Preventing Defects

SWE 795, Spring 2017
Software Engineering Environments

IIIIIIIIII

LaToza

Today

Part 1 (Lecture)(~60 mins)
Part 2 (HW3 Checkpoint Presentations)(20 mins)
Break!

Part 3 (Discussion)(~60 mins)
* Discussion of readings

GMU SWE 795 Spring 2017

LaToza

Preventing Defects

 \Where do defects come from?
» How can defects be prevented?

 How should potential defects be communicated to
developers?

GMU SWE 795 Spring 2017

Where do
defects come
from?

10.

1.
[Glass TSE81]

12.
LaToza

Omitted logic

Failure to reset data

Regression error

Documentation in error

Requirements inadequate

Patch in error
Commentary in error

IF statement too simple

Referenced wrong data variable

Data alignment error

Timing error causes data loss

Failure to initialize data

Code is lacking which should be present.
Variable A is assigned a new value in logic

path X but is not reset to the value required
prior to entering path Y.

Reassignment of needed value to a variable omitted.
See example for "omitted logic."

Attempt to correct one error causes another,

Software and documentation conflict; software
is correct. User manual says to input a value in

inches, but program consistently assumes the value
is in centimeters. '

Specification of the problem insufficient to
define the desired solution.

See Figure 4. If the requirements failed to
note the interrelationship of the validity
check and the disk schedule index, then

this would also be a requirements error,

Temporary machine code change contains an error.
Source code is correct, but "“jump to 14000"
should have been "jump to 14004."

Source code comment is incorrect.

Program says DO I=1,5 while comment says
“loop 4 times."

Not all conditions necessary for an IF
statement are present.

IF A<B should be IF A<B AND B<C.

Self-explanatory
See Figure 3. The wrong queues were referenced.

Data accessed is not the same as data desired due
to using wrong set of bits.

Leftmost instead of rightmost substring of

bits used from a data structure.

Shared data changed by a process at an
unexpected time,

Parallel task B changes XYZ just before task A
used it.

Non-preset data is referenced before a value
is assiqgned.

e = =g ———

Where do defects come from?

Gould [14]
Novice Fortran

Assignment bug

Iteration bug

Array bug
Eisenberg [15] Visual bug
Novice APL

Naive bug

Logical bug

Dummy bug

Inventive bug
Illiteracy bug

Gestalt bug

LaToza

Software errors in assigning
variables’ values

Software errors in iteration
algorithms

Software errors in array index
expressions

Grouping related parts of
expression

Iteration instead of parallel
processing

Omitting or misusing logical
connectives

Experience with other
languages interfering
Inventing syntax
Difficulties with order of
operations

Unforeseen side effects of
commands

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Spring 2017

Requires understanding of
behavior
Requires understanding of
language
Requires understanding of
language

‘...need to think step-by-step’

‘...seem to be syntax
oversights’

“...failure to see the whole
picture’

LaToza

Where do defects come from?

Knuth [18] While
writing TeX in
SAIL and Pascal

Algorithm awry

Blunder or botch

Data structure
debacle
Forgotten
function

Language liability

Module mismatch

Robustness

Surprise scenario

Trivial typos

Improperly implemented
algorithms

Accidentally writing code not
to specifications

Software errors in using data
structures

Missing implementation

Misunderstanding language/
environment

Imperfectly knowing
specification

Not handling erroneous input

Unforeseen interactions in
program elements

Incorrect syntax, reference, etc.

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Spring 2017

‘proved...incorrect or
inadequate’
‘not...enough brainpower’

‘did not preserve...invariants’

‘I did not remember everything’

‘I forgot the conventions I had
built’

‘tried to make the code bullet-
proof™

‘forced me to change my ideas’

‘my original pencil draft was
correct’

Where do defects come from?

Clobbered
memory

Eisenstadt [19]
Industry experts
COBOL, Pascal,
Fortran, C

Vendor problems
Design logic
Initialization
Variable

Lexical bugs
Language

Overwriting memory, subscript
out of bounds

Buggy compilers, faulty
hardware

Unanticipated case, wrong
algorithm

Erroneous type or initialization
of variables

Wrong variable or operator
used

Bad parse or ambiguous syntax
Misunderstandings of language
semantics

Adapted from Ko & Myers, JVLC0O5

LaToza

GMU SWE 795 Spring 2017

Also identified why software
errors were difficult to find:
cause/effect chasm; tools
inapplicable; failure did not
actually happen; faulty
knowledge of specs;
“spaghetti” code.

Where do defects come from?

Ko & Myers proposed a model for understanding
the cognitive causes of defects

 |[atent errors becomes active errors when they
oreach defenses of system

Requirements F
- nality x
ns u\'\C“ona.
spec'\i\ca“o £ gemamic®
mer " o
O (aed\e®

\“e "
>< : 03\0“5
“hmS
m NGO e 1
- @\ prog™® pata 5‘.“’;‘35
Problematic R 3 yara ¢
Specifications %. ovje j
Runtime Faults

Cognitive & ‘ O O (ot ce
Breakdowns O
| | Usability
Layers and their latent errors Issues
V Trajectories of failure -

Errors

Runtime
Failures

Adapted from Ko & Myers, JVLC0O5

LaToza GMU SWE 795 Spring 2017

LaToza

Skill / Rule / Knowledge

James Reason proposed a taxonomy of cognitive
breakdowns based on differences in type of cognition being
used

Skill-based activity: routine, proceduralized activity

* e.g., typing a string, opening a source file, compiling a
program

Rule-based activity: use of rules for acting in certain contexts

* e.g., starting to type a for loop in order to perform an
action on each element of a list

Knowledge-based activity: forming plans & making high-level
decisions based on knowledge of program

* e.g., forming a hypothesis about cause of runtime failure

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Spring 2017

LaToza

Types of skill breakdowns

Inattention Type Events resulting in breakdown
Failure to attend to a Strong habit In the middle of a sequence of actions — no
routine action at a critical intrusion attentional check — contextually frequent action
time causes forgotten is taken instead of intended action
actions, forgotten goals, or
inappropriate actions.

Interruptions External event — no attentional check — action

Delayed action

skipped or goal forgotten

Intention to depart from routine activity — no
attentional check between intention and action —
forgotten goal

Exceptional Unusual or unexpected stimuli — stimuli

stimuli overlooked — appropriate action not taken

Interleaving Concurrent, similar action sequences — no

attentional check — actions interleaved

Overattention Type Events resulting in breakdown
Attending to routine action Omission Attentional check in the middle of routine actions
causes false assumption — assumption that actions are already completed
about progress of action. — action skipped

Repetition Attentional check in the middle of routine actions

— assumption that actions are not completed —
action repeated

Adapted from Ko & Myers, JVLC05

GMU SWE 795 Spring 2017

10

LaToza

Types of

rule breakdowns

Wrong rule

Type

Events resulting in breakdown

Use of a rule that is successful
in most contexts, but not all.

Problematic signs
Information
overload

Favored rules

Favored signs

Ambiguous or hidden signs — conditions
evaluated with insufficient info — wrong
rule chosen — inappropriate action

Too many signs — important signs missed
— wrong rule chosen — inappropriate
action

Previously successful rules are favored —
wrong rule chosen — inappropriate action
Previously useful signs are favored —
exceptional signs not given enough weight
— wrong rule chosen — inappropriate
action

Rigidity Familiar, situationally inappropriate rules
preferred over unfamiliar, situationally
appropriate rules — wrong rule chosen —
inappropriate action

Bad rule Type Events resulting in breakdown

Use of a rule with problematic Incomplete Some properties of problem space are not

conditions or actions. encoding encoded — rule conditions are immature
— inappropriate action

Inaccurate Properties of problem space encoded

encoding inaccurately — rule conditions are

Exception proves
rule
Wrong action

inaccurate — inappropriate action
Inexperience — exceptional rule often
inappropriate — inappropriate action
Condition is right but action is wrong —
inappropriate action

GMU SWE 795 Spring 2017

11

Types of knowledge breakdowns

Bounded rationality Type Events resulting in breakdown
Problem space is too large to Selectivity Psychologically salient, rather than
explore because working logically important task information is
memory is limited and costly. attended to — biased knowledge
Biased reviewing Tendency to believe that all possible

courses of action have been considered,
when in fact very few have been considered
— suboptimal strategy

Availability Undue weight is given to facts that come
readily to mind — facts that are not present
are easily ignored — biased knowledge

Faulty models of problem Type Events resulting in breakdown
space
Formation and evaluation of Simplified Judged by perceived similarity between
knowledge leads to incomplete causality cause and effect - knowledge of outcome
or inaccurate models of increases perceived likelihood — invalid
problem space. knowledge of causation
[llusory Tendency to assume events are correlated
correlation and develop rationalizations to support the
belief — invalid model of causality
Overconfidence False belief in correctness and completeness

of knowledge, especially after completion
of elaborate, difficult tasks — invalid,
inadequate knowledge

Confirmation bias Preliminary hypotheses based on
impoverished data interfere with later
interpretation of more abundant data —
invalid, inadequate hypotheses

LaToza GMU SWE 795 Spring 2017 12

Breakdown chain example (Part 1)

P2 has difficulty creating the Rule breakdown creating

specifications for the Boolean logic to specifications for Boolean logic go.killlzar;alkd?cwn impiementing
check if all of the dots are eaten, as for seeing if all dots are eaten g (atic sign)
evidenced by verbal utterances; also, (wrong action) proowem g |
part of the expression was obscured, / /
and she though the "BigDot" reference . . : : , -
was off-screen. "x" if not (dot1.isShowing g _x Missing reference to
< ¥ ¥ anddot2.isShowing...) <= ¥..Y . BigDot.isShowing

\ v

1. Conditional becomes true ﬁ Conditional

after one dot is eaten doesn't check

\ BigDot.isShowing

Pac bounces before
all the dots are eaten

She only forms one hypothesis about Knowledge breakdown
the cause of the failure, which is understanding runtime failure
incorrect. (biased reviewing)
This causes a breakdown in modifying Rule breakdown modifying
the Boolean logic. Boolean logic .
(wrong action)

Adapted from Ko & Myers, JVLC05

LaToza GMU SWE 795 Spring 2017 13

Breakdown chain example (Part 1)

Because camera was pointing down at
Pac, she was unaware that Pac was
bouncing.

The fact that Pac doesn't seem to be
bouncing leads her to believe he is not.

After 20 minutes, P2 reorients the
camera and notices that Pac is
bouncing, but assumes it was due to
more recent changes and not the
earlier error.

if not dot1.isShowing and
not dot2.isShowing...

Conditional becomes
true immediately

Pac bounces
immediately

Rule breakdown observing
runtime failure
(problematic signs)

Knowledge breakdown
observing runtime failure
(illusory correlation)

Knowledge breakdown
understanding runtime failure
(availability)

Adapted from Ko & Myers, JVLC0O5

LaToza

GMU SWE 795 Spring 2017

14

LaToza

Causes of defects: API misuse

 Components expose APIs which have rules about
how they should be used

* \What types of rules do components impose”

GMU SWE 795 Spring 2017

15

Causes of defects: API misuse

e Based on survey of APIls, categorized directives APIls
Impose on clients

* Restrictions on when to call
* Do not call from Ul thread, tor debugging use only
e Protocols specitying ordering constraints

 Method must only be called once, method must be
called prior to other method

* Locking describing thread synchronization
e Restrictions on possible parameter values

» String.replaceAll() should not include $ or \ characters
In replacement string

Uri Dekel and James D. Herbsleb. 2009. Improving API documentation usability with knowledge pushing. In Proceedings
of the 31st International Conference on Software Engineering (ICSE '09), 320-330.

LaToza GMU SWE 795 Spring 2017 16

Causes of defects: Object protocol misuse

 Examined Java code for presence of protocols,
found 7.2% of types defined protocols & 13% of

classes used protocols
* Most frequent causes:

e [nitialization (28.1%): calls to an instance method
m without first calling initializing method /

* Deactivation (25.8%): calls to an instance
method m after calling a deactivation method d

* Type Qualifier (16.4%): object enters a state
during which method m will always fall

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. 2011. An empirical study of object protocols in the wild. In

Proceedings of the 25th European conference on Object-oriented programming (ECOOP'11), Mira Mezini (Ed.).

Springer-Verlag, Berlin, Heidelberg, 2-26.

LaToza GMU SWE 795 Spring 2017

17

LaToza

Causes of defects in JavaScript

 Examined 502 bug reports from 19 repos, categorizing
the cause of each error

 Most common types of errors:

Erroneous input validation (16%): inputs passed into
JS code are not validated or sanitized

Error in writing a string literal (13%): incorrect CSS

selectors, regular expressions, forgetting prefixes, etc.

Forgetting null / undetined check (10%)

Neglecting differences in browser behavior (9%):
differences in behavior of browser AP| across
browsers

Errors in syntax (7 %)

Ocariza et al, A Study of Causes and Consequences of Client-Side JavaScript Bugs, TSE 2016

GMU SWE 795 Spring 2017

18

LaToza

How can defects be prevented?

1. Help programmers recover from interruptions or delays by reminding
them of their previous actions

2. Highlight exceptional circumstances to help programmers adapt their
routine strategies

3. Help programmers manage multiple tasks and detect interleaved
actions

4. Design task-relevant information to be visible and unambiguous

5. Avoid inundating programmers with information
6. Help programmers consider all relevant hypotheses, to avoid the
formation of invalid hypotheses

/. Help programmers identity and understand causal relationships, to
avoid invalid knowledge

8. Help programmers identity correlation and recognize illusory
correlation

9. Highlight logically important information to combat availability and
selectivity heuristics

10. Prevent programmer’s overconfidence in their knowledge by testing
their assumptions

Adapted from Ko & Myers, JVLC0O5

GMU SWE 795 Spring 2017 19

LaToza

How can defects be prevented?

* Jechnigues we'll examine today
e Specification checkers
* |diom detectors
* Heuristic based detectors

GMU SWE 795 Spring 2017

20

Specification checkers

e Key idea

 Components (functions, classes, modules, ...)

have interfaces with rules that describe how they
should be correctly used

e Violations of these rules cause defects

o (Goal: express these rules in a machine-readable
form, check that code conforms to these rules,
iIssue compile warnings when it does not

LaToza GMU SWE 795 Spring 2017 21

Slam

state {
enum { Unlocked, Locked} s = Unlocked; // FSM states

}

AcquireSpinLock.entry { // Transition on lock acquire
" if (s == Locked) error;
Rules governing lock Lt Lo = Locked)
}
ReleaseSpinLock.entry { // Transition on lock release

if (s == Unlocked) error;
else s = Unlocked;

lteratively refines
boolean abstraction
of program to
determine if there
exists path that
violates rules

T. Ball and S.K. Rajamani, “The Slam Project: Debugging System Software via Static Analysis,” Proc. 29th ACM SIGPLAN-SIGACT Symp.

Principles of Programming Languages (POPL 2002), ACM Press, 2002, pp. 1-3. 55

LaToza GMU SWE 795 Spring 2017

LaToza

Idiom detectors

 Key idea

 Code may contain bug patterns that are often
(but not always) errors.

* Provide an open-ended framework for authoring
bug pattern detectors

* Flag instances of bug patterns as warning to
developers

GMU SWE 795 Spring 2017

23

FindBugs

// Eclipse 3.0,
// org.eclipse.jdt.internal.ui.compare,
// JavaStructureDiffViewer.java, line 131

Null pointer deref

Control c= getControl();
if (¢ == null && c.isDisposed())
return;

// JBoss 4.0.0RC1
// org.jboss.deployment.scanner
// AbstractDeploymentScanner.java, line 185

111 ' // 1If we are not enabled, then wai
Unconditional walit // 1t we are not enabled, then wait

try {
synchronized (lock) {
lock.wait();

David Hovemeyer and William Pugh. 2004. Finding bugs is easy. In Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications (OOPSLA '04). ACM, New York,
NY, USA, 132-136.

LaToza GMU SWE 795 Spring 2017

LaToza

Some initial Findbugs bug patterns

Code

Description

CN
DC
DE
EC

HE
IS2
MS
NP
NS
OS
RCN
RR
RV
Se
UR
UWwW

Cloneable Not Implemented Correctly
Double Checked Locking

Dropped Exception

Suspicious Equals Comparison

Bad Covariant Definition of Equals

Equal Objects Must Have Equal Hashcodes
Inconsistent Synchronization

Static Field Modifiable By Untrusted Code
Null Pointer Dereference
Non-Short-Circuit Boolean Operator

Open Stream

Redundant Comparison to Null

Read Return Should Be Checked

Return Value Should Be Checked
Non-serializable Serializable Class
Uninitialized Read In Constructor
Unconditional Wait

Wait Not In Loop

GMU SWE 795 Spring 2017

25

LaToza

Current list of Findbugs bug patterns

BC: Equals method should not assume anything about the type of its argument
BIT: Check for sign of bitwise operation

CN: Class implements Cloneable but does not define or use clone method

CN: clone method does not call super.clone()

CN: Class defines clone() but doesn't implement Cloneable

CNT: Rough value of known constant found

Co: Abstract class defines covariant compareTo() method

Co: compareTo()/compare() incorrectly handles float or double value

Co: compareTo()/compare() returns Integer MIN VALUE

Co: Covariant compareTo() method defined

DE: Method might drop exception

DE: Method might ignore exception

DMI: Adding elements of an entry set may fail due to reuse of Entry objects
DMI: Random object created and used only once

http://findbugs.sourceforge.net/bugDescriptions.html

GMU SWE 795 Spring 2017

26

http://findbugs.sourceforge.net/bugDescriptions.html

LaToza

Heuristic based detectors

 Key idea

 Use heuristics about how code Is usually written
to determine what might likely indicate an error

o Offer developers a warning message

GMU SWE 795 Spring 2017

27

Cleanroom

index.html style.css code.)s (15

Jnigueness
neuristic: flag any
identifier that
occurs only once
N a software
project

A.J. Ko and J. O. Wobbrock, "Cleanroom: Edit-Time Error Detection with the Uniqueness Heuristic," 2010 IEEE Symposium on Visual
Languages and Human-Centric Computing, Leganes, 2010, pp. 7-14.

LaToza GMU SWE 795 Spring 2017

28

How should potential defects be
communicated to developers?

o Static analysis tools increasingly part of the build
OrOCESS

* Builds compile code, run static analysis tools

* |[ndividual teams may build their own static analysis
rules

 How should these tools communicate analysis
results to developers?

LaToza GMU SWE 795 Spring 2017 29

Tricorder

Goals:

Low talse positives—error
reports should result in code
changes

Empower users to contribute
—let developers write their
own checkers

Make data-driven usability
improvements

Effective workflow integration
Quick fixes

- Analyzer

AffectedTargets
AndoidLint
AutoRefaster
BuildDeprecation

Builder
ClangTidy
DocComments
ErrorProne
Formatter
Golint

Govet
JavacWamings
JscompilerWamings
Linter

Unused
UnusedDeps

| Description

| How many targets are affected

Scans android projects for likely bugs
Implementation of Refaster [42]
Identify deprecated build targets

Checks if a changelist builds

Bug patterns based on AST matching
Errors in javadoc

Bug patterns based on AST matching
Errors in Java format strings

Style checks for go programs
Suspicious constructs in go programs
Curated set of warnings from javac
Warnings produced by jscompiler
Style issues in code

Unused variable detection

Flag unused dependencies

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Sdderberg, and Collin Winter. 2015. Tricorder: building a
program analysis ecosystem. International Conference on Software Engineering, 598-608.

LaToza

GMU SWE 795 Spring 2017

30

Tricorder Analysis Results

package com.google.devtools.staticanalysis;
public class Test {

« Lint Missing a Javadoc comment.
Java
1:02 AM, Aug 21

Please fix Not useful

public boolean foo() {
return getString() == "foo".toString():;

~ ErrorProne String comparison using reference equality instead of value equality

1“; SN~ (see http:// . le.com/pl/error-prone/wiki/StringEquality)
Please fix
Suggested fix attached: show Not useful

}

public String getString() {
return new String(“foo");
}
}

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Sdderberg, and Collin Winter. 2015. Tricorder: building a
program analysis ecosystem. International Conference on Software Engineering, 598-608.

LaToza GMU SWE 795 Spring 2017

31

