
Visual Programming
Languages

SWE 795, Spring 2017
Software Engineering Environments

Adapted from slides by Vishal Dwivedi,  
Human Aspects of Software Development, Spring 2011

LaToza GMU SWE 795 Spring 2017

Today
• Part 1 (Lecture)(~50 mins)

• Break!

• Part 2 (Discussion)(~30 mins)
• HW3 presentations

• Part 3 (Discussion)(~60 mins)
• Project work

2

LaToza GMU SWE 795 Spring 2017

Definitions

“Programming”
‘‘The process of transforming a mental plan of desired actions for a

computer into a representation that can be understood by the
computer’’  
– Jean-Michel Hoc and Anh Nguyen-Xuan

“Single-dimensional characteristics”
 The compilers or interpreters programs as long, one-dimensional

streams.

3

LaToza GMU SWE 795 Spring 2017

Definitions

“Visual Programming”
“Programming in which more than one dimension is used to convey

semantics.” - Myers, 1990

“Token”
“A collection of one or more multi-dimensional objects”.
Examples:

Multi-dimensional graphical objects
Spatial relationships
Use of the time dimension to specify “before-after” semantic relationships.

“Visual Expression”
“A collection of one or more tokens”

4

LaToza GMU SWE 795 Spring 2017

Definitions

“Visual Programming Language”
“Any system where the user writes a program using two or more

dimensions” [Myers, 1990]

“A visual language manipulates visual information or supports visual
interaction, or allows programming with visual expressions”  
[Golin , 1990]

“A programming language that lets users create programs by manipulating
program elements graphically rather than by specifying them textually”.

“A set of spatial arrangements of text-graphic symbols with a semantic
interpretation that is used in carrying out communication actions in the
world”.  
 [Lakin, 1989]

5

LaToza GMU SWE 795 Spring 2017

What is not a Visual Programming
Language?

Programming Languages like
Visual Basic, Visual C++,
Visual C sharp, Delphi, etc
do not satisfy the multi-
dimensional characterization.

They are primarily Textual
languages with:

A graphical GUI builder
A visual user interface

6

LaToza GMU SWE 795 Spring 2017

Goal of VPL Research
• To strive for improvements in programming

language design.
• To make programming more accessible to some

particular audience.
• To improve correctness with which people perform

programming tasks.
• To improve the speed with which people perform

programming tasks.

7

LaToza GMU SWE 795 Spring 2017

Motivation from Psychology

Language determines thought and that linguistic categories limit
and determine cognitive categories [1]

In longer sentences meaning of each word may be clear, but the
way in which they are strung together makes little sense imposes
a tremendous mental workload to understand. [2]

Most design tasks require 3 cognitive skills: search, recognition and
inference.

 Diverse set of views (and studies) exist today about whether
VPLs aid in search or cognition. [3]

8

[1] Sapir, E. (1929): 'The Status of Linguistics as a Science'. In E. Sapir (1958): Culture, Language and
Personality (ed. D. G. Mandelbaum). Berkeley, CA: University of California Press
[2] Christopher D. Wickens, “Engineering Psychology and Human Performance”, 3rd Edition
[3] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes) worth ten thousand words. Cognitive Science,
11:65-99, 1987.

LaToza GMU SWE 795 Spring 2017

Motivation
Some applications are (believed to
be) very well suited to graphical
development approaches

Scientific visualization
Simulations
User Interfaces
Signal Processing
Data Displays

9

LaToza GMU SWE 795 Spring 2017

(Claimed) Advantages of VPLs
• Fewer programming concepts
• Concreteness
• Explicit depiction of relationships
• Immediate visual feedback
• Parallel computation is a natural consequence of

many visual programming paradigms

10

LaToza GMU SWE 795 Spring 2017

(Claimed) Disadvantages of VPLs

“Deutsch Limit” *
The problem with visual programming is that you can't have

more than 50 visual primitives on the screen at the same
time.

Some situations in which text has superiority:
Documentation,
Naming to distinguish between elements that are of the

same kind, and
Expressing well-known and compact concepts that are

inherently textual, e.g. algebraic formulas.

11

LaToza GMU SWE 795 Spring 2017

Visual Programming Languages
Techniques

• Concreteness: expressing some aspect of a program using
instances
• e.g., display the effects of computation on individual instance

• Directness: small distance between goal and actions required of
the user to achieve goal
• e.g., direct manipulation of object properties

• Explicitness: don’t require inference to understand semantics
• e.g., depict dataflow edges between variables

• Livenesss: offer automatic display of effects of program edits on
output
• e.g., after every edit, IDE reruns code and regenerates output

12

LaToza GMU SWE 795 Spring 2017

Levels of liveness
• Level 1: No semantic feedback offered

• e.g., using ER diagram for documentation
• Level 2: Semantic feedback, but not offered

automatically
• e.g., interpreters

• Level 3: Incremental semantic feedback automatically
provided after edit, regenerating onscreen output
• e.g., spreadsheets

• Level 4: Incremental semantic feedback offered after
edits & systems events (e.g., clock ticks, mouse clicks)
• e.g., some Smalltalk environments (?)

13

Tanimoto, S., VIVA: a visual language for image processing. Journal of Visual Languages Computing 2(2): 127-139, June 1990.

LaToza GMU SWE 795 Spring 2017

History of VPLs

14

12

1960 1980 1990 2000

o AMBIT/G/L
o Grail
o GAL
o Graphical Program

Editor
o Query by Example
o Pygmalion
o I/O Pairs

o Action
Graphics

o FORMAL
o ThingLab
o Hi-Visual
o LabView
o PROGRAPH
o PIGS
o Pict
o Rehearsal
o SmallStar

o Forms
o Editing by

Example
o PICT
o Lotus 1-2-3
o SIL-ICON
o VisiCalc
o HiGraphs
o Miro
o StateMaster

o Cube
o Cantata
o SchemePaint
o CODE 2.0
o Iconicode
o MViews

Techniques
o Graphs
o Flowcharts
o Flowchart derivatives
o FORMS
o Demonstrational

Techniques
o Graphs
o Flowcharts
o Flowchart

derivatives
o FORMS
o Demonstrational
o Data Flows
o Spreadsheets
o Matrices
o Jigsaw Puzzles
o Petri nets
o Flowchart

derivatives

o AVS
o Mondrian
o ChemTrains
o Vampire
o VIPR
o SPE

Techniques/Goals
o 3D Rendering
o Visual Hierarchy
o Procedures
o Control Structures
o Programmable Graphics
o Animations
o Video Imagery Exploitation
o General purpose, declarative language
o Audio, video and image processing
o Graphical models from behavioral models
o Learning and Cognitive abilities in vision

processes
o Handling Scalability, typing, and

imperative design
o Collaborative Software Development

o LOFI/HIPI
o FOXQ
o VMQL
o GXL
o Euler View
o Yahoo Pipes
o Popfly

Techniques/Goals
o Child Learning
o Xquery by FORMS
o Spreadsheet Analysis
o Visual Model Query
o Layouts
o Specification and Interchange
o Mashups
o Web-based design
o Programming for end-users

(2003) / non-Professionals

LaToza GMU SWE 795 Spring 2017

History of VPLs

15

13

1960 1980 1990 2000

Technology
Trigger

Period of
Reality Check

Period of Early
promises

Period of
Inflated Expectations

[Ellis, 1969] : GRAIL

[Myers, 1990] : Taxonomies for VPL

[Burnett, 1994] : Broad Classifications for VPL Research
[Kirsten N. Whitley, 1997]: User Studies (for/against VPLs)

[Repenning, 1992] : Agent Sheet

[Smith, 1975] : Pygmalion

[MacLaurin, 2009] : KODU

LaToza GMU SWE 795 Spring 2017

History of VPLs

16

1960 1980 1990 2000

o Make programming
more accessible

o Support domain -
specific designs

o Let users program in
Visual Languages

o (Almost) Make textual
languages redundant

o Strive for improvements
in programming
language design

o Support the
cognition
aspect of
Programming

LaToza GMU SWE 795 Spring 2017

Taxonomy of visual programming
languages

17

Brad A. Myers. "Taxonomies of Visual Programming and Program Visualization," Journal of Visual Languages and Computing. vol.
1, no. 1. March, 1990. pp. 97-123.

LaToza GMU SWE 795 Spring 2017

Dataflow Program Representations

• Represent computation as a network
• Nodes correspond to components
• Edges correspond to data flow between

components

18

LaToza GMU SWE 795 Spring 2017

Prograph

19

Margaret M. Burnett, “Visual Programming” In the Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), 1999

https://www.google.com/url?q=http://www.google.com/url?q%3Dhttp%253A%252F%252Fciteseerx.ist.psu.edu%252Fviewdoc%252Fdownload%253Fdoi%253D10.1.1.54.3110%2526rep%253Drep1%2526type%253Dpdf%26sa%3DD%26sntz%3D1%26usg%3DAFQjCNG1Hts0ki3fC-DFVQ7yE9RGyUXXSg&sa=D&ust=1492492232120000&usg=AFQjCNG961iQ3HJuENiYIw7_F6n9dwwlbA

LaToza GMU SWE 795 Spring 2017

Industrial Example: Clarity
• “Clarity is a schematic functional programming

environment that allows you to design and
implement programs by drawing them. The picture
below shows an example of the hypotenuse
function that expresses Pythagoras' theorem.”

20

http://www.clarity-support.co.uk/products/clarity/

http://www.clarity-support.co.uk/products/clarity/

LaToza GMU SWE 795 Spring 2017

Industrial Example: Yahoo Pipes

21

https://en.wikipedia.org/wiki/Yahoo!_Pipes
https://www.youtube.com/watch?v=Xv-4TOit5_g

https://en.wikipedia.org/wiki/Yahoo!_Pipes
https://www.youtube.com/watch?v=Xv-4TOit5_g

LaToza GMU SWE 795 Spring 2017

Structured editors
• Structured editors that utilize extra dimension to

capture program semantics can be considered
visual programming languages
• e.g., Alice, Scratch

22

LaToza GMU SWE 795 Spring 2017

Form Representations

• Program consists of a form, with a network of
interconnected cells

• Developers define cell through combination of
pointing, typing, gesturing

• Cells may define constraints describing
relationships between cells

23

LaToza GMU SWE 795 Spring 2017

Forms/3
• Based on constraints between cells
• Supports graphics, animation, recursion
• Concreteness: resulting box is immediately seen
• Directness: demonstrates elements directly
• Level 4 liveness: immediate visual feedback

24

Margaret M. Burnett, “Visual Programming” In the Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), 1999

https://www.google.com/url?q=http://www.google.com/url?q%3Dhttp%253A%252F%252Fciteseerx.ist.psu.edu%252Fviewdoc%252Fdownload%253Fdoi%253D10.1.1.54.3110%2526rep%253Drep1%2526type%253Dpdf%26sa%3DD%26sntz%3D1%26usg%3DAFQjCNG1Hts0ki3fC-DFVQ7yE9RGyUXXSg&sa=D&ust=1492492232120000&usg=AFQjCNG961iQ3HJuENiYIw7_F6n9dwwlbA

LaToza GMU SWE 795 Spring 2017

Forms/3 Example

25

http://web.engr.oregonstate.edu/~burnett/Forms3/LED.html

http://web.engr.oregonstate.edu/~burnett/Forms3/LED.html

LaToza GMU SWE 795 Spring 2017

Forms/3 Example

26

LaToza GMU SWE 795 Spring 2017

Interstate

27

http://interstate.from.so/
https://www.youtube.com/watch?v=M--9jsuDZis

Stephen Oney, Brad Myers, and Joel Brandt. 2014. InterState: a language and environment for expressing interface
behavior. Symposium on User interface software and technology, 263-272.

http://interstate.from.so/
https://www.youtube.com/watch?v=M--9jsuDZis

LaToza GMU SWE 795 Spring 2017

Assessing Usability

• Empirical techniques assess usability through
studies gathering data

• Analytical techniques use principles & guidelines
to estimate the usability of a system

• Will look at a technique for analytical usability
evaluation here

28

LaToza GMU SWE 795 Spring 2017

Cognitive Dimensions of Notations
• Analytical technique for assessing usability of notation

through a set of heuristics
• Also terminology for describing usability problems

29

T. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and
Computing 7(2): 131-174, June 1996

LaToza GMU SWE 795 Spring 2017

Diffuseness / Terseness
• How many symbols or graphic elements is

required to express a meaning?

• Simple rocket simulation program
• Basic: 22 LOC, 140 words (fits on screen)
• LabView: 45 icons, 59 wires (fits on screen)
• Prograph: 52 icons, 79 connectors, 11 screens

30

T. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and
Computing 7(2): 131-174, June 1996

LaToza GMU SWE 795 Spring 2017

Error-proneness
• Does the design of the notation induce slips?

• Compared to textual language, VPLs
• Do not need delimiters & separators
• Fewer identifiers are needed, easier to reference
• Constructs inserted automatically (e.g., loops)

31

LaToza GMU SWE 795 Spring 2017

Viscosity
• How much effort is required to make a simple

change?

• Edit Rocket program to take account of air resistance
• Basic: 63.3 s
• LabView: 508.3 s
• Prograph: 193.6 s

• VPLs required many wires to be rebuilt, layout to be
tweaked

32

LaToza GMU SWE 795 Spring 2017

Visibility
• Is every (relevant) part of the code simultaneously

visible?

• LabView does not show both branches of
conditional at same time (!)
• Particular problem for nested conditionals

• Prograph has poor support for deep nesting of
routines

33

LaToza GMU SWE 795 Spring 2017

VPLs Discussion
• Often offers a representation that makes specific tasks

easy
• e.g., tracking data flow
• Often involves structured editor targeted to specific

domain, which may not support full range of programs
• But may make other tasks harder
• Often limited focus on scalability

• May be possible to get benefits of task-specific
representations without drawbacks through task specific
editor rather than language

34

