
Preventing Defects
SWE 795, Spring 2017

Software Engineering Environments



LaToza GMU SWE 795 Spring 2017

Today
• Part 1 (Lecture)(~60 mins) 

• Part 2 (HW3 Checkpoint Presentations)(20 mins) 

• Break! 

• Part 3 (Discussion)(~60 mins) 
• Discussion of readings

2



LaToza GMU SWE 795 Spring 2017

Preventing Defects

• Where do defects come from? 

• How can defects be prevented? 

• How should potential defects be communicated to 
developers?

3



LaToza GMU SWE 795 Spring 2017

Where do 
defects come 

from?

4

[Glass TSE81]



LaToza GMU SWE 795 Spring 2017

Where do defects come from?

5

Adapted from Ko & Myers, JVLC05  



LaToza GMU SWE 795 Spring 2017

Where do defects come from?

6

Adapted from Ko & Myers, JVLC05  



LaToza GMU SWE 795 Spring 2017

Where do defects come from?

7

Adapted from Ko & Myers, JVLC05  



LaToza GMU SWE 795 Spring 2017

Where do defects come from?
• Ko & Myers proposed a model for understanding 

the cognitive causes of defects 
• Latent errors becomes active errors when they 

breach defenses of system

8

Adapted from Ko & Myers, JVLC05  



LaToza GMU SWE 795 Spring 2017

Skill / Rule / Knowledge
• James Reason proposed a taxonomy of cognitive 

breakdowns based on differences in type of cognition being 
used 

• Skill-based activity: routine, proceduralized activity 
• e.g., typing a string, opening a source file, compiling a 

program 
• Rule-based activity: use of rules for acting in certain contexts 

• e.g., starting to type a for loop in order to perform an 
action on each element of a list 

• Knowledge-based activity: forming plans & making high-level 
decisions based on knowledge of program 
• e.g., forming a hypothesis about cause of runtime failure

9

Adapted from Ko & Myers, JVLC05  



LaToza GMU SWE 795 Spring 2017

Types of skill breakdowns

10

Adapted from Ko & Myers, JVLC05  



LaToza GMU SWE 795 Spring 2017

Types of rule breakdowns

11



LaToza GMU SWE 795 Spring 2017

Types of knowledge breakdowns

12



LaToza GMU SWE 795 Spring 2017

Breakdown chain example (Part 1)

13

Adapted from Ko & Myers, JVLC05  



LaToza GMU SWE 795 Spring 2017

Breakdown chain example (Part 1)

14

Adapted from Ko & Myers, JVLC05  



LaToza GMU SWE 795 Spring 2017

Causes of defects: API misuse

• Components expose APIs which have rules about 
how they should be used 

• What types of rules do components impose?

15



LaToza GMU SWE 795 Spring 2017

Causes of defects: API misuse
• Based on survey of APIs, categorized directives APIs 

impose on clients 
• Restrictions on when to call 

• Do not call from UI thread, for debugging use only  
• Protocols specifying ordering constraints 

• Method must only be called once, method must be 
called prior to other method 

• Locking describing thread synchronization 
• Restrictions on possible parameter values 

• String.replaceAll() should not include $ or \ characters 
in replacement string

16

Uri Dekel and James D. Herbsleb. 2009. Improving API documentation usability with knowledge pushing. In Proceedings 
of the 31st International Conference on Software Engineering (ICSE ’09), 320-330. 



LaToza GMU SWE 795 Spring 2017

Causes of defects: Object protocol misuse

• Examined Java code for presence of protocols, 
found 7.2% of types defined protocols & 13% of 
classes used protocols 

• Most frequent causes: 
• Initialization (28.1%): calls to an instance method 

m without first calling initializing method i 
• Deactivation (25.8%): calls to an instance 

method m after calling a deactivation method d 
• Type Qualifier (16.4%): object enters a state 

during which method m will always fail

17

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. 2011. An empirical study of object protocols in the wild. In 
Proceedings of the 25th European conference on Object-oriented programming (ECOOP'11), Mira Mezini (Ed.). 
Springer-Verlag, Berlin, Heidelberg, 2-26.



LaToza GMU SWE 795 Spring 2017

Causes of defects in JavaScript
• Examined 502 bug reports from 19 repos, categorizing 

the cause of each error 
• Most common types of errors: 

• Erroneous input validation (16%): inputs passed into 
JS code are not validated or sanitized 

• Error in writing a string literal (13%): incorrect CSS 
selectors, regular expressions, forgetting prefixes, etc. 

• Forgetting null / undefined check (10%) 
• Neglecting differences in browser behavior (9%): 

differences in behavior of browser API across 
browsers 

• Errors in syntax (7%)

18

Ocariza et al, A Study of Causes and Consequences of Client-Side JavaScript Bugs, TSE 2016



LaToza GMU SWE 795 Spring 2017

How can defects be prevented?
1. Help programmers recover from interruptions or delays by reminding 
them of their previous actions  
2. Highlight exceptional circumstances to help programmers adapt their 
routine strategies 
3. Help programmers manage multiple tasks and detect interleaved 
actions 
4. Design task-relevant information to be visible and unambiguous  
5. Avoid inundating programmers with information 
6. Help programmers consider all relevant hypotheses, to avoid the 
formation of invalid hypotheses  
7. Help programmers identify and understand causal relationships, to 
avoid invalid knowledge 
8. Help programmers identify correlation and recognize illusory 
correlation  
9. Highlight logically important information to combat availability and 
selectivity heuristics  
10. Prevent programmer’s overconfidence in their knowledge by testing 
their assumptions 

19

Adapted from Ko & Myers, JVLC05  



LaToza GMU SWE 795 Spring 2017

How can defects be prevented?

• Techniques we’ll examine today 
• Specification checkers 
• Idiom detectors 
• Heuristic based detectors

20



LaToza GMU SWE 795 Spring 2017

Specification checkers

• Key idea 
• Components (functions, classes, modules, …) 

have interfaces with rules that describe how they 
should be correctly used 

• Violations of these rules cause defects 
• Goal: express these rules in a machine-readable 

form, check that code conforms to these rules, 
issue compile warnings when it does not

21



LaToza GMU SWE 795 Spring 2017

Slam

Iteratively refines 
boolean abstraction 
of program to 
determine if there 
exists path that 
violates rules

22

T. Ball and S.K. Rajamani, “The Slam Project: Debugging System Software via Static Analysis,” Proc. 29th ACM SIGPLAN-SIGACT Symp. 
Principles of Programming Languages (POPL 2002), ACM Press, 2002, pp. 1–3.  

Rules governing lock



LaToza GMU SWE 795 Spring 2017

Idiom detectors
• Key idea 

• Code may contain bug patterns that are often 
(but not always) errors.  

• Provide an open-ended framework for authoring 
bug pattern detectors 

• Flag instances of bug patterns as warning to 
developers

23



LaToza GMU SWE 795 Spring 2017

FindBugs

24

David Hovemeyer and William Pugh. 2004. Finding bugs is easy. In Companion to the 19th annual ACM SIGPLAN 
conference on Object-oriented programming systems, languages, and applications (OOPSLA '04). ACM, New York, 
NY, USA, 132-136.

Null pointer deref

Unconditional wait



LaToza GMU SWE 795 Spring 2017

Some initial Findbugs bug patterns

25



LaToza GMU SWE 795 Spring 2017

Current list of Findbugs bug patterns

26

http://findbugs.sourceforge.net/bugDescriptions.html 

http://findbugs.sourceforge.net/bugDescriptions.html


LaToza GMU SWE 795 Spring 2017

Heuristic based detectors
• Key idea 

• Use heuristics about how code is usually written 
to determine what might likely indicate an error 

• Offer developers a warning message

27



LaToza GMU SWE 795 Spring 2017

Cleanroom

Uniqueness 
heuristic: flag any 
identifier that 
occurs only once 
in a software 
project

28

A. J. Ko and J. O. Wobbrock, "Cleanroom: Edit-Time Error Detection with the Uniqueness Heuristic," 2010 IEEE Symposium on Visual 
Languages and Human-Centric Computing, Leganes, 2010, pp. 7-14.



LaToza GMU SWE 795 Spring 2017

How should potential defects be 
communicated to developers?

• Static analysis tools increasingly part of the build 
process 

• Builds compile code, run static analysis tools 
• Individual teams may build their own static analysis 

rules 

• How should these tools communicate analysis 
results to developers?

29



LaToza GMU SWE 795 Spring 2017

Tricorder
• Goals: 

• Low false positives—error 
reports should result in code 
changes 

• Empower users to contribute
—let developers write their 
own checkers 

• Make data-driven usability 
improvements 

• Effective workflow integration 
• Quick fixes

30

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Winter. 2015. Tricorder: building a 
program analysis ecosystem. International Conference on Software Engineering, 598-608.



LaToza GMU SWE 795 Spring 2017

Tricorder Analysis Results

31

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Winter. 2015. Tricorder: building a 
program analysis ecosystem. International Conference on Software Engineering, 598-608.


