Debugging

SWE 795, Spring 2017
Software Engineering Environments

Today

 Part 1 (Lecture)(~45 mins)

* Debugging
e Part 2 (HW1 Presentations)(30 mins)
 Break!

 Part 3 (Discussion)(60 mins)
* Discussion of readings

LaToza GMU SWE 795 Spring 2017

Example

retrieveRelationships

== NPE

getStartContext

To,, LATOZA and Myers. Developers ask reachagMUg\ﬁéJ%gi pr;%.glgélg 2010.

Java - Fusion/sre/edujemujes/fusion/xmi XML Retriever java - Eclipse SDK - JUsers/tlateza/Documents/Code /Reachability question 8

.o s S0 0 DO RTREN I Tt 2 e

3 K

1 Package Explorer 5% S Y2 0[] XMLRetrieverjava 2

F {1 edu.cmu.cs crystal flow.coneur 223
> (B edu.cmucs crystal flow.workl st 260
> (B edu.cmuics crystalinternal 272

public void retrieveNithSchema(File Ffile, String schema) {
SchemalQueries sQueries « a.eries, get(schena);

F i edu.cmu.cs crystal simple 225 if (=Queries !« mull) {
» i edu.cmu.cs crystal tac 284 RelationshipDelic resull = sQueries runfueries(Mile, ‘ypes);
> 1’}3 edu.cmu.cs.crystal tac.ecl pse 255 delta = Relationshizlelta. join{delto, result);
> iR edu.cmu.cs.crystal.tac.model 270 topLabels.addA11(sCueries. FindTopObjecte(file, types));
¥ [edu.cmu.cs crystal util 282 1
> [edu.cmu cs crystal util typehierarchy 25/ }
> Hrest 276 - public Relatianshipfortext getStart{ontext(Yariable thisVar, Alias{ontext alioses) |
F (M analyses 23« RelotionshipContex: stert = new RelotionshipContext(false);
F =, Flug-in Dependzrcies RelationshipDelta cervertza « new RelationshipDelza();
> = JRE System Library JvM 1.5.0 (MacOS X Defauln)] Nap<Objectliabel, Objeciiazels nindings = new HashMap<bjectlazel, Oasectliabel 5();

Pk &y cec 269
» (Ficons 3

@ .

for (ObjectLabel pessibleToz @ toosLabels) £ - gemnle AllasCon

String thisType = tnisvar. resalveType() getQuali Miechame();

FRib 2 String pussibleTopTyse = possibleTop. getType(). gecfuoelificchome(); " comverelzionshipeladonship, !
(Flog 3 if (types.isSubtypelomoctinlelthisType, possibleTopType)) {
> i META-INF 276 Sel<Objecilcbels LrisAliases - aliases. getAliases{ hisVar);
b (5 schema 91 assert (thisAlicses.size() == 2);
r}’ build.grogerties 250 bindings.pus{pessialeTan, thisAliases iteracor().rext());
5 COPYING 1 :
5 COPYING LESSER 1]

2 copyright-notice tyt 1.0

‘{ﬂm’ Socsoml 236 for (Entry«Relaticrship, TrreeValues enlry : della) {
&ljavacocxml 236

Relationship convlelts « convertRelationshiplencry.gezkey(), bindings);

Jﬂ;' plugin.xmi 260 converted. secholatinnsnin(raavlelta, FourPainslassico. convert(eatey. getValue()));
Vi > Fusion 3¢ [nuaps /) fus on googlecode.com)/sw, Tr }
[* 2]
vYER > sre 6 return start.applyChergesFromdeltalconverted);
> B > eduonuacs.fusion 35]

F i > eduuanuacs.fusion.censtraint 36 O

> i edu.cmu.cs Tusion.constraint.operations 32

> tH edu.cmu.cs Fusicn.constraint. oredicates 36

» t}l = edu.omu.cs fusion.constraint.requestors 87
fH edu.cmu.cs fusion parser 4

a s " <
Problems Javadoc Declarztion _o* Call Hierarchy £3 & e el e & <0

Memenors calling ‘getstantContextiVar ahle, AllastCartext)’ - inwaorkspace

»] > edu.cmacs fusion.parsers.predacate 41 ¥ @ performAnalysis() : AralysisResult<LE N, OP> - edu.cmu.cs.crystal.flow. workl ane Call
» [edu.cmu.cs fusion rawannatations 4 ¥ u veformAnalysis(MethodDeclaration) . vo J - edu.umnu.cscrystal. Mo Mottt hd 203 peformAnalysisOn Surrouna ng MethodifNceded(d)
» ({1 > edu.cmues fusion.relatinnchip 36 ¥ & switchToMethodMethod Declaration) - vo J - educnu.cs.coystal fow, Mo
v B > cdu.amu.cs.fusion.xm! ¥ @ performAnabvs sOrSurrouncing MethodiNeeded (ASTNode) - voic - e
> i3 > NamedTypesinding java ¥ & gelEndResultsiMethodDeclaraton) LE = edu cmues crystal Now b
» |5 schemaQueries Java ¥ ¢ ana'yzeMetrcdiMethodDedaration) - void - edu.cr . cs fusicn
» [& TypeComparisonCa'l java ¥ § runAnalysis/lanzysisReporter, lAna ysisinput, ICo pilationk
- g?' TyeeCumparisonDefinition.java @ run/Annotationilatabase) - voic - sducmucsorystalnte

> E':. > XMLFileVis 1o java P @ getlabe edindResult(MethadDeclaration) - IResult <l % = 2¢. cmu
» 53 XMLC Y ectlabel jave P o gotlabe pdResultAfter(CEGNoade €ASTNAde S) Iesult <l e sou
» mmwdm b o getlabe rdResulBefore ICFONode ¢cASTNode») “ IRes 1<l Py pd
> & - vest 30 ¥ @ gotlabe cdResulsAfrertASThNoce] | IResu t<LlE> educmu.cs.orys
P BAJRE System Library JVM 1.6.0 (Macl)s X Default)) b @ deriveResuluEc! pselnstructiorSequence, LE, TACInstruction, o<
P B\ Flug-in Dependercies ¥ @ getlacaledResy tsAfterfASTNode) © IResult<LE> - edu omu.Cs.C
P B\ Referancec Librares 3 wetlabelecResultsAlter(ASTNOde) Resuli< B> - educmu
P53 > META-INE 24 b @ getlaveledResy sAMe (TACInstruction) IResult<lis < ciu om
l) > bulld.properties ¢« » @ gellabe edResulisBeforedASTNOde) (ResullelE> « educrucs. oy
_51 Fuslon.xsd 88 @ getlabe edStartResultMe thodDeclaration) 1Resu L« LE> « educe
ﬂ] plugin.xmi &7 b & getResultsOrNUllAfter(ASTNGeCe) | LE - edu.omu.cs.crystal Hlow M
At saxondhejar P o gatRasultsOrNUlSeforetASTNOGE) L - ecu comucs.crysta flow.M
V,,j‘l > FusionTests 74 [hutps./ Musion.googlecode.com/'s P @ geStartResultsMethocDeclaration) - LI - edu.cmnu cscrystal flow
.'lﬂll PlaidAnnotations 652 [huip [/ plaidannotations oogle P o getEmtryValue() © LE - edu.cmu.cscrgstal Aow.warkl st EranchSen uteveWark ist

- 2§ aroraggmail.com cou.cmu.cs. fusion.xml XMLRetricver.java - Fusion/src

Definitions

* Error - discrepancy between actual behavior of system and
iIntended behavior

e Fallure - incorrect output value, exception, etc.; an error that
has become observable

e Fault - lines In code which are incorrect

 Debugging: determining the cause of a failure by localizing
its location to a fault

* More formally: fault localization

LaToza GMU SWE 795 Spring 2017

Edit / Debug Cycle

14%
28% |
50% f
Reproduce
P S0 Sompile ‘...@est
° Pl 5% 4%
950% O\W
/ 6/ %
Circle size: % of time Edge thickness: % of transitions observed

For tasks in code in your own codebase that you haven’t seen recently

LaToza and Myers. Developers ask reachability questions. ICSE 2010.

LaToza

Steps in fixing bugs

Reproduce the problem
-ault localization

nvestigate fix
Implement fix
Test fix

Will tocus on fault localization today

GMU SWE 795 Spring 2017

LaToza

Supporting debugging

 Why is it so challenging to go from failure to fault”

* |t may be unclear where behavior Is
emented In code

mp

e [Fau

e How to find co

t may occur

* Understanding why fal
challenging

‘ar away from failure
Nnect

on?
ure occurred may be

GMU SWE 795 Spring 2017

What makes hard bugs hard to debug?

Cause / effect chasm - symptom far removed from the root cause (15
instances)

timing / synchronization problems

intermittent / inconsistent / infrequent bugs

materialize many iterations after root cause

uncertain connection to hardware / compiler / configuration

* |[napplicable tools (12 instances)

Heisenbugs - bug disappears when using debugging tool

ong run to replicate - debugging tool slows down long run even more
stealth bug - bug consumes evidence to detect bug

context - configuration / memory makes it impossible to use tool

 What you see if probably illusory (7 instances)
misreads something in code or in runtime observations

e Faulty assumption (6)
* Spaghetti code (3)

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

LaToza GMU SWE 795 Spring 2017

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,

Traditional debugging techniques

e Stepping in debugger

 Logging - insert print statements or wrap particular
suspect functions

 Dump & diff - use diff tool to compare logging data
between executions

 Conditional breakpoints

* Profiling tool - detect memory leaks, illegal memory
references

1993, 86-112.

LaToza

GMU SWE 795 Spring 2017

10

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Debugging Strategies

o Strategies
* (Gather execution trace data
* Formulate & test hypotheses

* Traverse control & data dependencies
backwards (slicing)

LaToza GMU SWE 795 Spring 2017 11

Formulate & test hypotheses

« Use knowledge & data so far to formulate hypothesis
about why bug happened
cogitation, meditation, observation, inspection,
contemplation, hand-simulation,
gestation, rumination, dedication, inspiration,
articulation

 Recognize cliche
seen a similar bug before

« Controlled experiments - test hypotheses by gathering
data

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ,
1993, 86-112.

LaToza GMU SWE 795 Spring 2017

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza

Some debugging techniques

Record & replay execution (omniscient debuggers)

Find temporary objects that aren't garbage collected
(Jinsight)

Find shortest retro steps (delta debugging)

Differentiate faulty from unfaulty executions (statistical
debugging)

Traverse control & data dependencies backwards (static
slicers, dynamic slicers)

Connected separated events by searching across control flow
(Reacher)

Recommend fixes other developers made for same error [See
Crowdsourcing Lecture]

GMU SWE 795 Spring 2017 13

Record & replay execution

 Debugging in a debugger is hard

* Forces developer to guess which methods to
step Into

* [orces developers to guess which values to
iInstrument

 Changing guess requires reproing failure again
* Can be time consuming

 What if developers could debug forwards and
backwards”

LaToza GMU SWE 795 Spring 2017

14

Record & replay execution

« Record execution, step backwards / forwards through execution
Biggest challenge - performance slowdown from logging - focus of

most papers
 Example systems focused on user interactions

e Retrace - on exception, backup several statements & start logging
M. V. Zelkowitz. 1973. Reversible execution. Commun. ACM 16, 9 (September 1973), 566.

o /Step94 - backwards / forwards stepping, find code which rendered
graphics

Henry Lieberman and Christopher Fry. 1995. Bridging the gulf between code and behavior in programming. In Proceedings of the SI(
conference on Human factors in computing systems (CHI '95), 480-486.

* Omniscient debugging - backwards / forwards stepping, step through

writes to a variable

Bill Lewis. Debugging backwards in time. In Proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG
2003), October 2003.

 WhyLine - ask questions about output, traverse dynamic control & data
dependencies, ask why didn’'t questions

Andrew J. Ko and Brad A. Myers. 2010. Extracting and answering why and why not questions about Java program output. ACM Trans.
Softw. Eng. Methodol. 20, 2, Article 4 (September 2010), 36 pages.

LaToza GMU SWE 795 Spring 2017 15

http://dx.doi.org/10.1145/223904.223969
http://dx.doi.org/10.1145/1824760.1824761
http://www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf

/Step94

* Forwards / backwards stepping |
through execution events See value of selected variables

(ab-left (left-side treelf> # (A '"TREE <4 32D
(right-side treel)l))

Go to end of program

Show wvalue of expression, without stopping

Single step .

Back up from value o expresson

Go to beginning of program

C(ab-left (left-sifDir i
(right-side tree){=> # (A 'TREE <1 2>

Single step "graphically”
Single step backwards "graphically” ——

Single step backwards
LKL

jefun alpha-beta (tree)
(display-tgi0: : : 5
(ab_treedaE> 3

efun ab (trngl—g ATree = .
« Select gt ms » that drew it

Clabe |

MiH:3 Mg 1

Just Shom Source Code

Backup Stepper to Event Demo: m:p:z /web.media.mit.edu/
A 53 [\ ~lieber/Lieberary/ZStep/ZStep.mov

Henry Lieberman and Christopher Fry. 1995. Bridging the gulf between code and behavior in programming. In Proceedings of the
SIGCHI conference on Human factors in computing systems (CHI '95), 480-486.

LaToza GMU SWE 795 Spring 2017

http://dx.doi.org/10.1145/223904.223969
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov

Omniscient debugger

Tf‘) O6 Omnisclent Cebugger 23.Dec.06 - com.lambda.Deb.ugger.Damo
File Run Trace Filter | Previous |l <@ P P Event 532 [1273] Demnu java:198
v Objects
Threzds i «f P M Methad Trares [4 P M
<nain_7> feTmme R el S 0) = wanidl H ! t E’
«<forter (> <Sortey N Teoeort(f.) =e s Sexmo I
«forter 1- <Sorted NTamn: N avarage(l. %) -« Zan quics “Semo 1°
<jor.er _z> <3ortel DR o (ST N, O,) =u wDenoRu uw ab:’ s < ‘%0
<jorter 2> Thesad crwraPeno e e Ae, TSl T e NSt b ‘e (el
== NSuitel _4” -- CHNOATTA™ A2 ITAYI() -2 Vaida doldy lat[2oy_3d
- \JUllel _J# == A SIEMY (3.3007 (3,) => v o b | b1
-- NSuites 6~ -- SRANA (1>, AVAYAJE 3, S| =2 &F3 + 18 b4 [}
Y cpans U¥.30TL|3, 4, - vold 1" t198
ore cpane U¥.3ortis, 5, - vold 14 AL
~ so¥t -» waid D 1314
Stack <LONLer _8%.j0iny) =¥ Wolic SR TN
wPseroR nwmale Selcungd) gare -» wold bR TN
wPeeres Frowoar (0, %) Tn =% vald 12 LER |
wPweses Crowior (%, %) ! ~47
€) e e * LT
WP Fronos mg=(%, 5) ~
S 9iE
€ 13k
(Code |l T L MCOAY . L
a yatuxrn; TE ada
Locals of < > o ol | 72
e Btar: = 2¢blio int zveraqe(iat ctart, int end) | Tz SEL
« and - iat gur = 0; * 4 233
o mum ¢ for (iat i = start; i < end; 314! § . 1 0
o 3 - sur ‘= arrevylil; h - C -
————— S) -1
- ITY Output
T e L
“Deuio O ODE Semo Trocran
:ju'l: L sTarn: 1w A badMathod threwt ‘a'-'a.Ja‘!q.!'n.L-?c;nt:xE).c:p‘..m
T XU O(FR) Etcrtine QuickEort: 2D
b - (F1) Dore soxtang
ey int|2c) 0 0 1
=0 a
2 2 x
- DA -
_——— 5) L
Crom la=t: 22+ stexps, 0.017secs local = value

Demo / talk: http://video.google.com/videoplay?
docid=3897010229726822034#

Bill Lewis. Debugging backwards in time. In Proceedings of the Fifth International Workshop on Automated Debugging
(AADEBUG 2003), October 2003.

LaToza GMU SWE 795 Spring 2017

http://video.google.com/videoplay?docid=3897010229726822034#
http://video.google.com/videoplay?docid=3897010229726822034#
http://video.google.com/videoplay?docid=3897010229726822034#
http://www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf

Find temporary objects that aren’t garbage collected

w)
o

4 Reference Pattern

ofx]

Slar. weilh

Oplivnis Hely

Objects of a specific
class with same reference

(—‘ '_)iDc.-

tree

S SlringSotadV 1 MathodDrawStr 7 T Eve Ll
B Sunseeteav) L | s

! ~ 2
\ \‘\\E] 2 [Nhiect
\ \ l.l
™~

Reference =—

Class object

(static members)\

Starting set

(can be objects created
after temporary event
that didn’t collected) ™~

\\ \E]. * Histogram

\E. | UbjectUranst: 0 5”3 2011 Eventhult

Multiple instances

Old object

(Obje
~ I'll 1 d) 4*
4 Manultam

N\ E\i

(created before
temporary event)

Class occurs

\
\\ \ JZanvas
Ell
< Shadowl ramer 2 [Object
H
M\\ IJ

\é. Histogram

P
\\\\Q\\Hi HashtableEntry I_J_l (Obj et
\ LightweightDi —

L
\ \X J WrFanziFeer

2 ShedcwFramer

ITI. “ DordeLeycut
[

f““HI_‘ ‘ [Obiact
' |

of

j J |8 javalanfAWT EventMult caster objects (64 byies), num of refs: 8

more than once
In diagram

Wim De Pauw and Gary Sevitsky. Visualizing Reference Patterns for Solving Memory Leaks in Java. In European Conference on

Object-Oriented Programming (ECOOP), pages 116—-134,1999.

LaToza

GMU SWE 795 Spring 2017

18

http://www.springerlink.com/content/cfvp0ccf6j9dtnf6/

Find shortest repro steps

Long sequence of steps uncovered by tester
triggers a bug.

Which of these steps are causing the bug

Complex input - which part of input is
responsible for bug?

-xample - 10,700 Mozilla bugs (11/20/2000

<=¢ clign=lcit valign=top>

CSELECT NaME="on.sys"™ MJILTIPLE SLZE=T7>

COPTTON VATLIR="AT1"221T<NAPTTON VAT ="% nchivexs 3.7 "2Windioas S.1COPTTON VAT ="Wirdiws 35 "2Windows S5Q02TION VATIIE="Windows
98">Windows SE<OPTION VALUZ="wWindows ME'>¥Windcws ¥E<O2IZCH VALUE="Windows 200C">Windows Z0J0<02TICK VALUE="Windows
NT">Windows NT<ODPTION VALUZ="Maz Oyatem 7'>NMac Evaten 7<CPIION VALUE='Mac Syatem 7.3">Mac Syatem 7.3<0PTION VALUE="Mac
Syezem !.6.1°'>Mac Svetem .6.1<UPTION VALUE='Mac Eyetem H.U ™Mac System ¥, U<OPTION VALUE-'Mac System 3.>">Mac Systew
R.ECOPTTAN VATUN="Nar: Syxtran F.6">Nac System ROACOPTTION VATUN= 'Vac Systear 3. x">Man System 3. x<NFTTON VAT Y= "Mai08 X"2MA0OS
X<0PTION VALUVE="Linux">Linux<CPIION VALUE='BSCZ">BSDI<CPIICN VALUE="PreeBS52">PreeBSI<0PTION VALLE="NetBSL'>KetB33D<OETION
VALUE="02enBS0 "™OpenESC<OPTION VALUZ="AZX'MAIX<UPIION VALUE= 'BeCS">3e0c<CPTION VALUE="EP-UX'SH2-UN<OPTION

VALUE=" IIX">»IRIX<OPILION VALUE="Noutrino »Neutrint<OpUioN VALUES "CpanvMs" >CpanVMS<OpTION VALJE="0S/2' »05/2<02TLON
VALIE="0SF M1 "205P 7 1<OPTION VALUF="SAT1AY 8" 2SN1AaY" 8<0FTITON VA JE="Sun0S8 >SUn0s<OPTTON VALL E=' At e >ntherae /S BT

</td>

<zc clign=lcit valign=top>

CSELECT NuEs"prioritv" MULTLIFLE SI1gE=7>

COPTTON VATLFS " ce"2aeOPTTAN VAT U= "1 "2F1QO02T 0 VATIF="22"'2P2<OFTTON VALIN="23"2pPICOPTTON VAT %s" 22 "5340 PTTON
VALUB="DP5">DP5</3ELECT>

</td>

<tc Elignm=lezt valiqn=top»

CERTHCT NAME="hoag severity” NITCTPOR STZAR=T

<OPTION VALLE="3locker">blocker<02TION VALUE="cr_tical">critical<CPTION VALUZ= 'major' »maZor<OPTION
VALUE="normaL">normal<UPTION VALUZ® ‘minor’' »MINOor<CPTION VALUE= 'trivizl">trivizl<OETION VALJE~'arnhancement renhancemenc« /SELECT™
</rr>

</table>

Fig. 1. Printing this HI'VL page maxes Mozilla crasa [excerpti

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering
28(2), February 2002, pp. 183-200.

LaToza

GMU SWE 795 Spring 2017

19

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering

Find shortest repro steps

ddmin algorithm sketch:

1. Decompose input into pieces
2. Run tests on pieces
3. It there’s a piece that still fails, go back to 1 on
plece
Otherwise, found locally minimal smallest input

Step | Test case test

1 1 Ay |1 2 3 4 : 2

2 | As . 5 6 7 8| X

3| A 5 6 . (74

4 | Ay 7 8| X

S A T X Done
Result R

28(2), February 2002, pp. 183-200.

LaToza

GMU SWE 795 Spring 2017

20

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

Compare faulty & unfaulty execution
traces

e |dea: bugs caused by executing buggy statements
Find buggy statements executed mostly on failing tests (color red)

Test Cases

mid () { I e I B I suspiciousness(e) = 1 — hue(e) =
int x,vy,z,m; | e | | | e failed(e)
1: read ("Enter 3 numzers:",®,y,2); L 2K 2N 2K JK OK = paﬁ“d,‘?:;a:fH’::Zé‘.[,d,;c;,
T o o000 e e totalpassed ' totalfailed
3 L K AR AL K BN
4 @
5 | @
elass it (x<z) o
7 m o= y; @
@
1 els=s L[(x>»z
_2 mo=
13: print ("Middle numzer is:",m); .. o
| Pass/Fzil Status PL P

James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization technique. In
Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering (ASE '05). ACM, New York, NY, USA
273-282.

LaToza GMU SWE 795 Spring 2017 21

http://dx.doi.org/10.1145/1101908.1101949

Compare faulty & unfaulty execution traces

Comparison of fault localization techniques
100 . T |

a4 Tarantula —
P NN/perm ---x---
80 |- P g B - NN/binary ------
e N atd VN . ‘ '
0 /:+-‘" 6': ! = P T CT =
c v e * : CT/relevant - -= -
= 60 [- Jr o 7B §] CTl/infected - -© -
@ =2 X intersection ----e---
: 40 :':' .'/;"". ,// . Unlon AL
(@) o A G ' .
° [X X Siemens suite of fault localization programs
20 —‘,"I el ¥ * - I"rogram [eulty Versions | Procedures | LOC | Tes: Clases l Descrintion
. ,X ¥ ; " print tckens | 7 20 472 anag lexical analyzer
¥/ oA Y Y WY W W W x print_tokens2 | IC 21 3939 1071 lexical analyzer
R S - - - ' - o replace 32 21 512 | B342 patter: replacement
O—=a o o o o & o 4 o schedule 9 18 202 | 2630 priosity scheduler
schedule2 1C 16 301 2680 | priority schedaler
1 00 80 60 40 20 O lcas 41 8 141 1575 | altitude separalion
tos_info 23 16 140 1054 ' information mecasure

% of program that need not be examined ('Score’)

e Tarantula - frequency of failing runs relative to passing runs (“suspicousness”)
Union: (U passing_tests) - failing_test
Intersection: intersect passed test statements, subtract failing tests statements
Nearest neighbor (NN): failing_test - most_similar_passing_test
Cause transition (CT): find smallest memory difference

James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization technique. In
Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering (ASE '05). ACM, New York, NY, USA
273-282.

LaToza GMU SWE 795 Spring 2017 22

http://dx.doi.org/10.1145/1101908.1101949

Compare faulty & unfaulty execution
traces

User hits bug and program crashes
Program (e.g. Microsoft Watson) logs stack trace

Stack trace sent to developers
Tool classifies trace into bug buckets

Problems
WAY too many bug reports => way too many open bugs

=> can't spend a lot of time examining all of them
Mozilla has 35,622 open bugs plus 81,168 duplicates (in 2004)

Stack trace not good bug predictor for some systems (e.g. event based
systems)

= bugs may be in multiple buckets or multiple bugs in single bucket

Stack trace may not have enough information to debug
=> hard to find the problem to fix

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza

GMU SWE 795 Spring 2017

23

Compare faulty & unfaulty execution
traces

* Program runs on user computer
Crashes or exhibits bug (failure)
Exits without exhibiting bug (success)

‘ The Cocperative Bug Isolation Project

* Counters count # times predicates hit
Counters sent back to developer for failing and
successful runs

* Statistical debugging finds predicates that predict bugs
100,000s to millions of predicates for small applications
Finds the best bug predicting predicates amongst

behav v ry) yOu Use & participeing
applicaicn, you can hep o make & bettar for evaryone

these

* Problems to solve

Reports shouldn’t overuse network bandwidth (esp
~2003)

Logging shouldn’t kill performance

Interesting predicates need to be logged (fair
sampling)

Find good bug predictors from runs

Handle multiple bugs in failure runs

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Spring 2017

24

Compare faulty & unfaulty execution

traces
* Predictor of what statements are related to a bug:
Fail(P) - Context(P)
Pr(Crash | P observed to be true) - Pr(Crash | P observed

at all)

 Example of a “likelihood ratio test”

 Comparing two hypotheses

* 1. Null Hypothesis: Fail(P) <= Context(P)
Alpha <= Beta

o 2. Alternative Hypothesis: Fail(P) > Context(P)
Alpha > Beta

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza GMU SWE 795 Spring 2017

LaToza

Traverse dependencies

Slice

e Subset of the program that is responsible for
computing the value of a variable at a program point

Backwards slice

e Transitive closure of all statements that have a
control or data dependency

Originally formulated as subset of program

Later formulations emphasize ability to traverse
control & data dependencies (e.g., WhyLine)

GMU SWE 795 Spring 2017

26

Traverse control & data dependencies

backwards
¢« BEGIN Participants performed 3 debugging tasks on
READ(X, Y) short code snippets
-SFSI/IA!_::; 8'0 Asked to recognize code snippets afterwards
IFX <=1 c
THEN SUM := Y 2T
ELSE BEGIN) .
READ(Z) e so M
TOTAL :=X™*Y £
END d oLl] [1 M
WRITE(TOTAL, SUM) & Oy g £g £ o
END s0 33 33 30 E
« (Static) slice - subset of the progr: & “:S; §§ £

values at a program point
e Slice on variable Z at 12

Type of Algorithm

Mark Weiser. 1982. Programmers use slices when debugging. Commun. ACM 25, 7 (July 1982), 446-452.

LaToza GMU SWE 795 Spring 2017 27

http://portal.acm.org/citation.cfm?id=358577

Slicers debug faster

e Students debugging 100 LOC C++ programs

o Students given

Programming environment

Hardcopy input, wrong output, correct output
~-les with program & input

 Compared students instructed to slice against everyone
else
Excluding students who naturally use slicing strategy

e Slicers debug significantly faster (65.29 minutes vs.
30.16 minutes)

Francel M. A. and S. Rugaber (2001). The Value of Slicing While Debugging. Science of Computer Programming, 40(2-3), 151-
169.

LaToza GMU SWE 795 Spring 2017 28

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V17-434442G-2&_user=525223&_coverDate=07/31/2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1592955686&_rerunOrigin=google&_acct=C000026389&_version=1&_urlVersion=0&_userid=525223&md5=fc3d24a54e88a14f5439d75ad19e91cf&searchtype=a

Dynamic
slicing

Hiralal Agrawal, Richard A. Demillo, and Eugene H.
Spafford. 1993. Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper. 23, 6 (June 1993),
589-616.

LaToza

Gl

Jul7/hal/vi/deno/exanple bug.c

|

i Jo Find Lhe sun of areas of glven trisngles, «/
2 Sdefl ine HAX 100

3 typedef enum [isosceles, equilateral, right, scalenel class_Lype;
; typedef struct (int a, b, c3] triangle_type)

6 nain()

7 (

8 triangle_type sidesiMiX]1;

9 class_type classs

10 int a_sqr, b_sgr, c_sqgr, N, i}

11 douhle area. sum. s. sort()s

12

13 print.f({“Enter nunher of Lriangles:\n™);

14 scanf ("Xd", M)

15

print f{"Enter Lhree sides of Lriangle ¥d in ascendi order:\n™, itl)s
scanf ("'%d %d %d”, 8zidecli).a, 8cideslil. b, 8zidexzli) c});

]

sun & 1)

i = 6

while (i CN) I
asqr = gidesli),a = sidesl(il,s;
b_sqgr ® sides(i]. b « sides(i] c2

25 csqr = sides(i).c » zideslil, c;

26 if (tsideslil,a o= sides[i].b) 88 (sides(il.b == sideslil.c))

27 clasc = squilateral;

28 else if ({(sidesli). a == gsides(il.b) 1| (sides(il.b == eidecli).c))
29 class = isosceles;

30 else if (a_sqr == b_sqr ¢ c_sq)

class = rights
else class ® scalenss
i3
if (class == right)

area = cideclil.b « cidezlil,c / 2,13
else if (class = pquilateral)

re3I . n) / 4,03
else |
s = {gides(il).a + sides(i).b + sides(il.c) / 2.03
ares = sore(s # (2 - sideslil . a) » (3 - sides(il.b) »
{g = sidas(il).c));

*—_—
L static analysis

~(_spprox. aynamic anatysis)

—

program sace |[_data sice][controt sice]»[_r»aach’ngals || new testcase Clear
[_rn][stop | contnue]| print |[backup || step |[stepbuck || delete || it |

stopped at line 47,

> stop ot line &

> backup

stopped ot line 46,

> solect exact dynanmic analysis

> dynanic data slice on "sum™ & line &
>

=

Current. Testcase 9 1

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231

