
Crosscutting Concerns
SWE 795, Spring 2017

Software Engineering Environments

Partially adapted from slides by  
Brad A. Myers, 05-899D Human Aspects of Software Development

LaToza GMU SWE 795 Spring 2017

Today
• Part 1 (Discussion)(60 mins)

• Discussion of readings
• Break!

• Part 2 (Lecture)(~70 mins)
• Crosscutting concerns

• Part 3 (Group work)(~20 mins)
• Time to work on HW2

2

LaToza GMU SWE 795 Spring 2017

Crosscutting Concerns

• What’s a concern?
• In what ways is it similar or different than task

context?
• Why does it matter if they crosscut?

• What approaches might help reduce challenges
developers experience?

3

LaToza GMU SWE 795 Spring 2017

What’s a concern?
Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is, that one is willing to study in depth an aspect
of one's subject matter in isolation for the sake of its own consistency,
all the time knowing that one is occupying oneself only with one of the
aspects. We know that a program must be correct and we can study
it from that viewpoint only; we also know that it should be efficient and
we can study its efficiency on another day, so to speak. In another
mood we may ask ourselves whether, and if so: why, the program is
desirable. But nothing is gained —on the contrary!— by tackling
these various aspects simultaneously. It is what I sometimes
have called "the separation of concerns", which, even if not
perfectly possible, is yet the only available technique for effective
ordering of one's thoughts, that I know of. This is what I mean by
"focusing one's attention upon some aspect": it does not mean
ignoring the other aspects, it is just doing justice to the fact that
from this aspect's point of view, the other is irrelevant.

4

—Edsger W. Dijkstra. ”On the role of scientific thought”. 1974. EWD447.

LaToza GMU SWE 795 Spring 2017

Crosscutting concerns
• Ideal: one concern per module

• But, in practice modules exhibit
• Scattering — single concern implemented in

many modules
• Tangling —- single module containing many

concerns

5

LaToza GMU SWE 795 Spring 2017

Task context
• Could be

• Set of information
necessary to complete
a task

• Set of locations in code
that must be edited to
implement a change
(e.g., add feature, fix
bug)

• Which is it? Often used
interchangeably…

• Also known as a “working
set”

6

LaToza GMU SWE 795 Spring 2017

Problems caused by crosscutting concerns

• Identifying & understanding elements in task
context

• Navigating between elements in task context

7

LaToza GMU SWE 795 Spring 2017

Scattered concerns are associated with
higher defects

8

Marc Eaddy, Thomas Zimmermann, Kaitin D. Sherwood, Vibhav Garg, Gail C. Murphy, Nachiappan Nagappan, Alfred V. Aho:
Do Crosscutting Concerns Cause Defects? IEEE Trans. Software Eng. 34(4): 497-515 (2008)

defects

de
gr

ee
 o

f s
ca

tte
rin

g

LaToza GMU SWE 795 Spring 2017

Significant time spent navigating across
task context

9

Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting design requirements for maintenance-oriented IDEs: a detailed study of
corrective and perfective maintenance tasks. International conference on Software engineering,126-135.

l Each instance of an interactive bottleneck cost
only a few seconds, but . . .

= 35% of uninterrupted work time!

Interactive Bottleneck Overall Cost
Navigating to fragment in same file (via scrolling) ~ 11 minutes
Navigating to fragment in different file
(via tabs and explorer) ~ 7 minutes
Recovering working set after returning to a task ~ 1 minute

Total Costs ~19 minutes

LaToza GMU SWE 795 Spring 2017

Switching tasks incurs startup cost
rebuilding task context

10

l Represented by explorer and file
tabs

l When changing tasks, working
sets were lost as tabs and nodes
changed

l “Including” code in the working set
by opening a file or expanding a
node made it more difficult to
navigate to other code in the
working set

Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting design requirements for maintenance-oriented IDEs: a detailed study of
corrective and perfective maintenance tasks. International conference on Software engineering,126-135.

LaToza GMU SWE 795 Spring 2017

DeLine’s study of developers
• Confirmed Ko’s observation that:

• Navigating and “re-finding” areas of the code that had
already been visited was frequent, difficult and
distracting

• Textual searching and returning
• Tabs got problematic when many opened

• All subjects wanted better inline comments and
overview documentation.

• Wanted code annotations
• All subjects agreed that finding the entry point and

understanding the control flow was the most difficult task

11

Robert DeLine, Amir Khella, Mary Czerwinski, and George Robertson. 2005. Towards understanding programs through wear-based filtering.
Symposium on Software visualization (SoftVis ’05), 183-192.

LaToza GMU SWE 795 Spring 2017

Field study of developers at IBM
• 8 IBM developers doing their own tasks using

Eclipse for Java
• Interviews and 2-hour observations of actual use
• Experts do become disoriented

• Did use Eclipse’s advanced navigation tools, like
find-all-callers

• No trace of how got to the current file, or how to
get back

• Thrashing to view necessary context
• No support for switching tasks

12

Gail C. Murphy, Brian de Alwis, "Using Visual Momentum to Explain Disorientation in the Eclipse IDE", IEEE Symposium on Visual
Languages and Human-Centric Computing, p. 51-54, , 2006

LaToza GMU SWE 795 Spring 2017 13

task
started

task
complete

Find
Read

within file

Edit
Test

Form working set of
task-relevant code

Navigate dependencies in
working set

Modify code in
working set

4

Working with task context

Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting design requirements for maintenance-oriented IDEs: a detailed study of
corrective and perfective maintenance tasks. International conference on Software engineering,126-135.

LaToza GMU SWE 795 Spring 2017

Solutions to crosscutting concerns
• Relationship traversal

• Find starting point, traverse relationships to find other related code
locations

• See information needs & debugging lectures

• New modularity constructs—Aspects
• Reduce scattering & tangling by introducing new crosscutting

module that can be weaved into code

• Recommenders
• Based on {edits, navigation} past developers did on similar tasks,

predict relevant elements

• Working set navigation
• Make it easier to navigate back and forth between task context

elements
• Make it easier to resume tasks by redisplaying working set

14

LaToza GMU SWE 795 Spring 2017

New modularity constructs—Aspects
• Key idea: modularize scattered code into aspects

• Developers work with sets of methods in an aspect just like
in a class

• Aspects woven back into underlying code during
compilation

• Specific join points (e.g., field access, method call) can be
intercepted, invoking method in aspect
• Point cut descriptor describes which join points a specific

aspect method will be invoked from

• Ideally, developer of module can be oblivious of code
contained in aspect that is woven in

15

 Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.; Loingtier, J. M.; Irwin, J. (1997). Aspect-oriented programming. ECOOP'97.
pp. 220–242.

LaToza GMU SWE 795 Spring 2017

Critiques of Aspects

• Determining the behavior of a module now requires
global reasoning
• Need to weave aspects before clear how code

will behave.
• Complexity of when and if code will be inserted

• Fragile pointcut problem: point cut descriptors
are fragile, often depending on textual properties
of identifiers

• Multiple aspects could apply to same join point,
making it unclear what ordering applies

16

LaToza GMU SWE 795 Spring 2017

Recommenders

• Based on {edits, navigation} past developers did
on similar tasks, predict relevant elements

17

LaToza GMU SWE 795 Spring 2017

Rose

18

Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, Andreas Zeller. Mining Version Histories to Guide Software Changes. IEEE Trans.
Software Eng. 31(6): 429-445 (2005)

LaToza GMU SWE 795 Spring 2017

TeamTracks
• Shows source code

navigation patterns of
team
• Related Items – most

frequently visited
either just before or
after the selected
item

• Favorite Classes –
hide less frequently
used

• Deployed for real use –
5 developers for 3
weeks

• Successful, but usability
issues, seemed most
useful for newcomers

19

R. DeLine, M. Czerwinski and G. Robertson, "Easing program comprehension by sharing navigation data," Symposium on Visual Languages
and Human-Centric Computing (VL/HCC'05), 2005, pp. 241-248.

LaToza GMU SWE 795 Spring 2017

Working set navigation

• Make it easier to navigate back and forth between
task context elements

• Make it easier to resume tasks by redisplaying
working set

20

LaToza GMU SWE 795 Spring 2017 21

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance Tasks. IEEE Trans. Softw. Eng. 32, 12 (December 2006), 971-987.

LaToza GMU SWE 795 Spring 2017

Concern Graphs
• Abstract (formal) model that describe which parts of the

source code are relevant to different concerns
• FEAT tool builds concern graphs “semi-automatically”
• Shows only code relevant to the selected concern
• User-specified or detected using intra-concern analysis
• User can make queries

22

Martin P. Robillard and Gail C. Murphy. 2007. Representing concerns in source code. ACM Trans. Softw. Eng. Methodol. 16, 1, Article 3
(February 2007).

LaToza GMU SWE 795 Spring 2017

Mylar

23

1 – task list
3 – package explorer filters to show what relevant to this task

Most relevant are bold
4 – active search shows what might be relevant
5 – switch to different task

Mik Kersten and Gail C. Murphy. 2006. Using task context to improve programmer productivity. International symposium on Foundations of
software engineering, 1-11.

LaToza GMU SWE 795 Spring 2017 24

https://www.youtube.com/watch?v=PsPX0nElJ0k

Code Bubbles

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr.. 2010. Code bubbles: a working set-based interface for code understanding and maintenance. Conference on
Human Factors in Computing Systems (CHI ’10), 2503-2512.

https://www.youtube.com/watch?v=PsPX0nElJ0k

LaToza GMU SWE 795 Spring 2017

Debugger Canvas

25

https://www.youtube.com/watch?v=3p9XUwIlhJg
R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

https://www.youtube.com/watch?v=3p9XUwIlhJg

LaToza GMU SWE 795 Spring 2017

Use in practice
• Debugger Canvas offered as extension to Visual

Studio
• Mylar —> Mylyn, part of default Eclipse
• Mylyn —> commercial

26

https://www.tasktop.com/tasktop-dev

https://www.tasktop.com/tasktop-dev

LaToza GMU SWE 795 Spring 2017

Results from Debugger Canvas
deployment

27

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

LaToza GMU SWE 795 Spring 2017

Perceptions of debugger canvas

28

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

LaToza GMU SWE 795 Spring 2017

Useful when

29

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

“I often have to debug several layers on our side from the UI, via
middle tier to the data layer. It often gets confusing to go into the
deeper layer. This is where the canvas helps, you hit a breakpoint
here and can see the stack trace as you step through the layers.
This helps us debug things much faster.”

“I was working on a large project for only a week. There was a huge
ramp up, of course, and Debugger Canvas was invaluable for
stepping into the code to see what was going on.”

“With a really large code base that you are not familiar with it is really
handy. It helps wrap your head around other people's code. That
kind of visualization really helps to follow code as it crosses different
classes and projects. Go-to-definition and using Reflector is just too
cumbersome to navigate through all that code.”

LaToza GMU SWE 795 Spring 2017

Not useful when

30

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles
paradigm," International Conference on Software Engineering, 1064-1073.

For a "normal" project it isn't worth the hassle with performance.

I don't always want to get into the canvas. When I’m debugging something
small: for example - Did the parameter get here? Then it doesn’t warrant
opening up the canvas.

Sometimes the fix that I need to do involves code that is not in the bubbles,
but is in the same files, so I'd like to be able to get to the rest of the file
easily.

I stop using it when I need to see definition of classes. I'm aware of the Go-
to-definition feature, but I use ReSharper and lots of tools to navigate, so I
find it easier to go back to the file in those cases.

I hit a breakpoint check the value of a private field.That’s when seeing the
rest of the file comes in handy.

