RSIT

Editing Code

SWE 795, Spring 2017
Software Engineering Environments

LaToza

Today

Part 1 (Discussion)(~60 mins)
* Discussion of readings

Break!

Part 2 (Lecture)(60 mins)
* Editing Code

Part 3 (In class activity)(~20 mins)
* Design exercise

GMU SWE 795 Spring 2017

Editing Code

 \What types of edits do developers make?
o What mistakes occur”? How can they be prevented?

« How can developers edit at a level of abstraction beyond
ines and characters”?

o Techniques we will examine today
e Structured editors
e Editable program views
o Copy & paste reuse
« Refactoring
e EXxploratory programming

LaToza GMU SWE 795 Spring 2017

Structured Editors: Motivation

e Syntax can be hard

 Have to learn the right syntax (challenging for
programming or language novices)

o (Getting syntax wrong creates errors

 What if we could have a development environment
where it was impossible to have a syntax error

LaToza GMU SWE 795 Spring 2017

Structured

Editors: Idea

 Developers edit code through commands that

create program eleme

NtS

* ©.g., create an if sta
shortcut or drag & d

‘ement through a keyboard
rop

o Edits are semantic rather than syntactic
* |ndividual elements expose specific elements

they support

e Cannot make edits that crosscut element

structure

LaToza GMU SWE 795 Spring 2017

Cornell Program Synthesizer

* [ntroduced key concepts

IF (condition) IF(k>0)
THEN statement — N THEN statement
ELSE statement ELSE PUT SKIP LIST (‘not positive’);

Tim Teitelbaum and Thomas Reps. 1981. The Cornell program synthesizer: a syntax-directed programming
environment. Commun. ACM 24, 9 (September 1981), 563-573.

LaToza GMU SWE 795 Spring 2017

What happened?

e Structured editors make unstructured edits hard
e Hard to add / remove lines that crosscut structure

 Hard to copy and paste in ways that crosscut
structure

e |f you already know the syntax, may be slower to
select syntax from command or drag and drop than
it Is to type

e But... If you don’t know the syntax at all, can be helpful

e —> Extensive use of syntax directed editors In
programming environments for novice programmers

LaToza GMU SWE 795 Spring 2017

Eile Edit Tools Help

% Play Undo
|| World

[HauntedHouse
Q Ground

Q Octopus
E;QSkyride
;;;QTeacups

Q RingTossLeft
Q Coaster

Q FerrisWheel

EH-#H-H

World's details

4

properties ‘methods [functions

;;skycarAnImatIon a
;éskyrldeAnImatlon

_teacupsAnimation cup cup2
_platterAnimation platter [,

“teacupBaseAnimation

;gteacupBaseAnImatlonLoop E

;éferrlsAnImatlon

_horseAnimation horseStartUp

~carouselAnimation 'editl

<« Il | [»]

.

Example: Alice

Redo

Events |create new event

Let Ll move Camera
s

~ When the world starts, do = World.skyrideAnimation
~ When the world starts, do ~World.teacupBaseAnimationLoop

~ When the world starts, do = World.ferrisAnimation

4~

@ World.skycarAnimation

World.skycarAnimation [x]a

Ne variables

create new para...

create new varia...

“[=/Do in order
~ 5)Do together
. a.- move forward - 25 meters duration = 4 seconds - style = begin gently - more...

~a. move up - 10 meters — duration = 4 seconds — style = begin gently — more...

~a. move right - 1.5 meters - duration = 4 seconds — style = begin gently -~ more...

a move forward - 95 meters . duration = 10 seconds - style = abruptly — more...

[=|Do together

a-— move forward - 22 meters - duration = 4 seconds — styfe = begin gently -~ more...

Do in order Do together If/Else Loop ~While For all in order For all together Wait print

u

http://www.alice.org/3.1/Materials/Videos/01.BriefTour.mp4

Alice: Lessons Learned from Building a 3D System for Novices. Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove, Kevin Christiansen,
Rob Deline, Jim Durbin, Rich Gossweiler, Shuichi Kogi, Chris Long, Beth Mallory, Steve Miale, Kristen Monkaitis, James Patten, Jeffrey Pierce, Joe
Schochet, David Staak, Brian Stearns, Richard Stoakley, Chris Sturgill, John Viega, Jeff White, George Williams, and Randy Pausch, CHI 2000

LaToza

GMU SWE 795 Spring 2017

http://www.alice.org/3.1/Materials/Videos/01.BriefTour.mp4

Example: Scratch

dosirdil @ | D File Edit Share Help

Control

Sensing

Operators
Variables

move m steps

turn & B degrees

turn D) degrees

point in direction m

point towards

qotox:@y:m

go to

glide) secs to x: 139 v: €Y

change x by m

set x to 0
change y by m

set y to 0

if on edge, bounce

x position
y position
direction

Qs LT
— Ky A%

(broadcast swart_|

ST
gotox:@y:m

go to front

Please help me
out of this cage.
The spider holds

me as her
prisoner

—

—
m\.n | up arrow | key pressed
change y by)

(broadcast fatter |

if y poaition> >.m
set y to BTN

New sprite: ‘{,:/ i-,.? 7k

TAVA S
e

(Shan 1 racamal 7]

forever

set MayaY |to y position
. — Maja Blumel Blume2

set MayaX |to x position

wait (Y secs
el =)

ey

' »
o4

"l I]-_‘ }‘ /——\ /"3‘ : _L‘

- }

Stage
Blume3 Blume4d Kaefig marien... Regenb. Spinne Schlues..

/_—‘k——_-
I/mnpoownmw | key pressed
e,

-

Vs "N o

S >’ o a
, 1, n,.r\-_;,\ S, i,

https://vimeo.com/65583694

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum,
Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun. ACM 52, 11 (November 2009), 60-67.

LaToza

GMU SWE 795 Spring 2017

9

https://vimeo.com/65583694

LaToza

Example: TouchDevelop
©® p

all APIs

ranslate field(tut, "finalDocs", fromr, P='€

|
@r steps := tut — field("steps") ' ’ ’ |

& parallel — for(steps, action)
: @ 'for' expects Number here, got Json Builder 1

where action(index : Number) |
var step := steps — at(index)
> translate field(step, "docs”, from, to
normalized)

> translate field(step, "commandArg", from, to
normalized)

for(count : Number, action : Number Action) -- Runs the action for the elements of a collection

in parralel help...
A ™ A A A A
N A A A A
. D) ’9)
123 < >

https://www.touchdevelop.com/home
https://www.youtube.com/watch?v=ve2E90wh-wk

GMU SWE 795 Spring 2017

10

https://www.youtube.com/watch?v=ve2E90wh-wk
https://www.touchdevelop.com/home

Editable program views

* EXpressing code edits through textual changes
can be time consuming

e extra bollerplate, code duplication, etc.

o Key idea: Enable developers to instead interact
with abstracted view of code

* Use edits to abstract view to edit underlying
code

LaToza GMU SWE 795 Spring 2017

11

Clicks to

@ Linked Editing User types here toggle ™ O Linked Editing

public void wakeAll() (
assert (conditionLock. isHeldByC
Log.print(“Ve're in wake]
boolean intStatus = Machine in
vhile (threadQueue.size() > 0)

public void wake() {
assert(conditionLock. isHeldByC
Log.print(*Ve're in wake]

{

ck. 1sHe urye
n wakeAll i

= Machine. inter
.s1ze() > 0) {

ck. isHeldByCurr
n wake
= Machine. inter

@ Linked Editing

public void wakeAll() (
assert(conditionlock. isHeldByCurce
Log. print("We're in wakeAll()"):|]
boolean intStatus = Machine. interr
wvhile (threadQueuve. size() > 0) {

public void wake() (
assert(conditionLock. isHeldByCurre
Log.print("We're in wvake()"):|

boolean intStatus = Machine. interr

Linked Editing

O Linked Editing

boolean intStatus = Machine. in
n:i.f (threadQueuve. size() >t0) {

Ghost cursor

0O >0 ¢

public void wakeAll() (
assert(conditionLock. 1sHeldByCurre

boolean intStatus = Machine. interr
while (threadQueue. size() > 0) {

public void wake() {
assert (conditionLock. isHeldByCurre
Log. print(*We're in wake()*);
boolean intStatus = Machine. interr
if (threadQueue. size() > 0) {

9“ (threadQueue, size() > 0) {

e

Figure 2. (1) Adding a line to two clones. (2) Modifying one instance. (3) Deleting line in one instance.

public void wakeAll() {
< assert(conditionLock. isHeldByCurrentThread()
System. out. println("We're in wakeAll()");|
boolean intStatus = Machine. interrupt().disa
while (threadQueue.size() > 0) {
public void wake() {
b ... wake ... if ... }

Figure 3. An elided clone looks similar to a
function definition and use

Michael Toomim, Andrew Begel, and Susan L. Graham. 2004. Managing Duplicated Code with Linked Editing. In Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing (VLHCC '04). IEEE Computer Society, Washington, DC, USA, 173-180.

LaToza

GMU SWE 795 Spring 2017

12

Registration-based language abstractions

public class WorkbenchHistoryPage3ite implements IHistoryPageSite {
- o GenericHistoryView parc; |Getter: public IWorkbenchPart get

S IPageSite =ite; |Getter: public getWorkbenchPageSite
Delegates Implementation of IHistoryPageSite (3 of 8 methods):

o public setSelectionProvider
o public getSelectionProvider
Fa

public getShell

public static BundleDesc[] getDependentBundles (BundleDesc root) (
BundleDesc|[] imported = getImportedBundles(root):
BundleDesc[] required = getRequiredBundles(root):;
o BundleDesc[] dependents = imported + required;
return dependents;
H

(a) An array-concatenation registration. The presentation uses an overloaded “+” to indicate the concatenation of two arrays through
calls to System.arraycopy.

public static BundleDesc[] getDependentBundles (BundleDesc root) ({
BundleDesc[] imported = getImportedBundles(root):
BundleDesc[] required = getRequiredBundles(root):
v BundleDesc[] dependents » new BundleDesc[imported. length + required. length):
o dependents[0 : *])H=®imported[0, imported.length]:
o dependents[imported. length : ']ﬂ=‘requ1red[0, required. length] ;
return dependents;

(b) Two arraycopy registrations. The notation “0 : *" indicates that the elements are copied into the indices starting at 0. An icon is used
to disambiguate the syntax, by making it clear that the dependents array is not truncated to the length of the copied elements.

Samuel Davis and Gregor Kiczales. 2010. Registration-based language abstractions. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications (OOPSLA '10). ACM, New York, NY, USA, 754-773.

LaToza GMU SWE 795 Spring 2017

Copy & paste code reuse

e A very common way to edit code is by copying existing
code. —> copy & paste reuse

e (Creates code duplication

o But... ok if this code duplication does not represent
new abstraction

o Studies have attempted to understand when code
duplication introduced by copy & paste is bad

 Many tools to detect code clones introduced by copy &
paste

Slides for this section adapted from 05-899D Human Aspects of Software
Development Spring 2011, “Software Evolution”™ by YoungSeok Yoon

LaToza GMU SWE 795 Spring 2017 14

Why do developers copy & paste code?

o structural template (the most common intention)

* relocate, regroup, reorganize, restructure,
refactor

 semantic template
* design pattern
* usage of a module (following a certain protocol)
* reuse a definition of particular behavior
* reuse control structure (nested if~else or loops)

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of
International Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU SWE 795 Spring 2017

15

LaToza

Why do developers copy & paste?

* Forking
* Hardware variations
* Platform variation
* Experimental variation
* Templating
* Boller-plating due to language in-expressiveness
* APIl/Library protocols

* (General language or algorithmic idioms
e Customization

* Bug workarounds
* Replicate and specialize

C. Kapser and M. W. Godfrey (2006), “Cloning Considered Harmful’ Considered Harmful,” in 13th Working Conference on Reverse
Engineering (WCRE '06), 2006, pp. 19-28.

GMU SWE 795 Spring 2017

16

Properties of copy & paste reuse

 Unavoidable duplicates (e.g., lack of multiple
inheritance)

 Programmers use their memory of C&P history to
determine when to restructure code

e delaying restructuring helps them discover the
right level of abstraction

 C&P dependencies are worth observing and
maintaining

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of
International Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU SWE 795 Spring 2017

17

Code clone genealogies

Investigates the validity of the
assumption that code clones

are bad
Defines clone evolution model

Inconsistent Add &
Subtract & Add change & Consistent
Subtract change

Code Snippet

e Built an automatic tool to

extract the history of code
clones from a software

repository
Table 1: Description of Two Java Subject Programs
Program carol ~ dnsjava
URL carol.objectweb.org | www.dnsjava.org
LOC 7878 ~ 23731 5756 ~ 21188
duration 26 months 68 months
of check-ins 164 905

Table 2: Clone Genealogies in carol and dnsjava
(minioken =30, simyy = 0.3)

i Consistent Inconsistent Subtract # of genealogies carol dnsjava
r Change change & total 122 140
" y | Submact v - false positive 13 15
! Viey Vi . 4 true positive 109 125
Clone Grou . locally unfactorable || 70 (64%) | 61 (49%)
p 1 example clong C|One L neage consistently changed [| 41 (38%) | 45 (36%)

11

M. Kim, V. Sazawal, D. Notkin, and G. Murphy (2005), “An empirical study of code clone genealogies,” in Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering (ESEC/FSE-13).

LaToza

GMU SWE 795 Spring 2017

18

LaToza

Refactoring: Motivation

“Refactoring is the process of changing a software system in such a
way that it does not alter the external behavior of the code yet
improves its internal structure.” [Fowler 1999]

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts (1999), “Refactoring:
Improving the Design of Existing Code”, 1st ed. Addison-Wesley Professional.

Slides for this section adapted from 05-899D Human Aspects of Software
Development Spring 2011, “Software Evolution”™ by YoungSeok Yoon

GMU SWE 795 Spring 2017

19

First tool: A Refactoring Tool for Smalltalk

r “gBrowser - Smalltalk 18] x|
Buffers Browse Category Class Protocol Selector Tool
Lens-Private-Data Model #1|\DatabaseTypeMappin 2| intialize-release 2l|addindex:onTableForin +
accessing checkDataModelColumn with
Lens-Private-Object Manager LensDatabaselndex connection
Lens-Private-Query Manager LensDatabaseTable ipulatior defaultTableNameF or
Lens-Private-Transporter LensDatabaseTableColumn testing defineForeignKeysForin
Lens-Private-Applications-Supg ||LensTableKey private definePrimaryKeyFor.in
Lens-Private-Tools-Suppont getTableNamed:in:
Lens-Private-Tools-Browsing Method name X]
Lens-Private-Tools-Component yFor
2 2 #columnsOIT ype definition yFor]
f@ category O hietarchy "@ instance O class u n e
g A
createlTableFor: type in: alLensSession definition *
“Add the table for type in aLensSession. It's OK if it already exists.” =
| definition | = N
definition ;= WrteStream on: String new. — -
definition nextPutAll: ‘create table ', type table qualfiedName , ' (' cokmnsOiType: type definkion: definkion
| 0K Cancel
definition skip: -1
definition nextPut: $).
aLensSession connection doCommandStnng: definition contents
+

Figure 2 - Screenshot of Refactoring Browser during extract code as method
refactoring

D. Roberts, J. Brant, and R. Johnson (1997), “A refactoring tool for smalltalk,” Theory and Practice of Object Systems, vol. 3, no. 4, pp. 253-263.

LaToza GMU SWE 795 Spring 2017

LaToza

(Very) brief story of refactoring

o Started with academic work defining idea of refactoring

 William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of lllinois, 1992.

* Academic work for tools quickly followed (e.g., [Brant

TPOS97])
e Built in real IDE for Smalltalk from beginning

* Disseminated by agile thought leaders like Martin Fowler
* Adopted into mainstream IDEs like Eclipse, Visual Studio
 Became standard accepted feature of IDES

 Research continued

« Do developers use refactoring tools?
 Could they use them more”?
 How could refactoring tools better support developers?

GMU SWE 795 Spring 2017

21

Developers manually perform refactorings
not yet supported by tools

e About 70% of structural changes may be due to refactorings

« About 60% of these changes, the references to the affected entities
IN a component-based application can be automatically updatea

o State-of-the-art IDEs only support a subset of common low-level
refactorings, and lack support for more complex ones

Type of refactoring # Eclipse Type of refactoring # detected Eclipse support
detected support : — - — \/
Convert anonymous class to nested** 12 \ Extract constant interface J
Convert nested type to top-level 19 \ [nline constant interface 2 X
Convert top-level type to nested 20 X Extract class 95 X
Move member class to another class 29 v Inline class 3] v
Extract package 16 X . .
— pacRag Type of refactoring # detected Eclipse support
Inline package 3 X . . Y -
Information hiding 751 X
Type of refactoring # detected Eclipse support Generalize type 107 \]
> Tald/me 77C —
Pull up field/method 279 v Downcast type 85 »
Push down field/method 53 \ . C N
‘ _ - - Introduce factory 19
Extract interface 28 \ ; .
: . Change method signature 4497 \
Extract superclass 15 X
: Introduce parameter object™ - X
Extract subclass - X pAr)
Inline superclass 4 X Extract method 45 v
. 1 > (> *
Inline subclass 7 » Inline Method 31 \

Z. Xing and E. Stroulia (2006), “Refactoring Practice: How it is and How it Should be Supported - An Eclipse Case Study,” in Proceedings of 22nd IEEE International
Conference on Software Maintenance (ICSM ‘06), 2006, pp. 458-468.

LaToza GMU SWE 795 Spring 2017

22

LaToza

Larger study by Murphy-Hill

e Extensive study using 4 data sets spanning

> 13,000 developers, > 240,000 retactorings
> 2500 developer hours, > 3400 commits

e Data sets

* Users (collected by Murphy et al. in 2005)
« Everyone (collected by Eclipse Usage Collector)

e TJoolsmiths (refactoring tool developers)
e Eclipse CVS

E. Murphy-Hill, C. Parnin, and A. P. Black (2009), “How we refactor, and how we know it,” in Proceedings of the 31st International Conference on Software
Engineering (ICSE 2009), p. 287-297.

GMU SWE 795 Spring 2017

23

LaToza

Results

The Rename refactoring tool is used much more frequently by ordinary

programmers than by the toolsmiths

About 40% of refactorings performed using a tool occur in batches
(i.e., refactorings of the same kind within 60 secs)

About 90% of configuration defaults or refactoring tools remain
unchanged when programmers use the tools

Messages written by programmers in commit logs do not reliably
indicate the presence of refactoring

Programmers frequently floss refactor (i.e., interleave refactoring with
other programming activities)

About half of the refactorings are not high-level.—> refactoring
detection tools that look exclusively for high-level retactorings will not
detect them

Refactorings are performed frequently

Almost 90% of refactorings are performed manually, without the help
of tools

The kind of refactoring performed with tools differ from the kind
performed manually

GMU SWE 795 Spring 2017

24

Exploratory Programming

 Developers sometimes explore programs without
knowing a priori what behavior they want to create
or the best way to implement it

 (Goal: enable developers to explore variations in
programs

LaToza GMU SWE 795 Spring 2017 25

Backtracking in programming

Ex: 'getHe\ght()”getmdth()H getSue() ‘betﬂetght()[getmdth() betnetght()] Backtracking instance: [4263, 4629]

v1|[4263) return new Point (getWidth() ,getHeight());
. v2|[4555) return new Point (getiWidth () EINBREERISIEE, cotHeight ()) ;
v3|[4567) return new Foint (getiWidth() - MARKER SIZE,getHeight () FINNREERISIZE) ;
vi4|[4623] return new Foint (getiWidth () —MARKER-SH88, gethieight () - MARKER SIZE);

v3| [4629] return new Foint (getividth () ,getheight () —=MARKER-S48) ;

Fig. 2. An example output of our analyzer, showing the history of a statement
. T . . node. Each row maps to each version (vl,v2, ..., v5). This node contains a
Fig. 1. An example of a node evolution history, which contains three single backtracking instance, which is v1...v5. The edit operation IDs were

backtracking instances. The node first appeared in the code as “getHeight(),” . e . o .
(v1), changed a few times (v2 through v5), and finally ended up back at the originally 6-digits long (e.g., 184263), but were shortened for brevity.

original code (v6). The different contents are symbolized as capital letters A,
B, and C. There are three backtracking instances in this node history indicated

b1

b2

b3
Backtracking Instances: bi=v1.v4, b2=v2.v5, b3=v4.v6

as black backward arrows.
2 o000 5269
(")
Z (34.9%) TOGGLE_COMMENT, UNII;E:;'::IED.
o 3752 1.29% MULTIPLE,
E 3.53%
o0 | (24.9%) CONTENT_ASSIST, \
::‘ 4000 1.74% — ™
E 2026 1252326 REDO, 2.57%
% 1304 (13.4%) () CUT, 4.25%
S 2000 (8.6%)
'S ' 265 220
S I (1 8%) (1 5%)
0
E o . . .
< 1 2-9 10-49 50-99 21000
499 999

Backtracking Size (Number of Characters)
Fig. 3. Distribution of all the detected backtracking sizes Fig. 5. The identified backtracking tactics

Y. S. Yoon and B. A. Myers, "A longitudinal study of programmers' backtracking," 2014 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Melbourne, VIC, 2014, pp. 101-108.

LaToza GMU SWE 795 Spring 2017 26

Supporting backtracking

" Problems @ Javadoc ~ Declaration ~ Timeline View 23 X g' "‘ o N

GitTestMain.j
Test2.java

¥ 01:1736 AM

http://www.cs.cmu.edu/~azurite/

https://www.youtube.com/watch?v=blbIBdIUGIc

Young Seok Yoon and Brad A. Myers. 2015. Supporting selective undo in a code editor. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE '15), Vol. 1. IEEE Press, Piscataway, NJ, USA, 223-233.

LaToza GMU SWE 795 Spring 2017

27

http://www.cs.cmu.edu/~azurite/
https://www.youtube.com/watch?v=blbIBdlUGIc

