Information Needs

SWE 795, Spring 2017
Software Engineering Environments

Today

Part 1 (Lecture)(~30 mins)

» Sketching

Part 2 (Lecture)(~45 mins)

* \What models help describe programming tasks?
Break!

Part 3 (Project Work)(~30 mins)
Part 3 (Discussion)(45 mins)
* Discussion of readings

GMU SWE 795 Spring 2017

LEN

D 0-K- &

I Pubigr tee < Tena ® et

.

[.

‘e Ng i wpermrnen

b Tt wnwr I
M

J l;--lt.‘,--'

el ea

ORI RO L ¢

e B

v eng N ke

L

@ v

Foo e o

IV oudta T2Il inn et 3ol
T

"‘l-v(\.ﬂ~.

S e L
AST LD AZIEon AT s e Y
» e -t

M aan -
o LU O D B L TR LN T
P O TR DR T
LR TR S DR T J
M . » 1 BB "
PR R TN DR D
AR TR R TR L
TR T A g
AL Y)
. LU U D) B L
P TER DR B
WA T
AL N

rones G ownnie | oeeasny @ werwe B o 3 oe e 0 e

TRV VIS S0 WIRT TR Y e

AR e e

&

P
R
MR R
Nrawie 'ee
Soirtee

warvel
RN L rTEcT e
BN

N T

el

P nens hor vond = and

i e
ma ana
Ll o

-y ’

0evvaoosTvRELOER

& et Comaiew Gring Bae(] re ey D mweetew
* ‘wmelovwperart Srwg Chiwt 32 vamtw

v (L0) I] 1 ey o

- o S0 Jig il ey e

Sebap S ol Seall 2o

A few minutes in the life of a developer

"

B ranaw basiony © . e L PR R JOMRLAs e
Fatateime Vel |
R
e arrwr et r NCpsariens . sromivaurfigiamcom
TR T T s ange
P L '
SotAD .
WA b
~_-are retoad
< .
»
3 .
'. Cioliva ¢ irtirw g o a ti'rs T it
» e @ ' '
n. > " '
. - e . f
" o “he Carsorent o b hal 2
» [’
LS ' . ‘o '
uaw 1 ‘
L . . . - *
Ty . bettora The » dose sz is
» . ' LMD L ey
B radrerpia l' e ' ’
= [T , v r ' €A
L R TR L RS .' latt 3
, »
. g TR L e R
» ~ N et '. L ST avge, 1% harason, v
* 1) S ey '
- y L A\ veantn e ivrend s
- B n s ipm s :
’ |
P RN ATD v k N . T T
Ty C ‘amertaioore « T resan”.arce
LN [N wrtrdams « LT Aitet e, el .
b) s .
PO BLATOWWL e
1 ' it
b L) A s e .
.Sy
*) Ehesie. b e 44 7 s 4 2 -
"ol 1P, > 2 X cowt he rease
) e v -\ "
» L TL) P ' ' '
» I ety
B L L T] FIE N
> - ndrete o
N T T T UL e
v STl TR NE
bl eies e
& A R e et Lt wr Merithiwnsadil)
LT ST L LT AT (U TR A L "
*) e an
* L Besids mrtend vyon mi13zes -
» B3 Il P e L B vt o e s - vy -y
SRR LT R R)
») arsrumiss an
v U Mow Pavemee
e ks e . LS FTENE STRTRE TR S Foakeg o,
CA T T . rocia
* o A verear per -1 B por rewlvw e "ela™y
————————— P

-
ST N DR

LU w

™Y BUhT OCs 1

ow
B TR T

F LA LI L LR L

F AR A RETE 00
~'d.-)
Framoam e

B L L LTI

N
e’ 14 "W
." TS rwmam Srwg Gupen], m w0 '*

“hardd)y

Ll T L |
b prLses scrrag e

Wlear Lot gomnsd, Cunl

svanl e pavas beivg, ORjati

P consutam sw: S0e: Stenill otens ,j

' RA R EEREEELAE R .
- -

.-

3 rpartyrgu my Covepacess, g, Chjua], v
" rourtey AT wwrarast Tomg oy ’
R P T T I LR
SRRl L T

ot e S

T I NI

» " el wewrs ey gl Owee
N N oL

p amniraa

* " cloveruas cocomes, e g -
LS T,

ST iAW e
. e

* Lot Borey, mesee
P s

& casenchn tete deshan 1Yan e
A e e Ty .
sl iy

ottty - .

2" oy e et

* 2 0T Ee i arTamen g
e
P R BT T T .

Percent of time

What percentage of the last week have you spent...

100—
25
80— o .
!
* E 204
60—1 * - ¥ * + -* a
. x * 9
' >
T * -
B . * * g 15
40— T s N “ s
*)
=
Q —
* : & 10
20— . T * 3
-
] [.
é
ol T T I — \
I I I ' I] I I 0 1 | 1 1 | 1 1 1
2 3 4 5 6 ? 8 9
e 2 -§ e 2 2 § 2 -§ Number of Activities in Past Week
b= = :
S 2 0o % £ &5 £ ®© o
e 8 e w = R @
2 2 2 3 &8 £ =5
E 3 5 O
) c
O D

LaToza, Venolia, and Deline. Maintaining Mental Models: A Study of Developer Work Habits. ICSE 2006.

A few hours in the life of a professional software developer

collaboration
programming

collaboration

programming
collaboration

design
collaboration

Developer assigned bug by team
Reproduces error

Browser hits error message (500 internal error)
Attaches debugger

Browse to page again, hit null reference exception
Hypothesize from call stack which function might be responsible
Browse through code
Uses debugger to change values & experiment
Make change, recompile, check, doesn’t work
Navigates slice, wrong values came from objects

In complicated code doesn’t understand
Walks to B’s office and asks where data comes from

B working on high profile feature in area
Tries to make change, still doesn’t work
Walks back to B, realize related to C’s feature, C at lunch
After lunch, A and B walk to C’s office,

A, B, C change design to work with new feature

Bug passed from A to C to change feature

LaToza, Venolia, and Deline. Maintaining Mental Models: A Study of Developer Work Habits. ICSE 2006.

= High)

Effectiveness (1 = Low, 7
w

N
1

(o)]
1

Developers use a variety of techniques for obtaining information
about code

7
2
Unplamai meelings :|'|: Debl:ggef Reading code
. ~ B *
External docs Panned .mecmgs Ergal § | Traj:e s.tftements oChecki messages
Wede Iatnmal docs - gl ® =
IM® g ®
Bug databass 2
Phone ® ° & Other
1 of? g 3
Otrer =
U
g 2
T T ‘Iﬁ T T ! T 1 | | I I
0 5 10 o 15 20' 25 30 0 0 20 30 40
% communicating about code time 9% understanding code time

LaToza, Venolia, and Deline. Maintaining Mental Models: A Study of Developer Work Habits. ICSE 2006. °

Productivity in programming

expertise
time to market

development environments

effort to obtain

programming languages Information

code quality software quality

team practices

LaToza

Models of Programming Work

 Programming activities
o Steps needed to complete programming task

e Asking and answering questions
 Formulating & testing hypotheses
» Selecting strategies

o Structural relationship traversal
e |nformation foraging

GMU SWE 795 Spring 2017

LaToza

Programming Activities

e Goal of programming is to perform tasks
* |Implement features, fix defects, etc.

 Programming is a sequence of steps developers
must do to accomplish these tasks

* Design change, find points in code to change,
determine implications of change, ...

GMU SWE 795 Spring 2017

Edit / Debug Cycle

14%
28% |
50% f
Reproduce
P S0 Sompile ‘...@est
° Pl 5% 4%
950% O\W
/ 6/ %
Circle size: % of time Edge thickness: % of transitions observed

For tasks in code in your own codebase that you haven’t seen recently

LaToza and Myers. Developers ask reachability questions. ICSE 2010. 19

Program comprehension as fact finding

SEEK
> Read relevant methods looking for facts

|

CRITIQUE
Fact A is bad design

LEARN EXPLAIN
Fact Ais true FactA is true to make fact B true
PROPOSE

Change facts A1, B1 to facts A2, B2

v

IMPLEMENT
Change code to reflect facts A2, B2

LaToza, Garlan, Herbsleb, Myers. Program comprehension as fact finding. FSE 07. "

Asking and Answering Questions

e Developers ask questions in order to complete programming tasks
e e.g., What's the best design for implementing this?

 Developers may formulate hypotheses representing answers to
guestions.

 Developers select strategies to gather evidence to support or
reject hypotheses.

 From code, from external resources, from teammates
e Developers often have multiple strategies to answer questions

 Developers may have different levels of certainty about how
strongly they believe the answers they have found.

LaToza GMU SWE 795 Spring 2017 12

Questions are recursive

task Investigate and fix a design problem

questionl Why is an event being issued by forcing a cache update?

How is BufferHandler using its buffer field? Are there any other mutations on it?

action Read methods of BufferHandler

Why is there a buffer member variable that is never used?

Investigate references to BufferHandler.buffer

Why is doDelayedUpdate() a member of BufferHandler?

Reads methods along path, concludes that BufferHandler tracks update delays

Why wouldn’t isFoldStart() call getFoldLevel()

Reads isFoldStart(), getFoldAtLine()
Concludes isFoldStart() doesn’t call because of short circuit evaluation

Implement fix

Assure correctness

Set conditional break point
Check that jEdit still appears to work correctly

Repro original bug by reinserting

LaToza and Myers. Designing useful tools for developers. PLATEAU 2011.

IDE

13

Questions span many topics

Rationale (42)

Why was it done this way? (14) [15][7]

Why wasn t it done this other way? (15)

Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

[
Debugging (26)
How did this runtime state occur? (12) [15]
What runtime state changed when this executed? (2)
Where was this variable last changed? (1)
How is this object different from that object? (1)
Why didn t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3) [15]
Which team's component caused this bug? (1)

Intent and Implementation (32)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

[
Refactoring (h25)
Is there functionality or code that could be refactored? (4)
Is the existing design a good design? (2)
Is it possible to refactor this? (9)
How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)
Are the benefits of this refactoring worth the time investment? (3)

History (23)

When, how, by whom, and why was this code changed or
inserted? (13)[7]

What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]

Has this code always been this way? (2)

What recent changes have been made? (1)[15][7]

Have changes in another branch been integrated into this
branch? (1)

Implications (21)

What are the implications of this change for (5) API clients (5),
security (3), concurrency (3), performance (2), platforms (1), tests
(1), or obfuscation (1)? (21) [15][24]

LaToza and Myers. Hard-to-answer questions about code. PLATEAU 2010.

Testing (20)

Is this code correct? (6) [15]

How can I test this code or functionality? (9)

Is this tested? (3)

Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Implementing (19)

How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
Whats the best design for implementing this? (7)

Control flow (19)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)

What are the possible actual methods called by dynamic dispatch
here? (6)

How do calls flow across process boundaries? (1)

How many recursive calls happen during this operation? (1)

Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)

What is catching this exception? (1)

Contracts (17)

What assumptions about preconditions does this code make? (35)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)

What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)

What is responsible for updating this field? (1)

Performance (16)

What is the performance of this code (5) on a large, real dataset (3)? (8)
Which part of this code takes the most time? (4)

Can this method have high stack consumption from recursion? (1)

How big is this in memory? (2)

How many of these objects get created? (1)

Teammates (16)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)

Policies (15)

What is the policy for doing this? (10) [24]
Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)

What hard to answer questions about code have you recently asked?

[] [
Type relationships (15)
What are the composition, ownership, or usage relationships of this
tpe? (3) [24]
What is this type s type hierarchy? (4) [24]
What implements this interface? (4) [24]
Where is this method overridden? (2)

Data flow (14)

What is the original source of this data? (2) [15]

What code directly or indirectly uses this data? (5)

Where is the data referenced by this variable modified? (2)

Where can this global variable be changed? (1)

Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Location (13)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Building and branching (11)

Should I branch or code against the main branch? (1)

How can I move this code to this branch? (1)

What do I need to include to build this? (3)

What includes are unnecessary? (2)

How do I build this without doing a full build? (1)

Why did the build break? (2)[59]

Which preprocessor definitions were active when this was built? (1)

Architecture (11)

How does this code interact witg libraries? (4)
What is the architecture of the code base? (3)

How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Concurrency (9)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Dependencies (5)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Method properties (2)
How big is this code? (1)
How overloaded are the parameters to this function? (1)

14

LaToza

Types of questions

e Questions about changes
e Questions about elements

* Questions about relationships between elements

GMU SWE 795 Spring 2017

15

LaToza

Questions about Changes - Rationale

 Why was it done this way? (14)
Why wasn't it done this other way”? (15)
Was this intentional, accidental, or a hack? (9)
How did this ever work?” (4)

GMU SWE 795 Spring 2017

16

LaToza

Questions about elements

 \Where is this functionality implemented? (5)
|s this functionality already implemented? (5)
Where is this defined? (3)

GMU SWE 795 Spring 2017

17

Questions about element relationships -

W
W
W

Data flow

nat is the original source of this data? (2)
nat code directly or indirectly uses this data? (5)

nere Is the data referenced by this variable

moditied? (2)

Where can this global variable be changed? (1)
Where is this data structure used (1) for this
purpose (1)? (2)

W

thi

W

LaToza

nat parts of this data structure are modified by
s code? (1)

nat resources is this code using”? (1)

GMU SWE 795 Spring 2017 18

Graphs of Elements

Finding focus points
W) | 5 kinds of questions.

For example: Which type represents this
domain concept?

Expanding focus points
& 15 kinds of questions.
| For example: Which types is this type a part

of?

Understanding a subgraph
‘ & 13 kinds of questions.
| B For example: What is the behavior these types

provide together?

Questions over groups of subgraphs
11 kinds of questions.

For example: What is the mapping between
these Ul types and these model types?

Sillito, Murphy, De Volder. Asking and answering questions during a programming change task. TSE 08.

LaToza GMU SWE 795 Spring 2017

LaToza

Structural Relationship Traversal

 Developer is currently viewing an element in code
* ©.Q,. class, method, statement, field reference

 Developers wishes to navigate to a related method
By reference, call, data dependency, ...

» How do developers make navigation decisions?

GMU SWE 795 Spring 2017

20

LaToza

Information foraging

 Mathematical model describing navigation

* Analogy: animals foraging for food
* (Can forage In different patches (locations)

* (Goal is to maximize chances of finding prey
while minimizing time spent in hunt

* |[nformation foraging: navigating through an
information space (patches) in order to maximize

chances of finding prey (information) in minimal
time

GMU SWE 795 Spring 2017 21

Information environment

e |nformation environment represented as topology

* |[nformation patches connected by traversable
links

* For SE, usually modeled as call graphs

e methods are nodes and function invocations
are edges

LaToza GMU SWE 795 Spring 2017 22

Traversing links

* Links - connection between patch offered by the
information environment

e (Cues - information features associated with
outgoing links from patch

 E.g., text label on a hyperlink

 User must choose which, of all possible links to
traverse, has best chance of reaching prey

LaToza GMU SWE 795 Spring 2017

23

LaToza

Scent

 User interprets cues on links by likelihood they will
reach prey

e e.9., do | think that the “invoke™ method is likely
to implement the functionality I'm looking for”?

GMU SWE 795 Spring 2017

24

LaToza

Simplified mathematical model

reaching prey per cost of interaction
Predators (idealized) choice = max [V / C]

* V -value of information gain, C - cost of
Interaction

Don't usually know ground truth, have to estl

Predator’s desired choice = max [E[V] / E[C

GMU SWE 795 Spring 2017

Users make choices to maximize possibility of

mate

25

LaToza

Models of Programming Work

 Programming activities
o Steps needed to complete programming task

e Asking and answering questions
 Formulating & testing hypotheses
» Selecting strategies

o Structural relationship traversal
e |nformation foraging

GMU SWE 795 Spring 2017

26

LaToza

Productivity Mechanisms

* |Lots of models of programming

 How do these help in the design of programming
tools”

GMU SWE 795 Spring 2017

27

Challenge Productivity Model

o Developers experience challenges (e.g., answering
questions) in their programming tasks

* Jools help developers be more productive by reducing
the time to answer questions, increasing likelihood of
SUCCESS

e This requires

e understanding precisely the information required and
context available to developers

* Insight into a mechanism to make a question easier to
answer

LaToza GMU SWE 795 Spring 2017

28

LaToza

Supporting information needs

 Debugging is hard.
* Jool x claims to make debugging easier!

e Does tool x help?

 Depends...

Does tool x apply in the situations that make
debugging challenging?

Do developers have the context they need to invoke
tool x

Does tool x reliably produce the information required
Are the interactions for using tool x usable

GMU SWE 795 Spring 2017

29

Debugging (26)

% How did this runtime state occur? (12) KA Where was this variable
data, memory corruption, race last changed? (1)
conditions, hangs, crashes, failed API o Why didn’t this
calls, test failures, null pointers happen? (3)

Record execution history

omniscient debuggers o , , ,
Provide interactions for browsing or searching

v
graghics text ucr;@ l _\
#1 propenhs ofths line » why did x1 =887/

P i rih oo '
I objects rendering this ¥ whydidy1 = 1857
why did x2 =937/
windows ¥ whydid y2 =169?

WhyLine [1] NG A0

why did stroke = 5.0 pixel stroke”?

directly supports all 3 questions NN ="

1In some situations o | | e e

‘ e T DDA NG ERC

9 ¥4 v @ 9

- -
- & . R A ——— @
e u o Ton e g It

[1] Ko, AJ., and Myers, B.A. (2008). Debugging reinvented: asking and answering why and why not questions about
program behavior. In Proc. of the Int’l Conf. on Soft. Eng. (ICSE).

LaToza GMU SWE 795 Spring 2017

-

30

Debugging (26)

How do I debug
® this bug in this
environment?(3)
statistical debugging [1] No need to
_ reproduce
-Sample execution traces :
environment on
on user computers developer
-Find correlations between computer

crashes and predicates

LaToza

In what
KA circumstances

does this bug
occur? (3)

Examine
correlations
between crashes
and predicates

[1] Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. 1. 2003. Bug isolation via remote program sampling. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation.

GMU SWE 795 Spring 2017

31

LaToza

X

Debugging (26)

How is this object different
from that object? (1)

Which team’s component

caused this bug? (1)
Which team should 1

assign this bug to?
What runtime state changed

when this executed? (2)

GMU SWE 795 Spring 2017

32

Rationale (42)

Why wasn’t it done this Why was it done this way? (14
X other way? (15) x d e

naming, code structure, inheritance relationships, where resources freed,
code duplication, algorithm choice, optimization, parameter validation
visibility, exception policies

Was this intentional,
R accidental, or a

hack? (9)

% How did this ever
work? (4)

LaToza GMU SWE 795 Spring 2017 33

Refactoring (25)

o Is the existing design KA Is there functionality or code
a good design? (2) that could be refactored? (4)
smell detectors [1], metrics clone detectors [2]

Detects syntactically similar code

Look for bad design idioms Suggests developer refactor

Suggests developer refactor
ComponentUI mui = new MultiButtonUI();

: turn MultiLookAndFeel.createUIs(mui
data clumps instanceot / "~ : . ’
: (MultiButtonUI) mui);
feature envy magic number clone
refused bequest long method \ ComponentUT mui = new MutilColorChooserUI();
typecast]arge class return MultiLookAndFeel.createUIs(mut,

(MultiColorChooserUI) mui);

obsolete code, duplicated functionality, redundant data
between equally accessible data structures

[1] Murphy-Hill, E. and Black, A. P. (2008). Seven habits of a highly effective smell detector. In Proc of Recommendation
Systems for Software Engineering at FSE.

[2] Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: a multi-linguistic token-based code clone detection
system for large scale source code. In TSE, 28(7).

LaToza GMU SWE 795 Spring 2017 34

LaToza

X

Refactoring (25)

Should I refactor
this? (1)

% Are the benefits of this refactoring
worth the time investment? (3)

GMU SWE 795 Spring 2017

35

Refactoring (25)

Is it possible to Ja How can I refactor this (2) without
refactor this? (9) breaking existing users(7)?

IDE refactoring automation
rename

move

pull up

push down

encapsulate field

convert local variable to field

changing a method’s scope, moving functionality between layers,

¥ changing semantics of config values, making operations more data
driven, generalizing code to be more reusable

higher-level refactorings

LaToza GMU SWE 795 Spring 2017 36

Productivity mechanisms

« \What do tools have in common?

* Are there common mechanisms that tools share
INn how they are intended to make developers
more productive?

LaToza GMU SWE 795 Spring 2017 37

Productivity Mechanisms in Programming

Information minimization
Processing information albout code takes time.

Reducing information to process reduces time, increases
productivity

Feedback
Edits to code have implications.
More information about implications increases quality.

Faster information reduces rework time, increasing productivity.

38

Information minimization: Identifying task-relevant information

- What’s the minimal amount of relevant information for a programming task®

- “Proto” theories exist in software engineering.

- Modularity posits that relevant information is related code that can e placed nearby
Information hiding (OO), coupling / cohesion, module systems, aspects, refactoring

- Traversal tools posit that relevant code is structurally connected through
dependencies

Impact analysis, slicers, debuggers

- Recommenders posit that past co-changes predict future co-changes across
modules.

- Concern management, method recommenders

- How relevant is information provided —> productivity benefits of approach
39

