Program Synthesis

SWE 795, Spring 2017
Software Engineering Environments

IIIIIIIIII

LaToza

Today

W3 Is due next week In class!

Part 1 (Lecture)(~50 mins)

Break!

Part 2 (Discussion)(~60 mins)
e Discussion of readings

Part 3 (In class activity)(~20 mins)
* Project work

GMU SWE 795 Spring 2017

Main idea

 Developers describe a desired behavior,
environment synthesizes code that provides this
behavior

 Many applications have been explored
* [ntelligent macro recorders
* Deobfuscation
 Autocomplete

* Bug fixing

 New algorithm discovery

GMU SWE 795 Spring 2017

LaToza

Generate & Validate approach

e (Generate code
e \alidate If code satisfies constraints
e [fyes, stop

GMU SWE 795 Spring 2017

Characterizing generate & validate
techniques

 Developer intent: how do developers describe the
desired behavior?

* Search space: what programs can possibly be
synthesized?

e Search technigque: how does the technigue
enumerate candidate programs within the search
space?

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP "10), 13-24.

LaToza GMU SWE 795 Spring 2017

Expressing developer intent with
constraints

e |nput/ output examples

e Unit tests

e Logical relations between inputs and outputs (specifications)
 User demonstrations

* Keywords describing intent

* Partially complete programs with “holes”

e Key considerations
 How specific are the constraints?

 How long does it take to evaluate it candidate program
satisfies constraint? (e.g, specification for expression vs.
test suite for program)

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP "10), 13-24.

LaToza GMU SWE 795 Spring 2017

Specifications: example

- TurnOf fRightMostOnes (z)
pRIOIOIO0 s fo<isi<n A (WRi<k<i=>alk=1) i = 0;
y=10100000 A (Vk.0 < k < j = z[k] =0) whii!.e(:v[‘i]==0/\?l<n)

P — = 1 1= 1+l
(a) A sivj=n-—1) while(z[il==1 A i < n)
A (Vk.i < k <n = z[k] = ylk]) xli] := 0; i := i+1;
y = z&(l+(z|(z—1))) A (VeO<Ek<i=ylk]=0) } return z;
(b) (c) (d)

Figure 2. Consider the problem of masking off the rightmost contiguous sequence of 1’s in a given bitvector. (a) describes an example
input-output pair (z, y). (b) describes a 4-step program to solve the problem. (c) describes the intent using a logical relation between input
bitvector z and output bitvector y, both of which are of size n. (d) describes the intent using an inefficient program.

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP "10), 13-24.

LaToza GMU SWE 795 Spring 2017

Search space

e Competing goals
* Expressive: include all programs of interest
* Restrictive: smaller search space

e Often expressed in terms of what language constructs are or
are not allowed

* Examples
* EXxpressions only with arithmetic operators
* EXxpressions with function invocations & operators
 Expressions, guarded by one of a specific set of conditionals
 Loop-free programs with conditionals
* Expressions with depth a maximum node depth of 4
* Arbitrary programs

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP '10), 13-24.

LaToza GMU SWE 795 Spring 2017

Some methods of reducing search space

e EXxpressing programs in less expressive domain
specific language

e e.g,. method invocations & conditionals
controlling when they exist; control

 Assembling code from existing code snippets

» Plastic surgery hypothesis: high redundancy In
code, so existing code snippets can often be
found (and perhaps slightly adapted)

LaToza GMU SWE 795 Spring 2017

Search techniques

* Brute force
 Enumerate all programs in the search space
* \ersion spaces
* Maintain list of satisfying boolean functions
e Order from most general to least general
* Refine as more constraints are added
e Probabilistic inference
* Estimate distribution elements in search space from data, use to bias search
* e.9g., toString() is far more frequent than xizo(100032)
« Genetic programming

* Maintain population of programs, use selection, mutation, crossover to
evolve

SAT solvers

* Represent constraints as logical formula, generate program that satisfties
constraint

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP "10), 13-24.

LaToza GMU SWE 795 Spring 2017 10

LaToza

Techniques we’ll examine today

e (Genetic programming

e Probabilistic inference

 Keyword constraints

e EXxecution trace constraints (programming by

demonstration)

e Synthesizing transformations

GMU SWE 795 Spring 2017

11

LaToza

Genetic programming

* One of the oldest approaches, based on genetic
algorithms

 Uses analogy with biology

DNA —> programs
Keep population of programs

Select highest scoring programs (e.g., best
satisty constraints) for replication

Use crossover & mutation to evolve programs
towards better solution

GMU SWE 795 Spring 2017 12

Defect Repair: GenProg

1. What is it doing wrong”

« We take as input a set of negative test cases that characterizes a fault. The
input program fails all negative test cases.

2. What is it supposed to do?

 We take as input a set of positive test cases that encode functionality
requirements. The input program passes all positive test cases.

3. Where should we change it?

« We favor changing program locations visited when executing the negative
test cases and avoid changing program locations visited when executing
the positive test cases.

4. How should we change it?

 We insert, delete, and swap program statements and control flow using
existing program structure. We favor insertions based on the existing
program structure.

5. When are we finished?

« We call the first variant that passes all positive and negative test cases a
primary repair. We minimize the differences between it and the original
input program to produce a final repair.

Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. 2010. Automatic program repair with
evolutionary computation. Commun. ACM 53, 5 (May 2010), 109-116.

LaToza GMU SWE 795 Spring 2017 13

LaToza

O Jo s WN -

Example

void zunebug (int days) {
int year = 1980;
while (days > 365) ({
if (isLeapYear (year)) {
if (days > 366) {
days —= 366;

year += 1;
}
else {
}
}
else {
days —-= 365;
year += 1;

}
}

printf (“the year is %d\n”, year);

}

GMU SWE 795 Spring 2017

14

LaToza

if (days > 366) {
days —= 366;
if (days > 366) {
days —= 366;
year += 1;
}
year += 1;
}

else {

}
days —-= 366;

//
//
//
//

//

Example

if (days > 366)

{

S
) 6 // days —-= 366; // delete
insert #1 7 // if (days > 366) { // delete
%nsert #1 8 // days —-= 366; // delete
insert #1 9 // year += 1; // delete
insertisl 10 // } // delete

11 year += 1;

12 }

13 else {
_ 14 days -= 366; // insert
insert #2 15 }

16 days —-= 366;

GMU SWE 795 Spring 2017

15

LaToza

OO Jo s W

Example

void zunebug repair (int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear (year)) {
if (days > 366) {
// days —-= 366; // deleted
year += 1;
}
else {
}
days —= 366;
} else {
days —-= 365;
year += 1;

}

// inserted

}

printf (“the year is %dn”, year):;

}

GMU SWE 795 Spring 2017

16

Promising results?

* GenProg: fixed 55 of 105 considered bugs
 RSRepair: 24 of 105 GenProg bugs
 AE: 54 of 105 considered bugs

* The test suite is a set of novice programming
mistakes, likely to contain more obviously atypical
erroneous code that is perhaps easier to fix

 But this is still a start?

C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each. In
34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pages 3—13, 2012.

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random search on automated program repair. In ICSE, pages 254-265, 2014.

W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence for adaptive program repair: Models and first results. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, pages 356-366. IEEE, 2013.

LaToza GMU SWE 795 Spring 2017 17

A second look...

« \What were these fixes?

104 of 110 considered fixes were deleting code

selected by fault loca

ization algorithms.

e This removed relevant

- functionality.

e Because of weak tests that checked for errors rather
than correct output, appeared to fix defect

 What happens with better tests”

* Only generates patch

for 2 of 105 considered

defects (!”?!), which were already best possible case

e Somewhat less promising...

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2

015. An analysis of patch plausibility and correctness for

generate-and-validate patch generation systems. International Symposium on Software Testing and Analysis (ISSTA

2015), 24-36.

LaToza GMU SW

E 795 Spring 2017

18

Synthesis with
Prophet

Fan Long and Martin Rinard. 2016. An
analysis of the search spaces for
generate and validate patch generation
systems. In Proceedings of the 38th
International Conference on Software
Engineering (ICSE '16), 702-713.

LaToza

* Defect Localization: The Prophet defect localization algorithm

analyzes execution traces of the program running on the test
cases in the test suite. The result is a ranked list of target pro-
gram statements to patch (see Section 3.7). Prophet prioritizes
statements that are frequently executed on negative inputs (for
which the unpatched program produces incorrect results) and
infrequently executed on positive inputs (for which the un-
patched program produces correct results).

Search Space Generation: Prophet generates a space of can-
didate patches, each of which modifies one of the statements
identified by the defect localization algorithm.

Universal Feature Extraction: For each candidate patch,
Prophet extracts features that summarize relevant patch prop-
erties. These features include program value features, which
capture relationships between how variables and constants are
used in the original program and how they are used in the patch,
and modification features, which capture relationships between
the kind of program modification that the patch applies and the
kinds of statements that appear near the patched statement in
the original program. Prophet converts the extracted features
into a binary feature vector.

Patch Ranking and Validation: Prophet uses the learned
model and the extracted binary feature vectors to compute a
probability score for each patch in the search space of candi-
date patches. Prophet then sorts the candidates according to
their scores and validates the patches against the supplied test
suite in that order. It returns an ordered sequence of patches
that validate (i.e., produce correct outputs for all test cases in
the test suite) as the result of the patch generation process.

GMU SWE 795 Spring 2017

19

Prophet mutation operators

e Condition Refinement: Given a target if statement
to patch, the system transforms the condition of the
if statement by conjoining or disjoining an additional
condition to the original if condition. The following
two patterns implement the transformation:

if () { ... }y=>if (C&& P) { ...}
if O {...y=>if (CIIP){...}
Here if (C) { ... } is the target statement to patch

in the original program. C is the original condition that
appears in the program. P is a new condition produced
by a condition synthesis algorithm [18, 20)].

e Condition Introduction: Given a target statement,
the system transforms the program so that the state-
ment executes only if a guard condition is true. The
following pattern implements the transformation:

S =>if (P) S

Here S is the target statement to patch in the original
program and P is a new synthesized condition.

e Conditional Control Flow Introduction: Before a

target statement, the system inserts a new control flow
statement (return, break, or goto an existing label)
that executes only if a guard condition is true. The
following patterns implement the transformation:

S => if (P) break; S
S => if (P) continue; S
S => if (P) goto L; S

Here S is the target statement to patch in the original
program, P is a new synthesized condition, and L is an
existing label in the procedure containing S.

Insert Initialization: Before a target statement,
the system inserts a memory initialization statement.
Value Replacement: Given a target statement,
replace an expression in the statement with another
expression.

Copy and Replace: Given a target statement, the
system copies an existing statement to the program
point before the target statement and then applies a
Value Replacement transformation to the copied state-
ment.

Fan Long and Martin Rinard. 2016. An analysis of the search spaces for generate and validate patch generation
systems. In Proceedings of the 38th International Conference on Software Engineering (ICSE '16), 702-713.

LaToza

GMU SWE 795 Spring 2017

20

Prophet results

A LoC | Tests Defects/ Plausible Correct

PP Changes Prophet | SPR | Kali | GenProg | AE | Prophet | SPR | Kali | GenProg | AE
libtiff 77k 78 8/16 5/0 5/0 | 5/0 3/0 5/0 2,2/0 1,L1/0 | 0/0 0/0 0/0
lighttpd 62k | 295 7/2 3/1 3/1 | 4/1 4/1 3/1 0,0/0 0,0/0 | 0/0 0/0 0/0
php 1046k | 8471 31/13 17/1 16/1 | 8/0 5/0 7/0 | 13,10/0 | 10,9/0 | 2/0 1/0 2/0
gmp 145k | 146 2/0 2/0 2/0 | 1/0 1/0 1/0 1,1/0 1,L1/0 | 0/0 0/0 0/0
gzip 491k 12 4/1 2/0 2/0 | 1/0 1/0 2/0 1,1/0 1,0/0 | 0/0 0/0 0/0
python 407k 35 972 5/1 51 | 1/1 0/1 2/1 0,0/0 0,0/0 | 0/1 0/1 0/1
wireshark | 2814k | 63 6/1 4/0 4/0 | 4/0 1/0 4/0 0,0/0 0,0/0 | 0/0 0/0 0/0
fbc 97k | 773 2/1 1/0 1/0 | 1/0 1/0 1/0 1,1/0 1,000 | 0/0 0/0 0/0
Total 69/36 39/3 38/3 | 25/2 16/2 25/2 | 18,15/0 | 16,11/0 | 2/1 1/1 2/1

LaToza

GMU SWE 795 Spring 2017

21

Keyword constraints

public List<String> getlLines (BufferedReader in) throws Exception {
List<String> lines = new Vector<String>():
while (in.ready()) {
add line]
}

return lines:

(5) - (3]

public List<String> getlLines (BufferedReader in) throws Exception {
List<String> lines = new VectorLString>():
while (in.ready()) {
;ines.add(;n.readlzne(i)4

return lines;

* EXxplore space of expressions, scoring by match of
identifiers in expression to provided keywords

* Use in scope variables as leafs in exploration

Greg Little and Robert C. Miller. 2007. Keyword programming in java. International conference on Automated software
engineering (ASE '07), 84-93.

LaToza GMU SWE 795 Spring 2017

t+
s
)
~

User study

desired expression

O 00O Ot ixhWN

message.replaceAll(space, comma)
new Integer(input)
list.remove(list.length() - 1)
fruits.contains(food)
vowels.indexOf(c)
numberNames.put(key, value)
Math.abs(x)
tokens.add(st.nextToken())
message.charAt(i)
System.out.println(f.getName())
buf.append(s)

lines.add (in.readLine())
log.println(message)
input.toLowerCase()

new BufferedReader(new FileReader(filename))

Table 3: Missing Expressions for Tasks

Baseline
Java
pseudocode
keywords

§33%%3

Accuracy

95335

itkid,

Figure 10: Accuracy of the algorithm for each task,
and for each instruction type, along with stan-
dard error. The “Baseline” refers to Java responses
treated as Java, without running them through the
algorithm.

2 8 9

Task

12 14 15

Greg Little and Robert C. Miller. 2007. Keyword programming in java. International conference on Automated software
engineering (ASE '07), 84-93.

LaToza

GMU SWE 795 Spring 2017

23

LaToza

Programming by

the user

demonstration

Program is a set of operations with effects recorded by

e e.9g., click a button, enter String in textbox

User expresses constraints by recording multiple traces
Goal is to generate program that has same output on

demonstrated examples but also work on other similar

situations

 Example

e User selects the first entry |
nastes that into a form field on another website

o User demonstrates doing t

rom (Google search result,

Nis once (or twice)

o Want a program that will work for all search results

returned by Google

GMU SWE 795 Spring 2017

24

Programming with constraints

 What happens if the specification is underspecitied
(ambiguity) or there are multiple conflicting
specifications (over specification)

 Key idea: communicate ambiguity to user to ofter

choices and prevent conflicts when users to create
them

Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming by manipulation for layout. In Proceedings
of the 27th annual ACM symposium on User interface software and technology (UIST '14), 231-241.

LaToza GMU SWE 795 Spring 2017 25

LaToza

Demo

https://www.youtube.com/watch?v=EDS8259QMaM

Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming by manipulation for layout. In Proceedings
of the 27th annual ACM symposium on User interface software and technology (UIST '14), 231-241.

GMU SWE 795 Spring 2017

26

https://www.youtube.com/watch?v=EDS82S9QMaM

Approach

Starting - Q9o
Configuration ‘

User identifies undesirably positioned elements (here, inner nodes and leaves are
vertically aligned with the root). Next, he drags the incorrectly positioned element(s),
as if breaking the layout constraints that hold the element(s) in the wrong position.
This is a What-is-Wrong (WiW) manipulation.

by
WiW Manipulation '
v N7

PBMM

PBMM uses the manipulation to relax (generalize) the layout constraints so that
elements dragged in the manipulation become unconstrained and are thus free to
move. PBMM also computes the alternative sets of constraints that can be enabled to

make the layout constraints unambiguous (specializations).

Free/Ambiguous Nodes ‘P

Generalization Ambiguity Basis

Alternative positions
v (specializations) @

User examines alternative layouts by dragging the element along the ambiguity
basis. He selects the desired layout by dropping the element into that position.

Specialization %

N

Disables constraints that set the vertical
positions of inner nodes and leaves.

27

Approach

PBMM cnables the corresponding constraints in response to the specialization. The

result is a non-ambiguous layout.

‘...I..

User repeats the process, identifying and fixing the remaining incorrectly placed

elements. Here, some leaves remain placed incorrectly.

fl..l...lll..l.l

‘....I...l....:

‘.............:

Enables constraints that compute vertical
position of inner nodes and leaves.
Here, leaves are layered based on their
distance to the root, and inner nodes are
layered based on their distance to the
furthest leaf.

C

Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming by manipulation for layout. In Proceedings
of the 27th annual ACM symposium on User interface software and technology (UIST '14), 231-241.

LaToza

GMU SWE 795 Spring 2017

28

LaToza

Synthesizing transformations

* | et developers specity a change in behavior
* ©.9., corrections made to fix a bug

o (Cluster code snippets
* Edit code snippet to fix defect

e [ry to generalize to transformation that can be
applied to other similar code snippets

GMU SWE 795 Spring 2017

29

Clustering mistakes

Cluster Submissions Instructor's explanation

e
Cluster 2 e @A\;{.mn the correct initial value to your accumulating
Submission 10 total. Make sure to return that value on completion.

Examples of applied fix

def accumulate(combiner, base, n, term): @
total = © - term_total = @

+ term_total = base

+ total = base kS m
while k<=n:
) term_total = combiner(term_total, term(k))
return combiner(base, total) K = kel Select all submissions

return combiner(base, term_total)

+ return total + return term_total
Failure Submission 11
c)| { 1 -~ < rm) -
Test-Case @ def accumulate(combiner, base, n, term):
1st = list(range(l, n+l))
1st2 = map(term, 1st)

accumulate(mul, 2, 3, square) total = @

* total = base
for value in lst2:

) total = combiner(total, value)
Expected Actual return combiner(base, total)
+ return total
72 e

Figure 3. MISTAKEBROWSER interface: On the left panel, teachers can find information about the current cluster, such as an example of the synthesized
fix (A); the total number of submissions in the cluster (B); the failing test case input, the expected output, and the actual output produced by the incorrect
submissions (C). The center column shows the incorrect submissions before and after the synthesized fix (D). Finally, on the right panel, instructors can
add explanations about student mistakes (E).

Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis,
A Head, EL Glassman, G Soares, R Suzuki, L Figueredo, L D'Antoni and B Hartmann, ACM Learning at Scale, 2017.

LaToza GMU SWE 795 Spring 2017 30

http://eglassman.github.io/papers/glassmanLatS17.pdf

Authoring transformations

Submissions

@ = feedback given
€Y = passed all test cases
¢ = fix suggested

0 O O O O O

Order by:
Submission IDs
Test case results

® Suggested fixes

Suggested fixes

Student Submission

You can edit this code. e Show original Edit

def accumulate(combiner, base, n, term):
total = @

while n > @:
total = combiner(total, term(n))
n-=1

return combiner(base, total)

Show diff

Run tests again

Test results: Some tests failed

C Test Input Result Expected Output
q (lambda x, y: x + y, 11, 5, lambda x: x), 26 26 !
2 (lambda x, y: x + y, 8, 5, lambda x: x), - 15 15 -
3 (lambda x, y: x * y, 2, 3, lambda x: x * x), - v 72 !
4 (lambda x, y: x + y, 11, @, lambda x: x), - 11 11 !
5 (lambda x, y: x + y, 11, 3, lambda x: x * x), 25 25 !

Print output (test case 1)

[This test case produced mno console output.)

Feedback

Student error detected.

This wrong answer can be “fixed” with the edits for subrr on 64 . This is the fix

def accumulate(combiner, base, n, term):
total = @
+ total = base
while n > @:
total = combiner(total, tern(n))
n-=1
return combiner(base, total)
+ return total

« Apply this fix to the student's code

Another student with this same problem has already been given feedback. Do you want to use the
feedback for them here?

@ - Use existing feedback ~

Notes Add

Figure 4. FIXPROPAGATOR interface: The left panel shows all of the incorrect submissions (A). When the teacher selects one, the submission is loaded
into the Python code editor in the center of the interface (B). Then the teacher can edit the code, re-run tests, and inspect results. The bottom of the
center panel shows the list of tests and console output (C). Once the teacher has fixed the submission, they add some hint that will be shown to current
and future students fixed by the same transformation. The bottom of the left panel shows submissions for which the system is suggesting a fix. When
the teacher selects a suggested fix, it is shown as a diff in the right panel (D). The teacher can reuse the previously written hint or create a new one (E).

Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis,

A Head, EL Glassman, G Soares, R Suzuki, L Figueredo, L D'Antoni and B Hartmann, ACM Learning at Scale, 2017.

LaToza

GMU SWE 795 Spring 2017

31

http://eglassman.github.io/papers/glassmanLatS17.pdf

Further Challenges

* Are synthesized programs as good as a human
solution”

e [s it as efficient?
 Does it violate style rules?
* Does it violate hidden design constraints”

 May depend on how synthesis is used

e |f humans are inspecting the code anyway
(autocomplete), does it matter, since they correct it

e |f goal is to automate bug fixing, will they trust it?

LaToza GMU SWE 795 Spring 2017

32

Does synthesis help developers?

e |f a synthesis suggests a snippet, can a developer
judge it it is the right one”

 Brandt model suggests that might be most useful
for reminding cases where developers knows API
already

 May be less useful where developers are trying to
learn API

LaToza GMU SWE 795 Spring 2017 33

