
Debugging
SWE 795, Spring 2017

Software Engineering Environments

LaToza GMU SWE 795 Spring 2017

Today
• Part 1 (Lecture)(~45 mins)

• Debugging
• Part 2 (HW1 Presentations)(30 mins)
• Break!

• Part 3 (Discussion)(60 mins)
• Discussion of readings

2

LaToza GMU SWE 795 Spring 2017

Example

3LaToza	and	Myers.	Developers	ask	reachability	ques;ons.	ICSE	2010.

getStartContext

retrieveRela;onships?
NPE

LaToza GMU SWE 795 Spring 2017

Example

4

LaToza GMU SWE 795 Spring 2017

Definitions
• Error - discrepancy between actual behavior of system and

intended behavior

• Failure - incorrect output value, exception, etc.; an error that
has become observable

• Fault - lines in code which are incorrect

• Debugging: determining the cause of a failure by localizing
its location to a fault
• More formally: fault localization

5

Edit	/	Debug	Cycle

6

Circle	size:			%	of	;me Edge	thickness:			%	of	transi;ons	observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

For	tasks	in	code	in	your	own	codebase	that	you	haven’t	seen	recently	

LaToza	and	Myers.	Developers	ask	reachability	ques;ons.	ICSE	2010.

LaToza GMU SWE 795 Spring 2017

Steps in fixing bugs

• Reproduce the problem
• Fault localization
• Investigate fix
• Implement fix
• Test fix

• Will focus on fault localization today

7

LaToza GMU SWE 795 Spring 2017

Supporting debugging

• Why is it so challenging to go from failure to fault?
• It may be unclear where behavior is

implemented in code
• Fault may occur far away from failure

• How to find connection?
• Understanding why failure occurred may be

challenging

8

LaToza GMU SWE 795 Spring 2017

What makes hard bugs hard to debug?

• Cause / effect chasm - symptom far removed from the root cause (15
instances) 
 timing / synchronization problems 
 intermittent / inconsistent / infrequent bugs 
 materialize many iterations after root cause 
 uncertain connection to hardware / compiler / configuration

• Inapplicable tools (12 instances) 
 Heisenbugs - bug disappears when using debugging tool 
 long run to replicate - debugging tool slows down long run even more 
 stealth bug - bug consumes evidence to detect bug 
 context - configuration / memory makes it impossible to use tool

• What you see if probably illusory (7 instances)  
 misreads something in code or in runtime observations

• Faulty assumption (6)
• Spaghetti code (3)

9

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza GMU SWE 795 Spring 2017

Traditional debugging techniques

• Stepping in debugger
• Logging - insert print statements or wrap particular

suspect functions
• Dump & diff - use diff tool to compare logging data

between executions
• Conditional breakpoints
• Profiling tool - detect memory leaks, illegal memory

references

10

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza GMU SWE 795 Spring 2017

Debugging Strategies

• Strategies
• Gather execution trace data
• Formulate & test hypotheses
• Traverse control & data dependencies

backwards (slicing)

11

LaToza GMU SWE 795 Spring 2017

Formulate & test hypotheses
• Use knowledge & data so far to formulate hypothesis

about why bug happened  
 cogitation, meditation, observation, inspection,
contemplation, hand-simulation,  
 gestation, rumination, dedication, inspiration,
articulation

• Recognize cliche  
 seen a similar bug before

• Controlled experiments - test hypotheses by gathering
data

12

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza GMU SWE 795 Spring 2017

Some debugging techniques
• Record & replay execution (omniscient debuggers)
• Find temporary objects that aren’t garbage collected

(Jinsight)
• Find shortest retro steps (delta debugging)
• Differentiate faulty from unfaulty executions (statistical

debugging)
• Traverse control & data dependencies backwards (static

slicers, dynamic slicers)
• Connected separated events by searching across control flow

(Reacher)
• Recommend fixes other developers made for same error [See

Crowdsourcing Lecture]

13

LaToza GMU SWE 795 Spring 2017

Record & replay execution

• Debugging in a debugger is hard
• Forces developer to guess which methods to

step into
• Forces developers to guess which values to

instrument
• Changing guess requires reproing failure again

• Can be time consuming

• What if developers could debug forwards and
backwards?

14

LaToza GMU SWE 795 Spring 2017

Record & replay execution
• Record execution, step backwards / forwards through execution 

 Biggest challenge - performance slowdown from logging - focus of
most papers

• Example systems focused on user interactions
• Retrace - on exception, backup several statements & start logging

• ZStep94 - backwards / forwards stepping, find code which rendered
graphics

• Omniscient debugging - backwards / forwards stepping, step through
writes to a variable

• WhyLine - ask questions about output, traverse dynamic control & data  
 dependencies, ask why didn’t questions

15

M. V. Zelkowitz. 1973. Reversible execution. Commun. ACM 16, 9 (September 1973), 566.

Henry Lieberman and Christopher Fry. 1995. Bridging the gulf between code and behavior in programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI '95), 480-486.

Andrew J. Ko and Brad A. Myers. 2010. Extracting and answering why and why not questions about Java program output. ACM Trans.
Softw. Eng. Methodol. 20, 2, Article 4 (September 2010), 36 pages.

Bill Lewis. Debugging backwards in time. In Proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG
2003), October 2003.

http://dx.doi.org/10.1145/223904.223969
http://dx.doi.org/10.1145/1824760.1824761
http://www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf

LaToza GMU SWE 795 Spring 2017

• Forwards / backwards stepping  
through execution events

• Select graphical output, find code that drew it

ZStep94

16

See value of selected variables

Henry Lieberman and Christopher Fry. 1995. Bridging the gulf between code and behavior in programming. In Proceedings of the
SIGCHI conference on Human factors in computing systems (CHI '95), 480-486.

Demo: http://web.media.mit.edu/
~lieber/Lieberary/ZStep/ZStep.mov

http://dx.doi.org/10.1145/223904.223969
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov

LaToza GMU SWE 795 Spring 2017

Omniscient debugger

17

Demo	/	talk:	http://video.google.com/videoplay?
docid=3897010229726822034#

Bill Lewis. Debugging backwards in time. In Proceedings of the Fifth International Workshop on Automated Debugging
(AADEBUG 2003), October 2003.

http://video.google.com/videoplay?docid=3897010229726822034#
http://video.google.com/videoplay?docid=3897010229726822034#
http://video.google.com/videoplay?docid=3897010229726822034#
http://www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf

LaToza GMU SWE 795 Spring 2017

Find temporary objects that aren’t garbage collected

18

Wim De Pauw and Gary Sevitsky. Visualizing Reference Patterns for Solving Memory Leaks in Java. In European Conference on
Object-Oriented Programming (ECOOP), pages 116–134,1999.

Reference

Starting set 
(can be objects created 
after temporary event 
that didn’t collected)

Objects of a specific 
class with same reference 
tree

Class object  
(static members)

Multiple instances

Old object 
(created before  
temporary event)

Class occurs
more than once
in diagram

http://www.springerlink.com/content/cfvp0ccf6j9dtnf6/

LaToza GMU SWE 795 Spring 2017

Find shortest repro steps
• Long sequence of steps uncovered by tester

triggers a bug.
• Which of these steps are causing the bug
• Complex input - which part of input is

responsible for bug?
• Example - 10,700 Mozilla bugs (11/20/2000)

19

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering
28(2), February 2002, pp. 183-200.

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

LaToza GMU SWE 795 Spring 2017

Find shortest repro steps
• ddmin algorithm sketch:
• 1. Decompose input into pieces  

2. Run tests on pieces  
3. If there’s a piece that still fails, go back to 1 on
piece  
 Otherwise, found locally minimal smallest input

20

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering
28(2), February 2002, pp. 183-200.

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

LaToza GMU SWE 795 Spring 2017

Compare faulty & unfaulty execution
traces

• Idea: bugs caused by executing buggy statements 
 Find buggy statements executed mostly on failing tests (color red)

21

James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization technique. In
Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering (ASE '05). ACM, New York, NY, USA,
273-282.

http://dx.doi.org/10.1145/1101908.1101949

LaToza GMU SWE 795 Spring 2017

Compare faulty & unfaulty execution traces

• Tarantula - frequency of failing runs relative to passing runs (“suspicousness”) 
Union: (U passing_tests) - failing_test  
Intersection: intersect passed test statements, subtract failing tests statements 
Nearest neighbor (NN): failing_test - most_similar_passing_test 
Cause transition (CT): find smallest memory difference  

22

James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization technique. In
Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering (ASE '05). ACM, New York, NY, USA,
273-282.

Siemens suite of fault localization programs

http://dx.doi.org/10.1145/1101908.1101949

LaToza GMU SWE 795 Spring 2017

Compare faulty & unfaulty execution
traces

23

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Spring 2017

Compare faulty & unfaulty execution
traces

• Program runs on user computer 
 Crashes or exhibits bug (failure) 
 Exits without exhibiting bug (success)

• Counters count # times predicates hit 
 Counters sent back to developer for failing and
successful runs

• Statistical debugging finds predicates that predict bugs  
 100,000s to millions of predicates for small applications  
 Finds the best bug predicting predicates amongst
these

• Problems to solve  
 Reports shouldn’t overuse network bandwidth (esp
~2003) 
 Logging shouldn’t kill performance 
 Interesting predicates need to be logged (fair
sampling)  
 Find good bug predictors from runs  
 Handle multiple bugs in failure runs

24

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Spring 2017

Compare faulty & unfaulty execution
traces

• Predictor of what statements are related to a bug:  
 Fail(P) - Context(P)  
 Pr(Crash | P observed to be true) - Pr(Crash | P observed
at all)

• Example of a “likelihood ratio test”

• Comparing two hypotheses
• 1. Null Hypothesis: Fail(P) <= Context(P)  

 Alpha <= Beta
• 2. Alternative Hypothesis: Fail(P) > Context(P)  

 Alpha > Beta

25

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Spring 2017

Traverse dependencies
• Slice

• Subset of the program that is responsible for
computing the value of a variable at a program point

• Backwards slice
• Transitive closure of all statements that have a

control or data dependency

• Originally formulated as subset of program
• Later formulations emphasize ability to traverse

control & data dependencies (e.g., WhyLine)

26

LaToza GMU SWE 795 Spring 2017

Traverse control & data dependencies
backwards

• BEGIN 
READ(X, Y) 
TOTAL := 0.0 
SUM := 0.0 
IF X <= 1 
 THEN SUM := Y 
 ELSE BEGIN 
 READ(Z) 
 TOTAL := X * Y 
 END  
WRITE(TOTAL, SUM) 
END

• (Static) slice - subset of the program that produces the same variable
values at a program point

• Slice on variable Z at 12

27

Participants performed 3 debugging tasks on
short code snippets

Asked to recognize code snippets afterwards

Mark Weiser. 1982. Programmers use slices when debugging. Commun. ACM 25, 7 (July 1982), 446-452.

http://portal.acm.org/citation.cfm?id=358577

LaToza GMU SWE 795 Spring 2017

Slicers debug faster
• Students debugging 100 LOC C++ programs
• Students given 

 Programming environment 
 Hardcopy input, wrong output, correct output  
 Files with program & input

• Compared students instructed to slice against everyone
else 
 Excluding students who naturally use slicing strategy

• Slicers debug significantly faster (65.29 minutes vs.
30.16 minutes)

28

Francel M. A. and S. Rugaber (2001). The Value of Slicing While Debugging, Science of Computer Programming, 40(2-3), 151-
169.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V17-434442G-2&_user=525223&_coverDate=07/31/2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1592955686&_rerunOrigin=google&_acct=C000026389&_version=1&_urlVersion=0&_userid=525223&md5=fc3d24a54e88a14f5439d75ad19e91cf&searchtype=a

LaToza GMU SWE 795 Spring 2017

Dynamic  
slicing

29

Hiralal Agrawal, Richard A. Demillo, and Eugene H.
Spafford. 1993. Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper. 23, 6 (June 1993),
589-616.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231

