Visual Programming
Languages

SWE 795, Spring 2017
Software Engineering Environments

/GEOR : ' ' '
ms Adapted from slides by Vishal Dwivedi,

university Human Aspects of Software Development, Spring 2011

(A
m

LaToza

Today

Part 1 (Lecture)(~50 mins)

Break!

Part 2 (Discussion)(~30 mins)
* HW3 presentations

Part 3 (Discussion)(~60 mins)
* Project work

GMU SWE 795 Spring 2017

Definitions

“Programming”
“The process of transforming a mental plan of desired actions for a
computer into a representation that can be understood by the

computer”
— Jean-Michel Hoc and Anh Nguyen-Xuan

“Single-dimensional characteristics”
The compilers or interpreters programs as long, one-dimensional
streams.

LaToza GMU SWE 795 Spring 2017

Definitions

“Visual Programming”

“Programming in which more than one dimension is used to convey

semantics.” - Myers, 1990
“Token”
“A collection of one or more multi-dimensional objects”.
Examples:

Multi-dimensional graphical objects
Spatial relationships
Use of the time dimension to specify “before-after” semantic relationships.

“Visual Expression”
“A collection of one or more tokens”

LaToza GMU SWE 795 Spring 2017

Definitions

“Visual Programming Language”

“Any system where the user writes a program using two or more
dimensions” [Myers, 1990]

“A visual language manipulates visual information or supports visual
Interaction, or allows programming with visual expressions”
[Golin , 1990]

“A programming language that lets users create programs by manipulating
program elements graphically rather than by specifying them textually”.

“A set of spatial arrangements of text-graphic symbols with a semantic
iInterpretation that is used in carrying out communication actions in the
world”.

[Lakin, 1989]

LaToza GMU SWE 795 Spring 2017

What is not a Visual Programming
Language?

w5 Project1 - Microsoft Visual Basic [design] - [Form1 (Form)]

Programming Languages like
Visual Basic, Visual C++,
VISU8|CSharp, Delphl’ etC X CerEEEEEnaR e = B Project1 (Project1)
do not satisfy the multi- [f e S Sroms

e e S R B3 Formi (Form1)

dimensional characterization. |~ = |} 220

-------------- Properties - ExtTip

1 - :::::::- Hello, from the tray. .: e ItxtTip Iadbox LI
They are prlmarlly TeXtuaI "' s e
Ianguages with: e T -
. . 2 | from the tray 8
A graphical GUI builder v

i DL€ | Returnsfsets the text contained in the

A visual user interface

LaToza GMU SWE 795 Spring 2017 6

LaToza

Goal of VPL Research

To strive for improvements in programming
language design.

To make programming more accessible to some
particular audience.

To improve correctness with which people perform
programming tasks.

To improve the speed with which people perform
programming tasks.

GMU SWE 795 Spring 2017

LaToza

Motivation from Psychology

Language determines thought and that linguistic categories limit
and determine cognitive categories [1]

In longer sentences meaning of each word may be clear, but the
way in which they are strung together makes little sense imposes
a tremendous mental workload to understand. [2]

Most design tasks require 3 cognitive skills: search, recognition and
inference.

Diverse set of views (and studies) exist today about whether
VPLs aid in search or cognition. [3]

[1] Sapir, E. (1929): 'The Status of Linguistics as a Science'. In E. Sapir (1958): Culture, Language and
Personality (ed. D. G. Mandelbaum). Berkeley, CA: University of California Press
[2] Christopher D. Wickens, “Engineering Psychology and Human Performance”, 3 Edition

[3] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes) worth ten thousand words. Cognitive Science,
11:65-99, 1987.

GMU SWE 795 Spring 2017

Motivation

Some applications are (believed to
be) very well suited to graphical
development approaches

o Edit. Tools Help

Scientific visualization
Simulations | - I
User Interfaces = SR

© Begin: lceSkater.go wireframe
- During: <None>

Signal Processing S — e
Data Displays

" Comera 56t point of viowto <None> — point of view of = CameraPainOfVicw — more—.
‘= Do together
*coSkater — turn loft 045 revolulions © mote...
“skateBackwards howMamSteps @ keoSkater — setpose lceSkater.pose — more...
k) IceSkater.skate RowiAanySteps =1

 IceSkater,simpleSpin
J backwards and jump

EIEMIW

-2 -

1| ‘Dainorder ' Dotogethor " MEiso ‘Loop Wil Foralinorder Foralltogothes | War prmt |y

LaToza GMU SWE 795 Spring 2017

LaToza

(Claimed) Advantages of VPLs

 Fewer programming concepts
Concreteness

Paralle

Cxplicit depiction of relationships
mmediate visual feedback

computation is a natural consequence of

many visual programming paradigms

GMU SWE 795 Spring 2017

10

(Claimed) Disadvantages of VPLs

“Deutsch Limit” *
The problem with visual programming is that you can't have
more than 50 visual primitives on the screen at the same
time.

Some situations in which text has superiority:
Documentation,
Naming to distinguish between elements that are of the
same kind, and
Expressing well-known and compact concepts that are
inherently textual, e.g. algebraic formulas.

LaToza GMU SWE 795 Spring 2017 11

LaToza

Visual Programming Languages
Techniques

Concreteness: expressing some aspect of a program using
Instances

* e.g., display the effects of computation on individual instance

Directness: small distance between goal and actions required of
the user to achieve goal

* e.g., direct manipulation of object properties

Explicitness: don't require inference to understand semantics
* e.g., depict dataflow edges between variables

Livenesss: offer automatic display of effects of program edits on
output

* e.g., after every edit, IDE reruns code and regenerates output

GMU SWE 795 Spring 2017 12

LaToza

Levels of liveness

Level 1: No semantic feedback offered
* ©.9., using ER diagram for documentation

Level 2: Semantic feedback, but not offered
automatically

e e.9g., Interpreters

Level 3: Incremental semantic feedback automatically
provided after edit, regenerating onscreen output

* e.g., sSpreadsheets

Level 4: Incremental semantic feedback offered after
edits & systems events (e.g., clock ticks, mouse clicks)

¢ ©.9., some smalltalk environments (?)

Tanimoto, S., VIVA: a visual language for image processing. Journal of Visual Languages Computing 2(2): 127-139, June 1990.

GMU SWE 795 Spring 2017 13

History of VPLs

~ o Action _ _
'," ’," Graphics o Forms '," ',"
{ o AMBIT/GIL {OFORMAL o Editing by fo Cube 0 AVS { oLOFIHIPI
{ 0 Grail { oThingLab Example { o Cantata oMondrian { oFOXQ
{ 0GAL { oHi-Visual ~ oPICT { 0SchemePainto ChemTraing o VMaL
{ oGraphical Program / ©LlabView o Lotus 1-2-3 { 0CODE2.0 o Vampire i o GXL
Editor ' 0 PROGRAPH © S_”‘.'ICON olconicode oVIPR o Euler View
i oQuerybyExample /[oPIGS LS { oMViews o SPE { o Yahoo Pipes
i oPygmalion i oPict oHiGraphs / o Popfly
o0 I/O Pairs oRehearsal 0 Miro
—CS @ oSmallStar © StateMasteré @
1960 1980 1990 2000
Techniques Techniques Techniques/Goals Techniques/Goals
o Graphs o Graphs o 3D Rendering o Child Learning
o Flowcharts o Flowcharts o Visual Hierarchy o Xquery by FORMS
o Flowchart derivatives o Flowchart 0 Procedures 0 Spreadsheet Analysis
0 FORMS derivatives o Control Structures o Visual Model Query
o Demonstrational o FORMS o Programmable Graphics o Layouts
o Demonstrational o Animations o Specification and Interchange
o Data Flows o Video Imagery Exploitation o Mashups
o Spreadsheets o General purpose, declarative language o Web-based design
o Matrices o Audio, video and image processing o Programming for end-users
o Jigsaw Puzzles o Graphical models from behavioral models ~ (2003) / non-Professionals
o Petri nets o Learning and Cognitive abilities in vision
o Flowchart processes
derivatives o Handling Scalability, typing, and
imperative design
o Collaborative Software Development

GMU SWE 795 Spring 2017

LaToza

History of VPLs

Period of
Period of Reality Check
Inflated Expectations

Period of Early
Technology promises
Trigger
o
O O O O
1960 1980 1990 2000
O [Ellis, 1969]: GRAIL
@ [Smith, 1975]: Pygmalion
O [Myers, 1990]: Taxonomies for VPL
O [Repenning, 1992]: AgentSheet
O [Burnett, 1994]: Broad Classifications for VPL Research
O [Kirsten N. Whitley, 1997]: User Studies (for/againstVPLSs)
© [MacLaurin, 2009]: KODU
Visual Programming Search | "TEmMEenT
About 18,200 results (0.47 seconds) Advanced search
Timeline]

LaToza

1960-2011 Search other dates

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

GMU SWE 795 Spring 2017

History of VPLs

o Make programming
more accessible

o Letusers programin

i
I
I
Visual Languages
i o Supportdomain -
{

specificdesigns

o Strive for improvements

1
I
I
1
I
1
1
I
1
1
I
I
1
I
1
1
I
1
1
I
)
1
I
1
1

'i 0 Supportthe " in programmin
cognition Ianp 9 ¥ 19
/ aspect of] guage design
{ Programming i ;
+— o (Amost) Make textual |
I i i languages redundant |
. o o é
1980 1990 2000

1960

GMU SWE 795 Spring 2017

LaToza

Brad A. Myers. "Taxonomies of Visual Programming and Program Visualization," Journal of Visual Languages and Computing. vol.

LaToza

Taxonomy of visual programming

languages

Specification Technique:

Systems:

Textual Languages:

Pascal. Ada. Fortran. Lisp. Ada. efc.
Tinker. Smallstar

Flowcharts:

Grail. Pict. FPL. IBGE. OPAL

Flowchart derivatives:

GAL. PIGS. SchemaCode., PLAY

Petr1 nets:

MOPS-2, VERDI

Data flow graphs:

Graphical Program Editor. PROGRAPH.
Graphical Thinglab. Music System. HI-VISUAL.,
LabVIEW. Fabrik. InterCONS

Directed graphs:

AMBIT/G/L. State Transition UIMS. Bauer’s Traces

Graph derivatives:

HiGraphs. Miro. StateMaster

Matrices: ALEX. MPL

Jigsaw puzzle pieces: Proc-BLOX

Forms: Query by Example. FORMAL

Iconic Sentences: SIL-ICON

Spreadsheets™: VisiCalc. Lotus 1-2-3. Action Graphics. “‘Forms™

None*:

Demonstrational*:

Pygmalion, Rehearsal World. Peridot

IO Pairs. Editing by Example

1, no. 1. March, 1990. pp. 97-123.

GMU SWE 795 Spring 2017

17

Dataflow Program Representations

 Represent computation as a network
 Nodes correspond to components

* Edges correspond to data flow between
components

LaToza GMU SWE 795 Spring 2017

Margaret M. Burnett, “Visual Programming” In the Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), 1999

LaToza

Prograph

math dataflow 1:1

R 22778 Finding the hypotenuse
of a right triangle.

LA LLLLLLLL LSS LSS S S S SSSSSSS LSS LSS s

=8

Figure 3: Dataflow programming in Prograph. Here the programmer is using the low-level (primitive) operations to
find the hypotenuse of a right triangle. Prograph allows the programmer to name and compose such low-level
graphs into higher-level graphs that can then be composed into even higher-level graphs, and so on.

GMU SWE 795 Spring 2017

19

https://www.google.com/url?q=http://www.google.com/url?q%3Dhttp%253A%252F%252Fciteseerx.ist.psu.edu%252Fviewdoc%252Fdownload%253Fdoi%253D10.1.1.54.3110%2526rep%253Drep1%2526type%253Dpdf%26sa%3DD%26sntz%3D1%26usg%3DAFQjCNG1Hts0ki3fC-DFVQ7yE9RGyUXXSg&sa=D&ust=1492492232120000&usg=AFQjCNG961iQ3HJuENiYIw7_F6n9dwwlbA

LaToza

Industrial Example: Clarity

“Clarity is a schematic functional programming
environment that allows you to design and
implement programs by drawing them. The picture
below shows an example of the hypotenuse
function that expresses Pythagoras' theorem.”

r

<real) <real > 1

&ide 1 ide 2

square Squarel

$ENETWORKSES [2 of 9]

[run_model_4.24]

[run_4.2_consult_experimenters_cuycles |
-~

"
Lexp_cons_plot_line |

——

_______ 0_EXP_0F_Cons

P
[do_pick_consultee | X S
X Ldo—othing ;". o_experiment |

[pick_consultee]‘\ | actors_waiting_data_plot_line_elm _~"|

e
[each_actor _cycle_plot_line

4
| consulting_actors_cycle_plot_line |

[select_setup |
=" a5
[person_setup_mem | P [-‘

s :|:

]
f

| !

[select_min_two_list IJ:'
]

>
[actor _setup_entropy |

http://www.clarity-support.co.uk/products/clarity/

GMU SWE 795 Spring 2017

20

http://www.clarity-support.co.uk/products/clarity/

LaToza

Industrial Example: Yahoo Pipes

Fetltjl; Iieed HE R — S
= http://pittsburgh.craigslist.org/soffi Fil{ johs = | W KEywonds | SORNGEe SROmeeY
(= hitp:/iwww.careerbuilder.com/RTC WHR[20 NS > | K| #123
=] hitp:/irtq.careerbuilder.com/RTQJr: = T V
& hitp:/ittq.careerbuilder.com/RTQUr: A A~ A~ = ot 2 .
= hitp://hotjobs.yahoo.com/rss/0/US ;,.'ff-'-‘"""":; moﬂ_u‘__m : ."":::::'7” '- =
{w Filter HE X
& http:h‘www.simplyhired.comla/job- RREns Block + itemsthatmatch any v ofthe following
u “ Rules
= & item.description » Contains v internship
& itemtitle » Contains v intern
& item.title » Contains v summer internshig
) 4

Filter .)=k =

Permit « items that match any « ofthe following [Sort ‘-— @591

“' Rules _+ © Sort by

© item.description » Contains v research -1 @ [tem.dcdate » in descending ~ order

& item.description » Contains v web-services (@

& item.description » Contains v architecture

o item.title » Contains v software engineeri

o item title » Contains v design

(@

8|

(Fipe it 1

Debugger: none

https://www.youtube.com/watch?v=Xv-4TQOit5 g

GMU SWE 795 Spring 2017

21

https://en.wikipedia.org/wiki/Yahoo!_Pipes
https://www.youtube.com/watch?v=Xv-4TOit5_g

LaToza

Structured editors

Structured editors that utilize extra dimension to
capture program semantics can be considered
visual programming languages

* ©.9., Alice, Scratch

GMU SWE 795 Spring 2017

22

Form Representations

 Program consists of a form, with a network of
iInterconnected cells

* Developers define cell through combination of
oointing, typing, gesturing

* (Cells may detine constraints describing
relationships between cells

LaToza GMU SWE 795 Spring 2017 23

Forms/3

 Based on constraints between cells

e Supports graphics, animation, recursion

e (Concreteness: resulting box is immediately seen
e Directness: demonstrates elements directly

o [evel 4 liveness: immediate visual feedback

Enter Formula: e

Formula for: scuare Accept | Cancel| Clear |

Undo | Redo | Clone | Display|

"~ frea |I
Graphics Area:

S L o

: box circ line
| somare [\:1

Hide | | R o

Form Help' 300
Cut Cell |
Paste |

Show Test
Data

Figure 2: Deﬁm’n the area of a square using spreadsheet-like cells and formulas in Forms/3. Graphical types are
supported as first-class values, and the programmer can enter cell square’s formula either by sketching a square box or
by typing textual specifications (e.g., “box 30 307).

area [{width SQUARE [0) * (height SQUARE ET|

Margaret M. Burnett, “Visual Programming” In the Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), 1999

LaToza GMU SWE 795 Spring 2017 24

https://www.google.com/url?q=http://www.google.com/url?q%3Dhttp%253A%252F%252Fciteseerx.ist.psu.edu%252Fviewdoc%252Fdownload%253Fdoi%253D10.1.1.54.3110%2526rep%253Drep1%2526type%253Dpdf%26sa%3DD%26sntz%3D1%26usg%3DAFQjCNG1Hts0ki3fC-DFVQ7yE9RGyUXXSg&sa=D&ust=1492492232120000&usg=AFQjCNG961iQ3HJuENiYIw7_F6n9dwwlbA

LaToza

Forms/3 Example

RADIO| OPTION

Testl

if (1
then

nlist input (2 3 56 78 9 0))
horizontal

L

i1f (inlist input (
then vertical

|
if (inlist input (1 2 34 78 9 0))
then vertical

456890)) |

if (1
then

nlist input (2 3456 8 9))
horizontal

if (inlist input (1 34 56 78 9 0))
then vertical

if (inlist input (2 6 8 0))
then vertical

if (1
then

nlist 1nput (2 3 56 8 9 0))
horizontal

horizontal gLine S0

vertical tline 0 80

0

http://web.engr.oregonstate.edu/~burnett/Forms3/LED.html

GMU SWE 795 Spring 2017

25

http://web.engr.oregonstate.edu/~burnett/Forms3/LED.html

LaToza

Forms/3 Example

]

MATRIX

RADIO| OPTION

bottles of beer on the wall.
bottles of beer...

Take cne down, pass 1t arcund,
bottles of beer on the wall.

fi1xedWords

9%

9% fby {{earlier bottles) - 1)
bOttlesqnn until {{earlier bottles) = 2)

99 bottles of beer on the wall.
99 bottles of beer...

Take cne down, pass 1t arcund,
98 bottles of beer on the wall.

py— compose bottles at (4 2)

d with fixedWords at {5 2)
with bottles at {4 14)
with {bottles — 1) at {4 38)

by Dr. Margaret M. Burnett and Jonathan Jay Cadiz

GMU SWE 795 Spring 2017 26

Interstate

n('dblclick’, thi
on(’ mousedown this)

on('click’)
Copies: on(mouseup")
Add Field no dfag drag drag_lock
prototypes (div) | dom.div |
X 313 X mouse. X mouse. X
y 763 0 y mouse.y mouse.y
fill 'black’ 'black’ 'blue’ "navy’

Figure 1: A basic InterState object, named draggable, which
implements draggable and drag lock behaviors. Properties that
control draggable’s display are represented as rows (e.g. x, v,
and fill). States and transitions are represented as columns (e.g.
no_drag and drag). An entry in a property’s row for a particular
state specifies a constraint that controls that property’s value in that
state. Here, while draggable is in the drag state, x and y will be
constrained to mouse.x and mouse.y respectively, meaning
draggable will follow the mouse.

http://interstate.from.so/
https://www.youtube.com/watch?v=M--9jsuD/is

Stephen Oney, Brad Myers, and Joel Brandt. 2014. InterState: a language and environment for expressing interface
behavior. Symposium on User interface software and technology, 263-272.

LaToza GMU SWE 795 Spring 2017

http://interstate.from.so/
https://www.youtube.com/watch?v=M--9jsuDZis

Assessing Usability

* Empirical technigues assess usability through
studies gathering data

* Analytical techniques use principles & guidelines
to estimate the usabillity of a system

* Will look at a technique for analytical usability
evaluation here

LaToza GMU SWE 795 Spring 2017 28

Cognitive Dimensions of Notations

* Analytical technique for assessing usability of notation
through a set of heuristics

e Also terminology for describing usabillity problems

Abstraction gradient

What are the minimum and maximum levels of abstraction? Can fragments be
encapsulated?

Closeness of mapping

What ‘programming games’ need to be learned?

Consistency

When some of the language has been learnt, how much of the rest can be inferred?

Diffuseness

How many symbols or graphic entities are required to express a meaning?

Error-proneness

Does the design of the notation induce ‘careless mistakes’?

Hard mental operations

Are there places where the user needs to resort to fingers or penciled annotation to keep
track of what’s happening?

Hidden dependencies

Is every dependency overtly indicated in both directions? Is the indication perceptual or
only symbolic?

Premature commitment

Do programmers have to make decisions before they have the information they need?

Progressive evaluation

Can a partially-complete program be executed to obtain feedback on “How am I doing™?

Role-expressiveness

Can the reader see how each component of a program relates to the whole?

Secondary notation Can programmers use layout, color, or other cues to convey extra meaning, above and
beyond the ‘official’ semantics of the language?

Viscosity How much effort 1s required to perform a single change?

Visibility Is every part of the code simultaneously visible (assuming a large enough display), or is

it at least possible to compare any two parts side-by-side at will? If the code is

dispersed, is it at least possible to know in what order to read 1t?

T. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and
Computing 7(2): 131-174, June 1996

LaToza

GMU SWE 795 Spring 2017

29

Diffuseness / Terseness

 How many symbols or graphic elements is
required to express a meaning?

* Simple rocket simulation program

e Basic: 22 LOC, 140 words (fits on screen)

o LabView: 45 icons, 59 wires (fits on screen)
 Prograph: 52 icons, 79 connectors, 11 screens

T. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and

Computing 7(2): 131-174, June 1996
LaToza GMU SWE 795 Spring 2017 30

LaToza

Error-proneness

* Does the design of the notation induce slips?

 Compared to textual language, VPLs

e Do not need delim
 Fewer identitiers a

ite

e

's & separators

needed, easier to reference

* (Constructs inserted automatically (e.g., loops)

GMU SWE 795 Spring 2017

31

Viscosity

How much effort is required to make a simple
change?

—dit Rocket program to take account of air resistance
Basic: 63.3 S

_abView: 508.3 s

Prograph: 193.6 s

VPLs required many wires to be rebullt, layout to be
tweaked

GMU SWE 795 Spring 2017

Visibility

* |s every (relevant) part of the code simultaneously
visible”

e [LabView does not show both branches of
conditional at same time (!)

* Particular problem for nested conditionals

* Prograph has poor support for deep nesting of
routines

LaToza GMU SWE 795 Spring 2017

LaToza

VPLs Discussion

Often offers a representation that makes specific tasks
easy

e e.g., tracking data flow

* (Often involves structured editor targeted to specific
domain, which may not support full range of programs

But may make other tasks harder
Often limited focus on scalability

May be possible to get benefits of task-specific
representations without drawbacks through task specific
editor rather than language

GMU SWE 795 Spring 2017 34

