
Software Visualization
SWE 795, Spring 2017

Software Engineering Environments

LaToza GMU SWE 795 Spring 2017

Today
• Part 1 (Lecture)(~60 mins)

• Software visualization

• Part 2 (In class activity)(~30 mins)
• Sketch a software visualization

• Break!

• Part 2 (Discussion)(45 mins)
• Discussion of readings

2

LaToza GMU SWE 795 Spring 2017

Why a diagram is (sometimes) worth ten
thousand words

• Diagrams can group together all
information that is used together, thus
avoiding large amounts of search for the
elements needed to make a problem-
solving inference.

• Diagrams typically use location to group
information about a single element,
avoiding the need to match symbolic
labels.

• Diagrams automatically support a large
number of perceptual inferences, which are
extremely easy for humans

• Larkin & Simon, 1987, Cognitive Science
11, pp 65-99.

3

LaToza/Bell GMU SWE 432 Fall 2016

• Increased resrouces
• High bandwidth hierarchical

4

S.K.Card, J.D.Mackinlay, B.Shneiderman, “Information Visualization”, Readings in Information Visualization: Using Vision to
Think, Morgan Kaufman, Chapter 1.

LaToza/Bell GMU SWE 432 Fall 2016

Designing an information visualization

5

S.K.Card, J.D.Mackinlay, B.Shneiderman, “Information Visualization”, Readings in Information Visualization: Using Vision to
Think, Morgan Kaufman, Chapter 1.

LaToza/Bell GMU SWE 432 Fall 2016

Marks’ graphical properties
• Quantitative (Q), Ordinal (O), Nominal (N)
• Filled circle - good; open circle - bad

6

LaToza/Bell GMU SWE 432 Fall 2016

Effectiveness of graphical properties

• Quantitative (Q), Ordinal (O), Nominal (N)
• Filled circle - good; open circle - bad

7

LaToza/Bell GMU SWE 432 Fall 2016

Tufte’s principles of graphical excellence

• show the data
• induce the viewer to think about the substance rather

than the methodology
• avoid distorting what the data have to say
• present many numbers in a small space
• make large data sets coherent
• encourage the eye to compare different pieces of data
• reveal data at several levels of detail, from overview to

fine structure
• serve reasonable clear purpose: description, exploration,

tabulation, decoration

8

LaToza/Bell GMU SWE 432 Fall 2016

Interactive visualizations
• Users often use iterative process of making sense

of the data
• Answers lead to new questions

• Interactivity helps user constantly change display
of information to answer new questions

• Should offer visualization that offers best view of
data moment to moment as desired view changes

9

LaToza GMU SWE 795 Spring 2017

How software visualizations may help

• Offer information that helps developers to answer
questions

• Facilitate easier navigation between artifacts
containing relevant information

10

LaToza GMU SWE 795 Spring 2017

Key questions for software visualization
design

• Do you really need a visualization?
• If you know the developer’s question, can you answer it

more simply without a visualization?

• Anti-pattern: show all the information, let user find patterns
• In other domains (e.g., data analytics), visualization is a

tool for data exploration and understanding dataset.
• Not true for SE: developers want to complete tasks,

finding patterns often not relevant

• How much context do you need?
• More context —> more information to sort through
• Less context —> more direct

11

LaToza GMU SWE 795 Spring 2017

Some popular forms of software
visualizations

• Code
• Iconographic representation of code text

• Algorithm & object structure visualizations
• Depictions of data value changes over time
• Runtime snapshots of object reference structure

• Module structure
• Static views of module properties & dependencies (e.g.,

calls, references)

• Function calls
• Dynamic and static depictions of function calls

12

LaToza GMU SWE 795 Spring 2017

Code visualizations
• Offer overview of source code

• Identify relevant sources lines matching some
property
• e.g., changed in a commit, passing a test, with a

compiler warning

• Represent lines of iconagraphically
• e.g., colored lines

13

LaToza GMU SWE 795 Spring 2017

SeeSoft

14

Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr.. 1992. Seesoft-A Tool for Visualizing Line Oriented Software Statistics. IEEE
Trans. Softw. Eng. 18, 11 (November 1992), 957-968.

AT&T Bell Labs [Eick, 1992]
Visualization for performance

“Hot spots” in red
Large volumes of code

Image is of 15,255 LOC
Up to 50,000 LOC

Can indent like original 
source files

Also, recently changed,
Version control systems
Static, dynamic analyses

Interactive investigation

LaToza GMU SWE 795 Spring 2017

Tarantula

15

Color – code coverage
Red – failed test case
Green – past test case
Yellow – hue is % of test cases passing

James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test information to assist fault localization. International
Conference on Software Engineering (ICSE ’02), 467-477.

LaToza GMU SWE 795 Spring 2017

AspectBrowser

16

Macneil Shonle, Jonathan Neddenriep, and William Griswold. 2004. AspectBrowser for Eclipse: a case study in plug-in retargeting. In
Proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange (eclipse '04). ACM, New York, NY, USA, 78-82.

LaToza GMU SWE 795 Spring 2017

Industry Use: Eclipse Markers

17

LaToza GMU SWE 795 Spring 2017

Industry use: Visual Studio Code Minimap

18

LaToza GMU SWE 795 Spring 2017

Algorithm & object structure visualizations

• Depict runtime state at a snapshot or over time
• e.g., elements in a collection, numeric values

• Often focused on teaching basic algorithms (e.g.,
sorting algorithms, linked list insertion)

19

(Section adapted from Software Visualization, Lecture by Brad A. Myers, Spring 2011)

LaToza GMU SWE 795 Spring 2017

Sorting out Sorting

20

https://www.youtube.com/watch?v=SJwEwA5gOkM

LaToza GMU SWE 795 Spring 2017

Incense

21

Brad A. Myers. 1983. INCENSE: A system for displaying data structures. Conference on Computer graphics and interactive techniques
(SIGGRAPH '83),115-125.

First to automatically
create viz. of data
structures

Produce pictures
“like you  
might drawn them
on a blackboard”

Goal: help with
debugging

LaToza GMU SWE 795 Spring 2017

Brown University Algorithm Simulator and
Animator (BALSA)

22

Major interactive integrated
system
Extensively used for teaching at

Brown Univ.
Lots of algorithms 

visualized
Architecture for 

attaching the graphics 
with code
Still required significant 

programming for each 
viz.

Marc followed up with 
Zeus (‘91) at DEC SRC

Marc H. Brown and Robert Sedgewick. Techniques for Algorithm Animation. IEEE Software, 1985.

LaToza GMU SWE 795 Spring 2017

PECAN

23

Steven Reiss at Brown’s code &
data visualization systems
Take advantage of new Apollo

workstation capabilities
PECAN (1985) – automatic

graphics about the program
Multiple views
Integrates Balsa 

data visualization
Syntax directed editing

Drag and drop
Flowcharts of code
Code highlighting while 

executing
Data viz. like Incense
Incremental compilation
Could handle up to 

1000 LOC

Steven P. Reiss. 1984. Graphical program development with PECAN program development systems. In Proceedings of the first ACM
SIGSOFT/SIGPLAN software engineering symposium on Practical software development environments (SDE 1), 30-41.

LaToza GMU SWE 795 Spring 2017

Friendly Integrated Environment for
Learning and Development (FIELD)

24

Field (1990) – IDE,
wrappers for Unix tools
Code and data viz.
Message-based (control)

integration
Basis for most other Unix

IDEs
Widely used

Followed by  
DESERT, …

Steven P. Reiss: Interacting with the FIELD environment. Softw., Pract. Exper. 20(S1): S1 (1990)

LaToza GMU SWE 795 Spring 2017

Transition-based Animation Generation
(TANGO)

25

John Stasko PhD thesis at Brown
Univ. (1990)

Smooth animations between 
states
Paths & transitions

Make it easier to author 
algorithm visualizations
Events inserted into the code 

tied to animations

J. T. Stasko, "Tango: a framework and system for algorithm animation," in Computer, vol. 23, no. 9, pp. 27-39, Sept. 1990.

LaToza GMU SWE 795 Spring 2017

Data Display
Debugger

26

https://www.gnu.org/software/ddd/
Andreas Zeller and Dorothea Lütkehaus. 1996. DDD—a free graphical front-end for UNIX debuggers. SIGPLAN Not. 31, 1 (January 1996),
22-27.

LaToza GMU SWE 795 Spring 2017

PythonTutor

27

http://pythontutor.com/

Over 2.5 million people in over 180 countries have used Python Tutor to
visualize over 20 million pieces of code

Philip J. Guo. Online Python Tutor: Embeddable Web-Based Program Visualization for CS Education. In Proceedings of the ACM Technical
Symposium on Computer Science Education (SIGCSE), March 2013.

LaToza GMU SWE 795 Spring 2017

Module Views

• Depict static structure of modules (e.g., files,
folders, packages)

• Often depicts dependencies between modules

• Focus on reverse engineering tasks, refactoring
tasks, other architecture related tasks

28

LaToza GMU SWE 795 Spring 2017 29

SHriMP

M.-A.D Storey, F.D Fracchia, H.A Müller, Cognitive design elements to support the construction of a mental model during software exploration,
Journal of Systems and Software, Volume 44, Issue 3, January 1999, Pages 171-185.

LaToza GMU SWE 795 Spring 2017

Code Crawler (Polymetric Views)

30

Michele Lanza and Stéphane Ducasse. 2003. Polymetric Views-A Lightweight Visual Approach to Reverse Engineering. IEEE Trans. Softw.
Eng. 29, 9 (September 2003), 782-795.

LaToza GMU SWE 795 Spring 2017

Relo

31

Vineet Sinha, David Karger, and Rob Miller. 2006. Relo: Helping Users Manage Context during Interactive Exploratory Visualization of Large
Codebases. In Proceedings of the Visual Languages and Human-Centric Computing (VLHCC ’06), 187-194.

LaToza GMU SWE 795 Spring 2017

Lattix (Design Structure Matrices)

32

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. 2005. Using dependency models to manage complex software architecture.
Conference on Object-oriented programming, systems, languages, and applications (OOPSLA ’05), 167-176.

LaToza GMU SWE 795 Spring 2017

Function calls
• Depict function invocations

• Could be runtime view (specific execution) or static
view (all possible executions)

• Many decisions about what to show & how to show it
• Code centric? Timeline centric?
• Show all functions? Show some functions? Which

ones?
• What information about functions to depict? Order,

time, asycnonicity, …

33

LaToza GMU SWE 795 Spring 2017 34

https://www.youtube.com/watch?v=FzMl4Zu2tps
Del Myers and Margaret-Anne Storey. 2010. Using dynamic analysis to create trace-focused user interfaces for IDEs. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software engineering (FSE '10). ACM, New York, NY, USA, 367-368.

Diver

https://www.youtube.com/watch?v=FzMl4Zu2tps

LaToza GMU SWE 795 Spring 2017

Theseus

35

https://www.youtube.com/watch?v=qnwXX510E2Q
Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing misconceptions about code with always-on programming visualizations.
Conference on Human Factors in Computing Systems, 2481-2490.

https://www.youtube.com/watch?v=qnwXX510E2Q

LaToza GMU SWE 795 Spring 2017

WhyLine

36

Andrew J. Ko and Brad A. Myers. 2009. Finding causes of program output with the Java Whyline. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '09). ACM, New York, NY, USA, 1569-1578.

LaToza GMU SWE 795 Spring 2017

Reacher

37

T. D. LaToza and B. A. Myers, "Visualizing call graphs," 2011 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/
HCC), 2011, pp. 117-124.

LaToza GMU SWE 795 Spring 2017

In Class Activity
• Form groups of 2

• Sketch a software visualization
• You should decide

• What is the task you are supporting
• What information do developers need for this task
• How does your visualization help developers to

obtain this information more easily
• What context is (or is not) visualized? Why is the

specific visualization chosen?
• Illustrate your visualization with two or more examples

of its output

38

