
Editing Code
SWE 795, Spring 2017

Software Engineering Environments

LaToza GMU SWE 795 Spring 2017

Today
• Part 1 (Discussion)(~60 mins)

• Discussion of readings

• Break!

• Part 2 (Lecture)(60 mins)
• Editing Code

• Part 3 (In class activity)(~20 mins)
• Design exercise

2

LaToza GMU SWE 795 Spring 2017

Editing Code

• What types of edits do developers make?
• What mistakes occur? How can they be prevented?
• How can developers edit at a level of abstraction beyond

lines and characters?

• Techniques we will examine today
• Structured editors
• Editable program views
• Copy & paste reuse
• Refactoring
• Exploratory programming

3

LaToza GMU SWE 795 Spring 2017

Structured Editors: Motivation
• Syntax can be hard

• Have to learn the right syntax (challenging for
programming or language novices)

• Getting syntax wrong creates errors

• What if we could have a development environment
where it was impossible to have a syntax error

4

LaToza GMU SWE 795 Spring 2017

Structured Editors: Idea
• Developers edit code through commands that

create program elements
• e.g., create an if statement through a keyboard

shortcut or drag & drop

• Edits are semantic rather than syntactic
• Individual elements expose specific elements

they support
• Cannot make edits that crosscut element

structure

5

LaToza GMU SWE 795 Spring 2017

Cornell Program Synthesizer
• Introduced key concepts

6

Tim Teitelbaum and Thomas Reps. 1981. The Cornell program synthesizer: a syntax-directed programming
environment. Commun. ACM 24, 9 (September 1981), 563-573.

LaToza GMU SWE 795 Spring 2017

What happened?
• Structured editors make unstructured edits hard

• Hard to add / remove lines that crosscut structure
• Hard to copy and paste in ways that crosscut

structure
• If you already know the syntax, may be slower to

select syntax from command or drag and drop than
it is to type

• But… if you don’t know the syntax at all, can be helpful
• —> Extensive use of syntax directed editors in

programming environments for novice programmers

7

LaToza GMU SWE 795 Spring 2017

Example: Alice

8

Alice:	Lessons	Learned	from	Building	a	3D	System	for	Novices.	Ma=hew	Conway,	Steve	Audia,	Tommy	Burne=e,	Dennis	Cosgrove,	Kevin	ChrisDansen,	
Rob	Deline,	Jim	Durbin,	Rich	Gossweiler,	Shuichi	Kogi,	Chris	Long,	Beth	Mallory,	Steve	Miale,	Kristen	MonkaiDs,	James	Pa=en,	Jeffrey	Pierce,	Joe	
Schochet,	David	Staak,	Brian	Stearns,	Richard	Stoakley,	Chris	Sturgill,	John	Viega,	Jeff	White,	George	Williams,	and	Randy	Pausch,	CHI	2000		

http://www.alice.org/3.1/Materials/Videos/01.BriefTour.mp4

http://www.alice.org/3.1/Materials/Videos/01.BriefTour.mp4

LaToza GMU SWE 795 Spring 2017

Example: Scratch

9

Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum,
Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun. ACM 52, 11 (November 2009), 60-67.

https://vimeo.com/65583694

https://vimeo.com/65583694

LaToza GMU SWE 795 Spring 2017

Example: TouchDevelop

10

https://www.youtube.com/watch?v=ve2E90wh-wk
https://www.touchdevelop.com/home

https://www.youtube.com/watch?v=ve2E90wh-wk
https://www.touchdevelop.com/home

LaToza GMU SWE 795 Spring 2017

Editable program views

• Expressing code edits through textual changes
can be time consuming
• extra boilerplate, code duplication, etc.

• Key idea: Enable developers to instead interact
with abstracted view of code
• Use edits to abstract view to edit underlying

code

11

LaToza GMU SWE 795 Spring 2017

Linked Editing

12

Michael Toomim, Andrew Begel, and Susan L. Graham. 2004. Managing Duplicated Code with Linked Editing. In Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing (VLHCC '04). IEEE Computer Society, Washington, DC, USA, 173-180.

LaToza GMU SWE 795 Spring 2017

Registration-based language abstractions

13

Samuel Davis and Gregor Kiczales. 2010. Registration-based language abstractions. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications (OOPSLA '10). ACM, New York, NY, USA, 754-773.

LaToza GMU SWE 795 Spring 2017

Copy & paste code reuse
• A very common way to edit code is by copying existing

code. —> copy & paste reuse
• Creates code duplication

• But… ok if this code duplication does not represent
new abstraction

• Studies have attempted to understand when code
duplication introduced by copy & paste is bad

• Many tools to detect code clones introduced by copy &
paste

14

Slides for this section adapted from 05-899D Human Aspects of Software
Development Spring 2011, “Software Evolution” by YoungSeok Yoon

LaToza GMU SWE 795 Spring 2017

Why do developers copy & paste code?

• structural template (the most common intention)
• relocate, regroup, reorganize, restructure,

refactor
• semantic template

• design pattern
• usage of a module (following a certain protocol)
• reuse a definition of particular behavior
• reuse control structure (nested if~else or loops)

15

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of
International Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU SWE 795 Spring 2017

Why do developers copy & paste?

• Forking
• Hardware variations
• Platform variation
• Experimental variation

• Templating
• Boiler-plating due to language in-expressiveness
• API/Library protocols
• General language or algorithmic idioms

• Customization
• Bug workarounds
• Replicate and specialize

16

C. Kapser and M. W. Godfrey (2006), “‘Cloning Considered Harmful’ Considered Harmful,” in 13th Working Conference on Reverse
Engineering (WCRE ’06), 2006, pp. 19-28.

LaToza GMU SWE 795 Spring 2017

Properties of copy & paste reuse

• Unavoidable duplicates (e.g., lack of multiple
inheritance)

• Programmers use their memory of C&P history to
determine when to restructure code
• delaying restructuring helps them discover the

right level of abstraction

• C&P dependencies are worth observing and
maintaining

17

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of
International Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU SWE 795 Spring 2017

Code clone genealogies

18

l Investigates the validity of the
assumption that code clones
are bad

l Defines clone evolution model

l Built an automatic tool to
extract the history of code
clones from a software
repository

11

Code Snippet

Clone Group Clone Lineage

M. Kim, V. Sazawal, D. Notkin, and G. Murphy (2005), “An empirical study of code clone genealogies,” in Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering (ESEC/FSE-13).

LaToza GMU SWE 795 Spring 2017

Refactoring: Motivation

19

“Refactoring is the process of changing a software system in such a
way that it does not alter the external behavior of the code yet
improves its internal structure.” [Fowler 1999]

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts (1999), “Refactoring:
Improving the Design of Existing Code”, 1st ed. Addison-Wesley Professional.

Slides for this section adapted from 05-899D Human Aspects of Software
Development Spring 2011, “Software Evolution” by YoungSeok Yoon

LaToza GMU SWE 795 Spring 2017

First tool: A Refactoring Tool for Smalltalk

20

D. Roberts, J. Brant, and R. Johnson (1997), “A refactoring tool for smalltalk,” Theory and Practice of Object Systems, vol. 3, no. 4, pp. 253-263.

LaToza GMU SWE 795 Spring 2017

(Very) brief story of refactoring
• Started with academic work defining idea of refactoring

• William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois, 1992.

• Academic work for tools quickly followed (e.g., [Brant
TPOS97])
• Built in real IDE for Smalltalk from beginning

• Disseminated by agile thought leaders like Martin Fowler
• Adopted into mainstream IDEs like Eclipse, Visual Studio
• Became standard accepted feature of IDES
• Research continued

• Do developers use refactoring tools?
• Could they use them more?
• How could refactoring tools better support developers?

21

LaToza GMU SWE 795 Spring 2017

Developers manually perform refactorings
not yet supported by tools

• About 70% of structural changes may be due to refactorings
• About 60% of these changes, the references to the affected entities

in a component-based application can be automatically updated
• State-of-the-art IDEs only support a subset of common low-level

refactorings, and lack support for more complex ones

22

Z. Xing and E. Stroulia (2006), “Refactoring Practice: How it is and How it Should be Supported - An Eclipse Case Study,” in Proceedings of 22nd IEEE International
Conference on Software Maintenance (ICSM ‘06), 2006, pp. 458-468.

LaToza GMU SWE 795 Spring 2017

Larger study by Murphy-Hill

• Extensive study using 4 data sets spanning
• > 13,000 developers, > 240,000 refactorings  

> 2500 developer hours, > 3400 commits

• Data sets
• Users (collected by Murphy et al. in 2005)
• Everyone (collected by Eclipse Usage Collector)
• Toolsmiths (refactoring tool developers)
• Eclipse CVS

23

E. Murphy-Hill, C. Parnin, and A. P. Black (2009), “How we refactor, and how we know it,” in Proceedings of the 31st International Conference on Software
Engineering (ICSE 2009), p. 287–297.

LaToza GMU SWE 795 Spring 2017

Results
• The Rename refactoring tool is used much more frequently by ordinary

programmers than by the toolsmiths
• About 40% of refactorings performed using a tool occur in batches

(i.e., refactorings of the same kind within 60 secs)
• About 90% of configuration defaults or refactoring tools remain

unchanged when programmers use the tools
• Messages written by programmers in commit logs do not reliably

indicate the presence of refactoring
• Programmers frequently floss refactor (i.e., interleave refactoring with

other programming activities)
• About half of the refactorings are not high-level.—> refactoring

detection tools that look exclusively for high-level refactorings will not
detect them

• Refactorings are performed frequently
• Almost 90% of refactorings are performed manually, without the help

of tools
• The kind of refactoring performed with tools differ from the kind

performed manually
24

LaToza GMU SWE 795 Spring 2017

Exploratory Programming

• Developers sometimes explore programs without
knowing a priori what behavior they want to create
or the best way to implement it

• Goal: enable developers to explore variations in
programs

25

LaToza GMU SWE 795 Spring 2017

Backtracking in programming

26

Y. S. Yoon and B. A. Myers, "A longitudinal study of programmers' backtracking," 2014 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Melbourne, VIC, 2014, pp. 101-108.

LaToza GMU SWE 795 Spring 2017

Supporting backtracking

27

http://www.cs.cmu.edu/~azurite/

https://www.youtube.com/watch?v=blbIBdlUGIc

Young Seok Yoon and Brad A. Myers. 2015. Supporting selective undo in a code editor. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE '15), Vol. 1. IEEE Press, Piscataway, NJ, USA, 223-233.

http://www.cs.cmu.edu/~azurite/
https://www.youtube.com/watch?v=blbIBdlUGIc

