
Information Needs
SWE 795, Spring 2017

Software Engineering Environments

LaToza GMU SWE 795 Spring 2017

Today
• Part 1 (Lecture)(~30 mins)

• Sketching
• Part 2 (Lecture)(~45 mins)

• What models help describe programming tasks?
• Break!

• Part 3 (Project Work)(~30 mins)
• Part 3 (Discussion)(45 mins)

• Discussion of readings

2

A	few	minutes	in	the	life	of	a	developer

3

4

What	percentage	of	the	last	week	have	you	spent…

LaToza,	Venolia,	and	DeLine.	Maintaining	Mental	Models:	A	Study	of	Developer	Work	Habits.	ICSE	2006.

5

Developer assigned bug by team
Reproduces error

Browser hits error message (500 internal error)
Attaches debugger

Browse to page again, hit null reference exception
Hypothesize from call stack which function might be responsible
Browse through code
Uses debugger to change values & experiment
Make change, recompile, check, doesn’t work
Navigates slice, wrong values came from objects

In complicated code doesn’t understand
Walks to B’s office and asks where data comes from

B working on high profile feature in area
Tries to make change, still doesn’t work
Walks back to B, realize related to C’s feature, C at lunch
After lunch, A and B walk to C’s office,
 A, B, C change design to work with new feature
Bug passed from A to C to change feature

A	few	hours	in	the	life	of	a	professional	so:ware	developer

collabora<on
programming

collabora<on

programming
collabora<on

design
collabora<on

LaToza,	Venolia,	and	DeLine.	Maintaining	Mental	Models:	A	Study	of	Developer	Work	Habits.	ICSE	2006.

Developers	use	a	variety	of	techniques	for	obtaining	informa<on	
about	code

6LaToza,	Venolia,	and	DeLine.	Maintaining	Mental	Models:	A	Study	of	Developer	Work	Habits.	ICSE	2006.

Produc<vity	in	programming

7

effort to obtain  
information

expertise

development environments

time to market

software qualitycode quality

programming languages

team practices

LaToza GMU SWE 795 Spring 2017

Models of Programming Work
• Programming activities

• Steps needed to complete programming task

• Asking and answering questions
• Formulating & testing hypotheses
• Selecting strategies

• Structural relationship traversal
• Information foraging

8

LaToza GMU SWE 795 Spring 2017

Programming Activities
• Goal of programming is to perform tasks

• Implement features, fix defects, etc.

• Programming is a sequence of steps developers
must do to accomplish these tasks
• Design change, find points in code to change,

determine implications of change, …

9

Edit	/	Debug	Cycle

10

Circle	size:			%	of	Hme Edge	thickness:			%	of	transiHons	observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

For	tasks	in	code	in	your	own	codebase	that	you	haven’t	seen	recently	

LaToza	and	Myers.	Developers	ask	reachability	quesHons.	ICSE	2010.

Program	comprehension	as	fact	finding

11

SEEK

LEARN

CRITIQUE

EXPLAIN

PROPOSE

IMPLEMENT

Read relevant methods looking for facts

Fact A is true

Fact A is bad design

Fact A is true to make fact B true

Change facts A1, B1 to facts A2, B2

Change code to reflect facts A2, B2

LaToza,	Garlan,	Herbsleb,	Myers.	Program	comprehension	as	fact	finding.	FSE	07.

LaToza GMU SWE 795 Spring 2017

Asking and Answering Questions

• Developers ask questions in order to complete programming tasks
• e.g., What’s the best design for implementing this?

• Developers may formulate hypotheses representing answers to
questions.

• Developers select strategies to gather evidence to support or
reject hypotheses.
• From code, from external resources, from teammates

• Developers often have multiple strategies to answer questions

• Developers may have different levels of certainty about how
strongly they believe the answers they have found.

12

Ques<ons	are	recursive

13
LaToza	and	Myers.	Designing	useful	tools	for	developers.	PLATEAU	2011.

Investigate and fix a design problem

How is BufferHandler using its buffer field? Are there any other mutations on it?

Read methods of BufferHandler

Why is there a buffer member variable that is never used?

Investigate references to BufferHandler.buffer

Why is doDelayedUpdate() a member of BufferHandler?

Reads methods along path, concludes that BufferHandler tracks update delays

Why wouldn’t isFoldStart() call getFoldLevel()

Reads isFoldStart(), getFoldAtLine()  
Concludes isFoldStart() doesn’t call because of short circuit evaluation

Implement fix

Why is an event being issued by forcing a cache update?

Assure correctness

Set conditional break point
Check that jEdit still appears to work correctly
Repro original bug by reinserting

task

IDE

question

action

14
LaToza	and	Myers.	Hard-to-answer	quesHons	about	code.	PLATEAU	2010.

What	hard	to	answer	ques<ons	about	code	have	you	recently	asked?

How did this runtime state occur? (12) [15]
What runtime state changed when this executed? (2)
Where was this variable last changed? (1)
How is this object different from that object? (1)
Why didn’t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3) [15]
Which team’s component caused this bug? (1)

Debugging (26)
How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
What’s the best design for implementing this? (7)

Implementing (19)

What is the policy for doing this? (10) [24]
Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)

Policies (15)

Why was it done this way? (14) [15][7]
Why wasn’t it done this other way? (15)
Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Rationale (42)

When, how, by whom, and why was this code changed or
inserted? (13)[7]
What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]
Has this code always been this way? (2)
What recent changes have been made? (1)[15][7]
Have changes in another branch been integrated into this
branch? (1)

History (23)

What are the implications of this change for (5) API clients (5),
security (3), concurrency (3), performance (2), platforms (1), tests
(1), or obfuscation (1)? (21) [15][24]

Implications (21)

Is there functionality or code that could be refactored? (4)
Is the existing design a good design? (2)
Is it possible to refactor this? (9)
How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)
Are the benefits of this refactoring worth the time investment? (3)

Refactoring (25)

Is this code correct? (6) [15]
How can I test this code or functionality? (9)
Is this tested? (3)
Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Testing (20)

Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)
What do I need to include to build this? (3)
What includes are unnecessary? (2)
How do I build this without doing a full build? (1)
Why did the build break? (2)[59]
Which preprocessor definitions were active when this was built? (1)

Building and branching (11)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)

Teammates (16)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Intent and Implementation (32)

How big is this code? (1)
How overloaded are the parameters to this function? (1)

Method properties (2)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Location (13)

What is the performance of this code (5) on a large, real dataset (3)? (8)
Which part of this code takes the most time? (4)
Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)
How many of these objects get created? (1)

Performance (16)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Concurrency (9)

What assumptions about preconditions does this code make? (5)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)
What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)
What is responsible for updating this field? (1)

Contracts (17)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)
What are the possible actual methods called by dynamic dispatch
here? (6)
How do calls flow across process boundaries? (1)
How many recursive calls happen during this operation? (1)
Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)
What is catching this exception? (1)

Control flow (19)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Dependencies (5)

What is the original source of this data? (2) [15]
What code directly or indirectly uses this data? (5)
Where is the data referenced by this variable modified? (2)
Where can this global variable be changed? (1)
Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Data flow (14)

What are the composition, ownership, or usage relationships of this
type? (5) [24]
What is this type’s type hierarchy? (4) [24]
What implements this interface? (4) [24]
Where is this method overridden? (2)

Type relationships (15)

How does this code interact with libraries? (4)
What is the architecture of the code base? (3)
How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Architecture (11)

Questions span many topics

LaToza GMU SWE 795 Spring 2017

Types of questions

• Questions about changes

• Questions about elements

• Questions about relationships between elements

15

LaToza GMU SWE 795 Spring 2017

Questions about Changes - Rationale

• Why was it done this way? (14)  
Why wasn’t it done this other way? (15)  
Was this intentional, accidental, or a hack? (9)  
How did this ever work? (4)

16

LaToza GMU SWE 795 Spring 2017

Questions about elements

• Where is this functionality implemented? (5)  
Is this functionality already implemented? (5)  
Where is this defined? (3)

17

LaToza GMU SWE 795 Spring 2017

Questions about element relationships -
Data flow

• What is the original source of this data? (2)  
What code directly or indirectly uses this data? (5)  
Where is the data referenced by this variable
modified? (2) 
Where can this global variable be changed? (1)  
Where is this data structure used (1) for this
purpose (1)? (2)  
What parts of this data structure are modified by
this code? (1) 
What resources is this code using? (1)

18

LaToza GMU SWE 795 Spring 2017

Graphs of Elements

19

Sillito,	Murphy,	De	Volder.	Asking	and	answering	quesHons	during	a	programming	change	task.	TSE	08.

LaToza GMU SWE 795 Spring 2017

Structural Relationship Traversal

• Developer is currently viewing an element in code
• e.g,. class, method, statement, field reference

• Developers wishes to navigate to a related method
• By reference, call, data dependency, …

• How do developers make navigation decisions?

20

LaToza GMU SWE 795 Spring 2017

Information foraging
• Mathematical model describing navigation
• Analogy: animals foraging for food

• Can forage in different patches (locations)
• Goal is to maximize chances of finding prey

while minimizing time spent in hunt
• Information foraging: navigating through an

information space (patches) in order to maximize
chances of finding prey (information) in minimal
time

21

LaToza GMU SWE 795 Spring 2017

Information environment
• Information environment represented as topology

• Information patches connected by traversable
links

• For SE, usually modeled as call graphs
• methods are nodes and function invocations

are edges

22

LaToza GMU SWE 795 Spring 2017

Traversing links
• Links - connection between patch offered by the

information environment
• Cues - information features associated with

outgoing links from patch
• E.g., text label on a hyperlink

• User must choose which, of all possible links to
traverse, has best chance of reaching prey

23

LaToza GMU SWE 795 Spring 2017

Scent
• User interprets cues on links by likelihood they will

reach prey
• e.g., do I think that the “invoke” method is likely

to implement the functionality I’m looking for?

24

LaToza GMU SWE 795 Spring 2017

Simplified mathematical model
• Users make choices to maximize possibility of

reaching prey per cost of interaction
• Predators (idealized) choice = max [V / C]

• V - value of information gain, C - cost of
interaction

• Don’t usually know ground truth, have to estimate
• Predator’s desired choice = max [E[V] / E[C]]

25

LaToza GMU SWE 795 Spring 2017

Models of Programming Work
• Programming activities

• Steps needed to complete programming task

• Asking and answering questions
• Formulating & testing hypotheses
• Selecting strategies

• Structural relationship traversal
• Information foraging

26

LaToza GMU SWE 795 Spring 2017

Productivity Mechanisms

• Lots of models of programming

• How do these help in the design of programming
tools?

27

LaToza GMU SWE 795 Spring 2017

Challenge Productivity Model
• Developers experience challenges (e.g., answering

questions) in their programming tasks
• Tools help developers be more productive by reducing

the time to answer questions, increasing likelihood of
success

• This requires
• understanding precisely the information required and

context available to developers
• insight into a mechanism to make a question easier to

answer

28

LaToza GMU SWE 795 Spring 2017

Supporting information needs
• Debugging is hard.

• Tool x claims to make debugging easier!

• Does tool x help?

• Depends…
• Does tool x apply in the situations that make

debugging challenging?
• Do developers have the context they need to invoke

tool x
• Does tool x reliably produce the information required
• Are the interactions for using tool x usable

29

LaToza GMU SWE 795 Spring 2017

Debugging (26)

30

omniscient debuggers

How did this runtime state occur? (12)
data, memory corruption, race
conditions, hangs, crashes, failed API
calls, test failures, null pointers

* Where was this variable  
last changed? (1)*
Why didn’t this  
happen? (3)*

[1] Ko, A.J., and Myers, B.A. (2008). Debugging reinvented: asking and answering why and why not questions about
program behavior. In Proc. of the Int’l Conf. on Soft. Eng. (ICSE).

Record execution history
Provide interactions for browsing or searching

WhyLine [1]
directly supports all 3 questions  
in some situations

LaToza GMU SWE 795 Spring 2017

Debugging (26)

31

statistical debugging [1]

How do I debug
this bug in this
environment?(3)

*
In what
circumstances  
does this bug
occur? (3)

*

-Sample execution traces
on user computers
-Find correlations between
crashes and predicates

No need to
reproduce
environment on
developer
computer

Examine
correlations
between crashes
and predicates

[1] Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. I. 2003. Bug isolation via remote program sampling. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation.

LaToza GMU SWE 795 Spring 2017

Debugging (26)

32

Which team’s component  
caused this bug? (1)
Which team should I
assign this bug to?

✖

What runtime state changed  
when this executed? (2) ✖

How is this object different  
from that object? (1)✖

LaToza GMU SWE 795 Spring 2017

Rationale (42)

33

How did this ever  
work? (4)

Why was it done this way? (14)  Why wasn’t it done this
other way? (15)

Was this intentional,  
accidental, or a
hack? (9)

naming, code structure, inheritance relationships, where resources freed,
code duplication, algorithm choice, optimization, parameter validation
visibility, exception policies

✖

✖ ✖

✖

LaToza GMU SWE 795 Spring 2017

Refactoring (25)

34

Is there functionality or code
that could be refactored? (4)

Is the existing design
a good design? (2)  * *

obsolete code, duplicated functionality, redundant data
between equally accessible data structures✖

smell detectors [1], metrics clone detectors [2]

Look for bad design idioms
Suggests developer refactor

data clumps
feature envy
refused bequest
typecast

[1] Murphy-Hill, E. and Black, A. P. (2008). Seven habits of a highly effective smell detector. In Proc of Recommendation
Systems for Software Engineering at FSE.

Detects syntactically similar code
Suggests developer refactor  

[2] Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: a multi-linguistic token-based code clone detection
system for large scale source code. In TSE, 28(7).

instanceof
magic number
long method
large class

ComponentUI mui = new MutilColorChooserUI(); 
return MultiLookAndFeel.createUIs(mui,  
 (MultiColorChooserUI) mui); 

ComponentUI mui = new MultiButtonUI(); 
return MultiLookAndFeel.createUIs(mui,  
 (MultiButtonUI) mui); 

clone

LaToza GMU SWE 795 Spring 2017

Refactoring (25)

35

Should I refactor
this? (1)

Are the benefits of this refactoring
worth the time investment? (3)✖ ✖

LaToza GMU SWE 795 Spring 2017

Refactoring (25)

36

Is it possible to
refactor this? (9)

How can I refactor this (2) without
breaking existing users(7)?

IDE refactoring automation

higher-level refactorings

*

✖

*

changing a method’s scope, moving functionality between layers,
changing semantics of config values, making operations more data
driven, generalizing code to be more reusable

rename
move
pull up
push down
encapsulate field
convert local variable to field
....

LaToza GMU SWE 795 Spring 2017

Productivity mechanisms

• What do tools have in common?
• Are there common mechanisms that tools share

in how they are intended to make developers
more productive?

37

Produc<vity	Mechanisms	in	Programming

• Information minimization

• Processing information about code takes time.

• Reducing information to process reduces time, increases
productivity

• Feedback

• Edits to code have implications.

• More information about implications increases quality.

• Faster information reduces rework time, increasing productivity.

38

Informa<on	minimiza<on:	Iden<fying	task-relevant	informa<on

• What’s the minimal amount of relevant information for a programming task?

• “Proto” theories exist in software engineering.

• Modularity posits that relevant information is related code that can be placed nearby

• Information hiding (OO), coupling / cohesion, module systems, aspects, refactoring

• Traversal tools posit that relevant code is structurally connected through
dependencies

• Impact analysis, slicers, debuggers

• Recommenders posit that past co-changes predict future co-changes across
modules.

• Concern management, method recommenders

• How relevant is information provided —> productivity benefits of approach
39

