

work, (2) production work, (3) shared work
• Scratch pad use: preliminary and short-lived, answers a

specific question: how to debug a piece of code, test
out example from internet, test if idea worth pursuing
• ”I was just testing to make sure I had the syntax right

on these tuples.” - IP13
• “OK so can we do k-means on this dataset and like

does it make sense” - IP11
• Sometimes occurs with individual cells, sometimes with

whole notebooks

34

Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A. Myers. 2018. The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA, Paper 174, 11 pages. DOI: https://doi.org/
10.1145/3173574.3173748

LaToza GMU SWE 795 Fall 2019

Iteration behavior
• Organizing the notebook

• Examples:
• Most recent code at the bottom
• Debugging at the bottom
• Function refs at top

• Add cels where the original data analysis took place
• Expand then reduce

• “So at the beginning it's usually a lot of little code cells that are one at
a time... just making things work... I end up with this huge mess where
there are several threads in sort of the same series. So I usually go
back and start deleting things or combining cells” - IP17

• Cells enable viewing intermediate results
• Narrative structure: some used note book chronologically following steps

in analysis; others were non-chronological, following important decisions

35

Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A. Myers. 2018. The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA, Paper 174, 11 pages. DOI: https://doi.org/
10.1145/3173574.3173748

LaToza GMU SWE 795 Fall 2019

Supporting data scientists

36

Mary Beth Kery, Bonnie E. John, Patrick O'Flaherty, Amber Horvath, and Brad A. Myers. 2019. Towards Effective Foraging by Data Scientists to Find Past Analysis Choices. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, New York, NY, USA, Paper 92, 13 pages. DOI: https://doi.org/10.1145/3290605.3300322

https://dl.acm.org/citation.cfm?doid=3290605.3300322Video:

https://dl.acm.org/citation.cfm?doid=3290605.3300322

