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CodeHint Overview

1 final JComponent tree = makeTree();

> tree.addMouseListener(new MouseAdapter() {

s public void mousePressed(MouseEvent e) {

4 int x = e.getX(), y = e.getY();

5 Object o = null;

6 // Get the menu bar or the clicked element.
7}

s 1);

((JFrame)SwingUtilities.getWindow Ancestor(jtree))
.getIMenuBar()

o instanceof JMenuBar ﬁ ((JFrame)tree.getTopLevel Ancestor()).getIMenuBar()

((JFrame)SwingUtilities.getRoot(tree)).getIMenuBar()

pdspec CodeHint

-+ Uses assertion from developer to guide search for
expressions that satisfy assertion



Demo
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Evaluation: Performance

Normal algorithm Side effects || No pruning | Brute force
Depth 2 Depth 3 Depth 4 Depth 2 Depth 3 Depth 3
#  Time # Time # Time Time # #

P1 34 0.4 611 1.1 19259 9.1 0.4 04911 2034829
P2 a7 0.5 912 1.9 35232 7.7 0.8 10953 847418
P3 124 04| 1156 1.2 | 124991 17.8 1.0 157052 6200476
P4 7 0.2 36 0.3 552 0.8 0.3 36 219
P5 22 0.3 234 0.4 2565 1.1 0.3 4692 155774
S1 8 0.9 223 2.0 1401 3.6 4.3 3775 39439
S 2 12 U.6 279 1.4 2043 3.6 4.9 4457 2107Y
S 3 70 0.7 814 2.8 6645 6.2 4.9 41359 1867350
S4 103 1.1 842 3.7 22138 10.6 8.5 004018 61246626
S5 32 0.8 9595 2.8 | 179956 15.8 6.7 24409 272025
R1 22 0.2 08 0.3 846 0.6 0.6 98 33112
R 2 12 0.2 137 0.3 1090 0.5 0.3 137 1004
R 3 8 0.1 13 0.1 ol 0.2 0.5 13 19
R 4 7 0.2 19 0.2 80 0.3 0.3 19 33
R5 24 0.3 229 0.3 1761 1.9 0.4 609 115410
Avg || 36.1 0.5 | 412.9 1.3 26574 0.3 2.3 03769.2 4857654.2
Med 22 0.4 234 1.1 2043 3.6 0.6 4457 115410
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User Study
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Figure 2: The task completion time of subjects in
our first user study. The error bars show the stan-
dard error.

Study 2 Task Completion Rate
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Figure 3: The task completion rate of subjects in
our second user study. The error bars show the
standard error.
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Questions for discussion

e Qverall reaction to the paper

 Would you use such a system for your everyday
programming’?

 Why or why not?

* |n what other programming tasks might this help
developers?
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