CodeHint: Dynamic and
Interactive Synthesis of
Code Snippets

Joel Galenson, Philip Reames, Rastislav Bodik,
Bjorn Hartmann, Koushik Sen
ICSE 2014

Summary by Prof. Thomas LaToza
SWE 795, Spring 2017
Software Engineering Environments

IIIIIIIIII



CodeHint Overview

1 final JComponent tree = makeTree();

> tree.addMouseListener(new MouseAdapter() {

s public void mousePressed(MouseEvent e) {

4 int x = e.getX(), y = e.getY();

5 Object o = null;

6 // Get the menu bar or the clicked element.
7}

s 1);

((JFrame)SwingUtilities.getWindow Ancestor(jtree))
.getIMenuBar()

o instanceof JMenuBar ﬁ ((JFrame)tree.getTopLevel Ancestor()).getIMenuBar()

((JFrame)SwingUtilities.getRoot(tree)).getIMenuBar()

pdspec CodeHint

-+ Uses assertion from developer to guide search for
expressions that satisfy assertion



Demo

. QN7 A HETAITIV. TINAOATA  SAJTH. NTTaTY. WA WO W Hawn,

‘ Select pdspec type: Demonstrate valse v J

Demorstrate an expression for ChchedPow. 'We wi Tnd expressans that evaluate to the same value

Gove & skeleton descnbng the lorm of the desred expresnon, usng 114 for unknown expressons and Aames and **4 for an
unknown ramiber of arguments

o TH [0 Search operators

[ Call man-standard native methods (fast bt dangerous) (] Leg and undo side effects (sound bt slow!

r
| Continue search I

Expresson Il\n'-"'.
Demo.jaN —
. e adRow :
[ javax swng.SsngConstants CENTER 0

nstants HO& NTA

J 159 * W LT IAL

IR SwWiNg . SwngLo

Ja Swng JCompoment WHEN FOCUSED C

IRt Framme NORMAL

= L) tree.getRowf orLacatanmousex mauseY) 0

g

Lra e . Qet Rowhie

] Swegitities computeStrmawidthisd nul) 0
v 2wng WindowContants DO NOTMNG ON CLO 0 x
] tree get ClosestRowsf orocationimouseX.mouseY) 0

: tree -]" N

tree getx() >

trae netl andCalactinnbend)

J_] Check al I Unchack sl I Check uhaodl Uncheck ulxudl
M Caranla

hitps://www.youtube.com/watch”?v=gn5ylEe9kks

http://jgalenson.github.io/codehint/

LaToza GMU SWE 795 Spring 2017


https://www.youtube.com/watch?v=qn5yIEe9kks
http://jgalenson.github.io/codehint/

LaToza

Evaluation: Performance

Normal algorithm Side effects || No pruning | Brute force
Depth 2 Depth 3 Depth 4 Depth 2 Depth 3 Depth 3
#  Time # Time # Time Time # #

P1 34 0.4 611 1.1 19259 9.1 0.4 04911 2034829
P2 a7 0.5 912 1.9 35232 7.7 0.8 10953 847418
P3 124 04| 1156 1.2 | 124991 17.8 1.0 157052 6200476
P4 7 0.2 36 0.3 552 0.8 0.3 36 219
P5 22 0.3 234 0.4 2565 1.1 0.3 4692 155774
S1 8 0.9 223 2.0 1401 3.6 4.3 3775 39439
S 2 12 U.6 279 1.4 2043 3.6 4.9 4457 2107Y
S 3 70 0.7 814 2.8 6645 6.2 4.9 41359 1867350
S4 103 1.1 842 3.7 22138 10.6 8.5 004018 61246626
S5 32 0.8 9595 2.8 | 179956 15.8 6.7 24409 272025
R1 22 0.2 08 0.3 846 0.6 0.6 98 33112
R 2 12 0.2 137 0.3 1090 0.5 0.3 137 1004
R 3 8 0.1 13 0.1 ol 0.2 0.5 13 19
R 4 7 0.2 19 0.2 80 0.3 0.3 19 33
R5 24 0.3 229 0.3 1761 1.9 0.4 609 115410
Avg || 36.1 0.5 | 412.9 1.3 26574 0.3 2.3 03769.2 4857654.2
Med 22 0.4 234 1.1 2043 3.6 0.6 4457 115410

GMU SWE 795 Spring 2017




LaToza

User Study

Study 1 Task Completion Time

(improved)
Control l —
0 20 40 60 80 100 120

Time (s)

Figure 2: The task completion time of subjects in
our first user study. The error bars show the stan-
dard error.

Study 2 Task Completion Rate

Control

CodeHint

* . . A . |
0 10 20 30 40 50 60 70 80
% completed

Figure 3: The task completion rate of subjects in
our second user study. The error bars show the
standard error.

GMU SWE 795 Spring 2017



LaToza

Questions for discussion

e Qverall reaction to the paper

 Would you use such a system for your everyday
programming’?

 Why or why not?

* |n what other programming tasks might this help
developers?

GMU SWE 795 Spring 2017



