
A Refactoring Tool for 
Smalltalk

SWE 795, Spring 2017
Software Engineering Environments

Summary by Prof. Thomas LaToza

Don Roberts, John Brant, Ralph Johnson 
Theory and Practice of Object Systems 1997



Refactoring:	Key	Idea

• Concerns may crosscut, making code changes more difficult. 

• Important to reorganize code to reduce duplication, organize 
functionality in appropriate places 

• Refactorings are behavior preserving program edits designed to 
improve design of code (e.g., eliminate redundancy) 

• Refactoring tools to assist should 

• Be completely automated 

• Provably correct, ensuring no new errors are introduced 

• Offer more complex refactorings composed from primitives
2



LaToza GMU SWE 795 Spring 2017

Design goals for refactoring
• Integrated into standard development tools 

• Want to integrate so developers cannot help but use 

• Be fast: immediately see results of change 
• Refactorings that are slower will not be used 

• Avoid purely automatic reorganization 
• Get input from users (e.g., name for new class) 

• Be reasonably correct 
• Developers must trust them 
• But features like reflection makes it impossible to be 

completely correct

3



LaToza GMU SWE 795 Spring 2017

Refactorings supported

4



LaToza GMU SWE 795 Spring 2017 5

Example: Extract Method



LaToza GMU SWE 795 Spring 2017

Questions for discussion
• Overall reaction to the paper 

• What are the barriers to using refactorings today? 

• How much trust in the correctness of a refactoring 
is enough? 
• How much would a developer have to know to 

even reason about when to trust the tool? 

• What additional refactorings might be valuable?

6


